Properties

Label 2023.4.a.g.1.5
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,4,-5,52,-35,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 49x^{5} + 69x^{4} + 753x^{3} - 122x^{2} - 3621x - 2536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.77278\) of defining polynomial
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.77278 q^{2} -4.49237 q^{3} +6.23387 q^{4} -19.9390 q^{5} -16.9487 q^{6} +7.00000 q^{7} -6.66322 q^{8} -6.81863 q^{9} -75.2256 q^{10} +49.7349 q^{11} -28.0048 q^{12} -13.4357 q^{13} +26.4095 q^{14} +89.5735 q^{15} -75.0098 q^{16} -25.7252 q^{18} +154.140 q^{19} -124.297 q^{20} -31.4466 q^{21} +187.639 q^{22} -119.649 q^{23} +29.9336 q^{24} +272.565 q^{25} -50.6900 q^{26} +151.926 q^{27} +43.6371 q^{28} +48.3446 q^{29} +337.941 q^{30} +333.947 q^{31} -229.690 q^{32} -223.427 q^{33} -139.573 q^{35} -42.5065 q^{36} -79.6128 q^{37} +581.537 q^{38} +60.3582 q^{39} +132.858 q^{40} -276.450 q^{41} -118.641 q^{42} -340.827 q^{43} +310.041 q^{44} +135.957 q^{45} -451.411 q^{46} +593.644 q^{47} +336.972 q^{48} +49.0000 q^{49} +1028.33 q^{50} -83.7566 q^{52} +32.9719 q^{53} +573.182 q^{54} -991.666 q^{55} -46.6426 q^{56} -692.454 q^{57} +182.394 q^{58} -581.381 q^{59} +558.389 q^{60} -481.579 q^{61} +1259.91 q^{62} -47.7304 q^{63} -266.490 q^{64} +267.896 q^{65} -842.942 q^{66} -7.95468 q^{67} +537.509 q^{69} -526.579 q^{70} -400.666 q^{71} +45.4341 q^{72} -139.914 q^{73} -300.362 q^{74} -1224.46 q^{75} +960.890 q^{76} +348.144 q^{77} +227.718 q^{78} -0.461637 q^{79} +1495.62 q^{80} -498.403 q^{81} -1042.99 q^{82} -194.258 q^{83} -196.034 q^{84} -1285.86 q^{86} -217.182 q^{87} -331.395 q^{88} -823.811 q^{89} +512.936 q^{90} -94.0501 q^{91} -745.879 q^{92} -1500.21 q^{93} +2239.69 q^{94} -3073.41 q^{95} +1031.85 q^{96} +765.429 q^{97} +184.866 q^{98} -339.124 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 4 q^{2} - 5 q^{3} + 52 q^{4} - 35 q^{5} - 51 q^{6} + 49 q^{7} - 6 q^{8} + 128 q^{9} - 18 q^{10} - 48 q^{11} + 16 q^{12} + 84 q^{13} + 28 q^{14} - 54 q^{15} + 256 q^{16} + 196 q^{18} + 156 q^{19} - 317 q^{20}+ \cdots - 7572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.77278 1.33388 0.666940 0.745112i \(-0.267604\pi\)
0.666940 + 0.745112i \(0.267604\pi\)
\(3\) −4.49237 −0.864557 −0.432278 0.901740i \(-0.642290\pi\)
−0.432278 + 0.901740i \(0.642290\pi\)
\(4\) 6.23387 0.779234
\(5\) −19.9390 −1.78340 −0.891701 0.452625i \(-0.850488\pi\)
−0.891701 + 0.452625i \(0.850488\pi\)
\(6\) −16.9487 −1.15321
\(7\) 7.00000 0.377964
\(8\) −6.66322 −0.294476
\(9\) −6.81863 −0.252542
\(10\) −75.2256 −2.37884
\(11\) 49.7349 1.36324 0.681620 0.731707i \(-0.261276\pi\)
0.681620 + 0.731707i \(0.261276\pi\)
\(12\) −28.0048 −0.673692
\(13\) −13.4357 −0.286646 −0.143323 0.989676i \(-0.545779\pi\)
−0.143323 + 0.989676i \(0.545779\pi\)
\(14\) 26.4095 0.504159
\(15\) 89.5735 1.54185
\(16\) −75.0098 −1.17203
\(17\) 0 0
\(18\) −25.7252 −0.336860
\(19\) 154.140 1.86117 0.930584 0.366080i \(-0.119300\pi\)
0.930584 + 0.366080i \(0.119300\pi\)
\(20\) −124.297 −1.38969
\(21\) −31.4466 −0.326772
\(22\) 187.639 1.81840
\(23\) −119.649 −1.08472 −0.542361 0.840145i \(-0.682470\pi\)
−0.542361 + 0.840145i \(0.682470\pi\)
\(24\) 29.9336 0.254591
\(25\) 272.565 2.18052
\(26\) −50.6900 −0.382351
\(27\) 151.926 1.08289
\(28\) 43.6371 0.294523
\(29\) 48.3446 0.309565 0.154782 0.987949i \(-0.450532\pi\)
0.154782 + 0.987949i \(0.450532\pi\)
\(30\) 337.941 2.05664
\(31\) 333.947 1.93479 0.967396 0.253267i \(-0.0815052\pi\)
0.967396 + 0.253267i \(0.0815052\pi\)
\(32\) −229.690 −1.26887
\(33\) −223.427 −1.17860
\(34\) 0 0
\(35\) −139.573 −0.674063
\(36\) −42.5065 −0.196789
\(37\) −79.6128 −0.353737 −0.176869 0.984234i \(-0.556597\pi\)
−0.176869 + 0.984234i \(0.556597\pi\)
\(38\) 581.537 2.48257
\(39\) 60.3582 0.247822
\(40\) 132.858 0.525168
\(41\) −276.450 −1.05303 −0.526515 0.850166i \(-0.676502\pi\)
−0.526515 + 0.850166i \(0.676502\pi\)
\(42\) −118.641 −0.435874
\(43\) −340.827 −1.20873 −0.604367 0.796706i \(-0.706574\pi\)
−0.604367 + 0.796706i \(0.706574\pi\)
\(44\) 310.041 1.06228
\(45\) 135.957 0.450384
\(46\) −451.411 −1.44689
\(47\) 593.644 1.84238 0.921190 0.389114i \(-0.127219\pi\)
0.921190 + 0.389114i \(0.127219\pi\)
\(48\) 336.972 1.01328
\(49\) 49.0000 0.142857
\(50\) 1028.33 2.90855
\(51\) 0 0
\(52\) −83.7566 −0.223364
\(53\) 32.9719 0.0854536 0.0427268 0.999087i \(-0.486395\pi\)
0.0427268 + 0.999087i \(0.486395\pi\)
\(54\) 573.182 1.44445
\(55\) −991.666 −2.43120
\(56\) −46.6426 −0.111301
\(57\) −692.454 −1.60908
\(58\) 182.394 0.412922
\(59\) −581.381 −1.28287 −0.641435 0.767177i \(-0.721661\pi\)
−0.641435 + 0.767177i \(0.721661\pi\)
\(60\) 558.389 1.20146
\(61\) −481.579 −1.01082 −0.505409 0.862880i \(-0.668658\pi\)
−0.505409 + 0.862880i \(0.668658\pi\)
\(62\) 1259.91 2.58078
\(63\) −47.7304 −0.0954519
\(64\) −266.490 −0.520489
\(65\) 267.896 0.511205
\(66\) −842.942 −1.57211
\(67\) −7.95468 −0.0145048 −0.00725238 0.999974i \(-0.502309\pi\)
−0.00725238 + 0.999974i \(0.502309\pi\)
\(68\) 0 0
\(69\) 537.509 0.937804
\(70\) −526.579 −0.899118
\(71\) −400.666 −0.669722 −0.334861 0.942268i \(-0.608689\pi\)
−0.334861 + 0.942268i \(0.608689\pi\)
\(72\) 45.4341 0.0743674
\(73\) −139.914 −0.224324 −0.112162 0.993690i \(-0.535778\pi\)
−0.112162 + 0.993690i \(0.535778\pi\)
\(74\) −300.362 −0.471842
\(75\) −1224.46 −1.88518
\(76\) 960.890 1.45028
\(77\) 348.144 0.515256
\(78\) 227.718 0.330564
\(79\) −0.461637 −0.000657445 0 −0.000328723 1.00000i \(-0.500105\pi\)
−0.000328723 1.00000i \(0.500105\pi\)
\(80\) 1495.62 2.09020
\(81\) −498.403 −0.683681
\(82\) −1042.99 −1.40462
\(83\) −194.258 −0.256898 −0.128449 0.991716i \(-0.541000\pi\)
−0.128449 + 0.991716i \(0.541000\pi\)
\(84\) −196.034 −0.254631
\(85\) 0 0
\(86\) −1285.86 −1.61231
\(87\) −217.182 −0.267636
\(88\) −331.395 −0.401441
\(89\) −823.811 −0.981166 −0.490583 0.871394i \(-0.663216\pi\)
−0.490583 + 0.871394i \(0.663216\pi\)
\(90\) 512.936 0.600758
\(91\) −94.0501 −0.108342
\(92\) −745.879 −0.845253
\(93\) −1500.21 −1.67274
\(94\) 2239.69 2.45751
\(95\) −3073.41 −3.31921
\(96\) 1031.85 1.09701
\(97\) 765.429 0.801212 0.400606 0.916250i \(-0.368800\pi\)
0.400606 + 0.916250i \(0.368800\pi\)
\(98\) 184.866 0.190554
\(99\) −339.124 −0.344275
\(100\) 1699.14 1.69914
\(101\) 1330.69 1.31098 0.655489 0.755205i \(-0.272463\pi\)
0.655489 + 0.755205i \(0.272463\pi\)
\(102\) 0 0
\(103\) −369.346 −0.353327 −0.176664 0.984271i \(-0.556530\pi\)
−0.176664 + 0.984271i \(0.556530\pi\)
\(104\) 89.5252 0.0844103
\(105\) 627.014 0.582765
\(106\) 124.396 0.113985
\(107\) 1286.08 1.16196 0.580981 0.813917i \(-0.302669\pi\)
0.580981 + 0.813917i \(0.302669\pi\)
\(108\) 947.085 0.843827
\(109\) −685.643 −0.602502 −0.301251 0.953545i \(-0.597404\pi\)
−0.301251 + 0.953545i \(0.597404\pi\)
\(110\) −3741.34 −3.24293
\(111\) 357.650 0.305826
\(112\) −525.069 −0.442985
\(113\) −1720.74 −1.43251 −0.716254 0.697839i \(-0.754145\pi\)
−0.716254 + 0.697839i \(0.754145\pi\)
\(114\) −2612.48 −2.14632
\(115\) 2385.69 1.93450
\(116\) 301.374 0.241223
\(117\) 91.6133 0.0723902
\(118\) −2193.42 −1.71119
\(119\) 0 0
\(120\) −596.848 −0.454038
\(121\) 1142.56 0.858422
\(122\) −1816.89 −1.34831
\(123\) 1241.92 0.910404
\(124\) 2081.78 1.50766
\(125\) −2942.31 −2.10535
\(126\) −180.076 −0.127321
\(127\) 774.769 0.541336 0.270668 0.962673i \(-0.412755\pi\)
0.270668 + 0.962673i \(0.412755\pi\)
\(128\) 832.108 0.574599
\(129\) 1531.12 1.04502
\(130\) 1010.71 0.681886
\(131\) 94.1724 0.0628082 0.0314041 0.999507i \(-0.490002\pi\)
0.0314041 + 0.999507i \(0.490002\pi\)
\(132\) −1392.82 −0.918403
\(133\) 1078.98 0.703455
\(134\) −30.0113 −0.0193476
\(135\) −3029.25 −1.93123
\(136\) 0 0
\(137\) −138.820 −0.0865705 −0.0432852 0.999063i \(-0.513782\pi\)
−0.0432852 + 0.999063i \(0.513782\pi\)
\(138\) 2027.90 1.25092
\(139\) 63.0237 0.0384576 0.0192288 0.999815i \(-0.493879\pi\)
0.0192288 + 0.999815i \(0.493879\pi\)
\(140\) −870.082 −0.525252
\(141\) −2666.87 −1.59284
\(142\) −1511.62 −0.893328
\(143\) −668.224 −0.390767
\(144\) 511.464 0.295986
\(145\) −963.946 −0.552078
\(146\) −527.864 −0.299222
\(147\) −220.126 −0.123508
\(148\) −496.296 −0.275644
\(149\) −841.625 −0.462743 −0.231371 0.972866i \(-0.574321\pi\)
−0.231371 + 0.972866i \(0.574321\pi\)
\(150\) −4619.63 −2.51461
\(151\) −558.778 −0.301144 −0.150572 0.988599i \(-0.548111\pi\)
−0.150572 + 0.988599i \(0.548111\pi\)
\(152\) −1027.07 −0.548068
\(153\) 0 0
\(154\) 1313.47 0.687289
\(155\) −6658.57 −3.45051
\(156\) 376.265 0.193111
\(157\) 1779.36 0.904514 0.452257 0.891888i \(-0.350619\pi\)
0.452257 + 0.891888i \(0.350619\pi\)
\(158\) −1.74165 −0.000876953 0
\(159\) −148.122 −0.0738795
\(160\) 4579.79 2.26290
\(161\) −837.546 −0.409987
\(162\) −1880.37 −0.911947
\(163\) −597.601 −0.287164 −0.143582 0.989638i \(-0.545862\pi\)
−0.143582 + 0.989638i \(0.545862\pi\)
\(164\) −1723.35 −0.820557
\(165\) 4454.93 2.10191
\(166\) −732.891 −0.342671
\(167\) −1864.25 −0.863830 −0.431915 0.901914i \(-0.642162\pi\)
−0.431915 + 0.901914i \(0.642162\pi\)
\(168\) 209.536 0.0962263
\(169\) −2016.48 −0.917834
\(170\) 0 0
\(171\) −1051.02 −0.470023
\(172\) −2124.67 −0.941887
\(173\) −864.071 −0.379735 −0.189867 0.981810i \(-0.560806\pi\)
−0.189867 + 0.981810i \(0.560806\pi\)
\(174\) −819.380 −0.356994
\(175\) 1907.96 0.824160
\(176\) −3730.61 −1.59776
\(177\) 2611.78 1.10911
\(178\) −3108.06 −1.30876
\(179\) −1422.09 −0.593812 −0.296906 0.954907i \(-0.595955\pi\)
−0.296906 + 0.954907i \(0.595955\pi\)
\(180\) 847.538 0.350954
\(181\) 1003.74 0.412194 0.206097 0.978532i \(-0.433924\pi\)
0.206097 + 0.978532i \(0.433924\pi\)
\(182\) −354.830 −0.144515
\(183\) 2163.43 0.873909
\(184\) 797.251 0.319424
\(185\) 1587.40 0.630855
\(186\) −5659.97 −2.23123
\(187\) 0 0
\(188\) 3700.70 1.43564
\(189\) 1063.48 0.409295
\(190\) −11595.3 −4.42742
\(191\) −3874.54 −1.46781 −0.733906 0.679251i \(-0.762305\pi\)
−0.733906 + 0.679251i \(0.762305\pi\)
\(192\) 1197.17 0.449992
\(193\) −26.9598 −0.0100550 −0.00502748 0.999987i \(-0.501600\pi\)
−0.00502748 + 0.999987i \(0.501600\pi\)
\(194\) 2887.80 1.06872
\(195\) −1203.49 −0.441966
\(196\) 305.460 0.111319
\(197\) −77.1287 −0.0278944 −0.0139472 0.999903i \(-0.504440\pi\)
−0.0139472 + 0.999903i \(0.504440\pi\)
\(198\) −1279.44 −0.459221
\(199\) 3338.51 1.18925 0.594625 0.804003i \(-0.297300\pi\)
0.594625 + 0.804003i \(0.297300\pi\)
\(200\) −1816.16 −0.642111
\(201\) 35.7354 0.0125402
\(202\) 5020.41 1.74869
\(203\) 338.413 0.117004
\(204\) 0 0
\(205\) 5512.15 1.87798
\(206\) −1393.46 −0.471296
\(207\) 815.845 0.273938
\(208\) 1007.81 0.335958
\(209\) 7666.14 2.53722
\(210\) 2365.59 0.777338
\(211\) −4891.79 −1.59604 −0.798021 0.602629i \(-0.794120\pi\)
−0.798021 + 0.602629i \(0.794120\pi\)
\(212\) 205.543 0.0665883
\(213\) 1799.94 0.579012
\(214\) 4852.09 1.54992
\(215\) 6795.76 2.15566
\(216\) −1012.31 −0.318886
\(217\) 2337.63 0.731283
\(218\) −2586.78 −0.803664
\(219\) 628.545 0.193941
\(220\) −6181.92 −1.89448
\(221\) 0 0
\(222\) 1349.34 0.407934
\(223\) 4338.34 1.30276 0.651382 0.758750i \(-0.274189\pi\)
0.651382 + 0.758750i \(0.274189\pi\)
\(224\) −1607.83 −0.479587
\(225\) −1858.52 −0.550673
\(226\) −6491.97 −1.91079
\(227\) −1351.98 −0.395304 −0.197652 0.980272i \(-0.563332\pi\)
−0.197652 + 0.980272i \(0.563332\pi\)
\(228\) −4316.67 −1.25385
\(229\) 886.201 0.255728 0.127864 0.991792i \(-0.459188\pi\)
0.127864 + 0.991792i \(0.459188\pi\)
\(230\) 9000.70 2.58039
\(231\) −1563.99 −0.445468
\(232\) −322.131 −0.0911592
\(233\) 886.333 0.249209 0.124604 0.992207i \(-0.460234\pi\)
0.124604 + 0.992207i \(0.460234\pi\)
\(234\) 345.637 0.0965598
\(235\) −11836.7 −3.28570
\(236\) −3624.25 −0.999656
\(237\) 2.07384 0.000568399 0
\(238\) 0 0
\(239\) −4776.49 −1.29274 −0.646372 0.763023i \(-0.723714\pi\)
−0.646372 + 0.763023i \(0.723714\pi\)
\(240\) −6718.89 −1.80709
\(241\) −1627.74 −0.435071 −0.217536 0.976052i \(-0.569802\pi\)
−0.217536 + 0.976052i \(0.569802\pi\)
\(242\) 4310.62 1.14503
\(243\) −1862.98 −0.491813
\(244\) −3002.10 −0.787663
\(245\) −977.013 −0.254772
\(246\) 4685.47 1.21437
\(247\) −2070.99 −0.533496
\(248\) −2225.16 −0.569749
\(249\) 872.676 0.222103
\(250\) −11100.7 −2.80828
\(251\) −2179.33 −0.548039 −0.274019 0.961724i \(-0.588353\pi\)
−0.274019 + 0.961724i \(0.588353\pi\)
\(252\) −297.545 −0.0743793
\(253\) −5950.75 −1.47874
\(254\) 2923.03 0.722076
\(255\) 0 0
\(256\) 5271.29 1.28694
\(257\) 2021.55 0.490665 0.245333 0.969439i \(-0.421103\pi\)
0.245333 + 0.969439i \(0.421103\pi\)
\(258\) 5776.57 1.39393
\(259\) −557.290 −0.133700
\(260\) 1670.03 0.398348
\(261\) −329.644 −0.0781781
\(262\) 355.292 0.0837786
\(263\) −5855.38 −1.37285 −0.686423 0.727202i \(-0.740820\pi\)
−0.686423 + 0.727202i \(0.740820\pi\)
\(264\) 1488.75 0.347068
\(265\) −657.428 −0.152398
\(266\) 4070.76 0.938324
\(267\) 3700.86 0.848274
\(268\) −49.5884 −0.0113026
\(269\) 1230.97 0.279011 0.139505 0.990221i \(-0.455449\pi\)
0.139505 + 0.990221i \(0.455449\pi\)
\(270\) −11428.7 −2.57603
\(271\) −8087.41 −1.81282 −0.906411 0.422396i \(-0.861189\pi\)
−0.906411 + 0.422396i \(0.861189\pi\)
\(272\) 0 0
\(273\) 422.508 0.0936679
\(274\) −523.736 −0.115475
\(275\) 13556.0 2.97257
\(276\) 3350.76 0.730769
\(277\) −2212.82 −0.479985 −0.239992 0.970775i \(-0.577145\pi\)
−0.239992 + 0.970775i \(0.577145\pi\)
\(278\) 237.775 0.0512977
\(279\) −2277.06 −0.488616
\(280\) 930.008 0.198495
\(281\) 6275.18 1.33219 0.666096 0.745866i \(-0.267964\pi\)
0.666096 + 0.745866i \(0.267964\pi\)
\(282\) −10061.5 −2.12466
\(283\) −3278.83 −0.688714 −0.344357 0.938839i \(-0.611903\pi\)
−0.344357 + 0.938839i \(0.611903\pi\)
\(284\) −2497.70 −0.521870
\(285\) 13806.9 2.86964
\(286\) −2521.06 −0.521236
\(287\) −1935.15 −0.398008
\(288\) 1566.17 0.320443
\(289\) 0 0
\(290\) −3636.76 −0.736406
\(291\) −3438.59 −0.692693
\(292\) −872.205 −0.174801
\(293\) −6378.66 −1.27183 −0.635913 0.771761i \(-0.719376\pi\)
−0.635913 + 0.771761i \(0.719376\pi\)
\(294\) −830.487 −0.164745
\(295\) 11592.2 2.28787
\(296\) 530.478 0.104167
\(297\) 7556.01 1.47624
\(298\) −3175.27 −0.617243
\(299\) 1607.58 0.310932
\(300\) −7633.15 −1.46900
\(301\) −2385.79 −0.456859
\(302\) −2108.15 −0.401689
\(303\) −5977.96 −1.13341
\(304\) −11562.0 −2.18134
\(305\) 9602.22 1.80269
\(306\) 0 0
\(307\) −6646.87 −1.23569 −0.617845 0.786300i \(-0.711994\pi\)
−0.617845 + 0.786300i \(0.711994\pi\)
\(308\) 2170.29 0.401505
\(309\) 1659.24 0.305471
\(310\) −25121.3 −4.60257
\(311\) 7483.33 1.36444 0.682220 0.731147i \(-0.261015\pi\)
0.682220 + 0.731147i \(0.261015\pi\)
\(312\) −402.180 −0.0729775
\(313\) 1464.16 0.264407 0.132203 0.991223i \(-0.457795\pi\)
0.132203 + 0.991223i \(0.457795\pi\)
\(314\) 6713.15 1.20651
\(315\) 951.699 0.170229
\(316\) −2.87778 −0.000512304 0
\(317\) −761.092 −0.134849 −0.0674245 0.997724i \(-0.521478\pi\)
−0.0674245 + 0.997724i \(0.521478\pi\)
\(318\) −558.832 −0.0985463
\(319\) 2404.42 0.422011
\(320\) 5313.56 0.928241
\(321\) −5777.54 −1.00458
\(322\) −3159.88 −0.546873
\(323\) 0 0
\(324\) −3106.98 −0.532747
\(325\) −3662.11 −0.625038
\(326\) −2254.62 −0.383042
\(327\) 3080.16 0.520897
\(328\) 1842.05 0.310092
\(329\) 4155.51 0.696354
\(330\) 16807.5 2.80370
\(331\) 7077.08 1.17520 0.587600 0.809151i \(-0.300073\pi\)
0.587600 + 0.809151i \(0.300073\pi\)
\(332\) −1210.98 −0.200184
\(333\) 542.851 0.0893334
\(334\) −7033.39 −1.15225
\(335\) 158.609 0.0258678
\(336\) 2358.80 0.382986
\(337\) −1725.65 −0.278938 −0.139469 0.990226i \(-0.544540\pi\)
−0.139469 + 0.990226i \(0.544540\pi\)
\(338\) −7607.74 −1.22428
\(339\) 7730.19 1.23848
\(340\) 0 0
\(341\) 16608.8 2.63759
\(342\) −3965.29 −0.626954
\(343\) 343.000 0.0539949
\(344\) 2271.00 0.355943
\(345\) −10717.4 −1.67248
\(346\) −3259.95 −0.506520
\(347\) −1118.99 −0.173113 −0.0865566 0.996247i \(-0.527586\pi\)
−0.0865566 + 0.996247i \(0.527586\pi\)
\(348\) −1353.88 −0.208551
\(349\) −1726.31 −0.264777 −0.132388 0.991198i \(-0.542265\pi\)
−0.132388 + 0.991198i \(0.542265\pi\)
\(350\) 7198.30 1.09933
\(351\) −2041.23 −0.310407
\(352\) −11423.6 −1.72977
\(353\) 1783.51 0.268914 0.134457 0.990919i \(-0.457071\pi\)
0.134457 + 0.990919i \(0.457071\pi\)
\(354\) 9853.66 1.47942
\(355\) 7988.89 1.19438
\(356\) −5135.53 −0.764558
\(357\) 0 0
\(358\) −5365.25 −0.792073
\(359\) −1288.16 −0.189378 −0.0946888 0.995507i \(-0.530186\pi\)
−0.0946888 + 0.995507i \(0.530186\pi\)
\(360\) −905.912 −0.132627
\(361\) 16900.2 2.46394
\(362\) 3786.88 0.549817
\(363\) −5132.80 −0.742154
\(364\) −586.296 −0.0844238
\(365\) 2789.75 0.400061
\(366\) 8162.15 1.16569
\(367\) 8660.62 1.23183 0.615914 0.787813i \(-0.288787\pi\)
0.615914 + 0.787813i \(0.288787\pi\)
\(368\) 8974.88 1.27133
\(369\) 1885.01 0.265934
\(370\) 5988.92 0.841485
\(371\) 230.803 0.0322984
\(372\) −9352.12 −1.30345
\(373\) 8322.88 1.15534 0.577671 0.816270i \(-0.303962\pi\)
0.577671 + 0.816270i \(0.303962\pi\)
\(374\) 0 0
\(375\) 13217.9 1.82019
\(376\) −3955.58 −0.542536
\(377\) −649.546 −0.0887355
\(378\) 4012.28 0.545950
\(379\) 5250.99 0.711676 0.355838 0.934548i \(-0.384196\pi\)
0.355838 + 0.934548i \(0.384196\pi\)
\(380\) −19159.2 −2.58644
\(381\) −3480.55 −0.468015
\(382\) −14617.8 −1.95788
\(383\) −7076.87 −0.944155 −0.472077 0.881557i \(-0.656496\pi\)
−0.472077 + 0.881557i \(0.656496\pi\)
\(384\) −3738.14 −0.496773
\(385\) −6941.66 −0.918909
\(386\) −101.713 −0.0134121
\(387\) 2323.97 0.305256
\(388\) 4771.59 0.624332
\(389\) −5565.98 −0.725466 −0.362733 0.931893i \(-0.618156\pi\)
−0.362733 + 0.931893i \(0.618156\pi\)
\(390\) −4540.48 −0.589529
\(391\) 0 0
\(392\) −326.498 −0.0420679
\(393\) −423.057 −0.0543013
\(394\) −290.990 −0.0372077
\(395\) 9.20459 0.00117249
\(396\) −2114.05 −0.268271
\(397\) −3419.46 −0.432287 −0.216143 0.976362i \(-0.569348\pi\)
−0.216143 + 0.976362i \(0.569348\pi\)
\(398\) 12595.5 1.58632
\(399\) −4847.18 −0.608177
\(400\) −20445.1 −2.55563
\(401\) −4833.39 −0.601915 −0.300957 0.953638i \(-0.597306\pi\)
−0.300957 + 0.953638i \(0.597306\pi\)
\(402\) 134.822 0.0167271
\(403\) −4486.82 −0.554601
\(404\) 8295.36 1.02156
\(405\) 9937.68 1.21928
\(406\) 1276.76 0.156070
\(407\) −3959.54 −0.482228
\(408\) 0 0
\(409\) −5691.17 −0.688044 −0.344022 0.938962i \(-0.611789\pi\)
−0.344022 + 0.938962i \(0.611789\pi\)
\(410\) 20796.1 2.50499
\(411\) 623.628 0.0748451
\(412\) −2302.45 −0.275324
\(413\) −4069.67 −0.484879
\(414\) 3078.01 0.365400
\(415\) 3873.31 0.458152
\(416\) 3086.05 0.363716
\(417\) −283.126 −0.0332487
\(418\) 28922.7 3.38434
\(419\) 7050.92 0.822100 0.411050 0.911613i \(-0.365162\pi\)
0.411050 + 0.911613i \(0.365162\pi\)
\(420\) 3908.73 0.454110
\(421\) 7427.11 0.859799 0.429900 0.902877i \(-0.358549\pi\)
0.429900 + 0.902877i \(0.358549\pi\)
\(422\) −18455.7 −2.12893
\(423\) −4047.84 −0.465278
\(424\) −219.699 −0.0251640
\(425\) 0 0
\(426\) 6790.77 0.772333
\(427\) −3371.05 −0.382053
\(428\) 8017.24 0.905440
\(429\) 3001.91 0.337841
\(430\) 25638.9 2.87539
\(431\) −5373.17 −0.600503 −0.300251 0.953860i \(-0.597071\pi\)
−0.300251 + 0.953860i \(0.597071\pi\)
\(432\) −11395.9 −1.26918
\(433\) −5398.75 −0.599186 −0.299593 0.954067i \(-0.596851\pi\)
−0.299593 + 0.954067i \(0.596851\pi\)
\(434\) 8819.35 0.975443
\(435\) 4330.40 0.477303
\(436\) −4274.21 −0.469490
\(437\) −18442.8 −2.01885
\(438\) 2371.36 0.258694
\(439\) 1390.40 0.151162 0.0755812 0.997140i \(-0.475919\pi\)
0.0755812 + 0.997140i \(0.475919\pi\)
\(440\) 6607.69 0.715930
\(441\) −334.113 −0.0360774
\(442\) 0 0
\(443\) −16501.1 −1.76973 −0.884865 0.465848i \(-0.845749\pi\)
−0.884865 + 0.465848i \(0.845749\pi\)
\(444\) 2229.54 0.238310
\(445\) 16426.0 1.74981
\(446\) 16367.6 1.73773
\(447\) 3780.89 0.400067
\(448\) −1865.43 −0.196726
\(449\) 13745.9 1.44479 0.722393 0.691482i \(-0.243042\pi\)
0.722393 + 0.691482i \(0.243042\pi\)
\(450\) −7011.80 −0.734532
\(451\) −13749.2 −1.43553
\(452\) −10726.9 −1.11626
\(453\) 2510.24 0.260356
\(454\) −5100.72 −0.527288
\(455\) 1875.27 0.193217
\(456\) 4613.98 0.473836
\(457\) 4248.42 0.434864 0.217432 0.976076i \(-0.430232\pi\)
0.217432 + 0.976076i \(0.430232\pi\)
\(458\) 3343.44 0.341111
\(459\) 0 0
\(460\) 14872.1 1.50743
\(461\) −9621.73 −0.972079 −0.486040 0.873937i \(-0.661559\pi\)
−0.486040 + 0.873937i \(0.661559\pi\)
\(462\) −5900.60 −0.594201
\(463\) −4867.75 −0.488603 −0.244302 0.969699i \(-0.578559\pi\)
−0.244302 + 0.969699i \(0.578559\pi\)
\(464\) −3626.32 −0.362819
\(465\) 29912.8 2.98316
\(466\) 3343.94 0.332414
\(467\) 6984.80 0.692115 0.346058 0.938213i \(-0.387520\pi\)
0.346058 + 0.938213i \(0.387520\pi\)
\(468\) 571.105 0.0564089
\(469\) −55.6828 −0.00548228
\(470\) −44657.2 −4.38273
\(471\) −7993.55 −0.782003
\(472\) 3873.87 0.377774
\(473\) −16951.0 −1.64779
\(474\) 7.82415 0.000758175 0
\(475\) 42013.3 4.05832
\(476\) 0 0
\(477\) −224.823 −0.0215806
\(478\) −18020.7 −1.72436
\(479\) −7637.78 −0.728557 −0.364279 0.931290i \(-0.618684\pi\)
−0.364279 + 0.931290i \(0.618684\pi\)
\(480\) −20574.1 −1.95641
\(481\) 1069.66 0.101397
\(482\) −6141.12 −0.580332
\(483\) 3762.56 0.354457
\(484\) 7122.56 0.668911
\(485\) −15261.9 −1.42888
\(486\) −7028.63 −0.656019
\(487\) −5410.89 −0.503472 −0.251736 0.967796i \(-0.581001\pi\)
−0.251736 + 0.967796i \(0.581001\pi\)
\(488\) 3208.87 0.297661
\(489\) 2684.64 0.248269
\(490\) −3686.05 −0.339835
\(491\) 17932.7 1.64825 0.824126 0.566407i \(-0.191667\pi\)
0.824126 + 0.566407i \(0.191667\pi\)
\(492\) 7741.94 0.709418
\(493\) 0 0
\(494\) −7813.37 −0.711620
\(495\) 6761.81 0.613981
\(496\) −25049.3 −2.26763
\(497\) −2804.66 −0.253131
\(498\) 3292.42 0.296258
\(499\) −9787.43 −0.878047 −0.439024 0.898475i \(-0.644676\pi\)
−0.439024 + 0.898475i \(0.644676\pi\)
\(500\) −18342.0 −1.64056
\(501\) 8374.88 0.746830
\(502\) −8222.11 −0.731018
\(503\) −17088.8 −1.51481 −0.757407 0.652943i \(-0.773534\pi\)
−0.757407 + 0.652943i \(0.773534\pi\)
\(504\) 318.038 0.0281082
\(505\) −26532.7 −2.33800
\(506\) −22450.9 −1.97246
\(507\) 9058.78 0.793519
\(508\) 4829.81 0.421827
\(509\) −1917.08 −0.166941 −0.0834705 0.996510i \(-0.526600\pi\)
−0.0834705 + 0.996510i \(0.526600\pi\)
\(510\) 0 0
\(511\) −979.397 −0.0847867
\(512\) 13230.5 1.14202
\(513\) 23417.9 2.01545
\(514\) 7626.88 0.654488
\(515\) 7364.39 0.630124
\(516\) 9544.79 0.814314
\(517\) 29524.8 2.51160
\(518\) −2102.53 −0.178340
\(519\) 3881.72 0.328302
\(520\) −1785.05 −0.150538
\(521\) 5844.92 0.491499 0.245749 0.969333i \(-0.420966\pi\)
0.245749 + 0.969333i \(0.420966\pi\)
\(522\) −1243.68 −0.104280
\(523\) −8752.93 −0.731815 −0.365907 0.930651i \(-0.619241\pi\)
−0.365907 + 0.930651i \(0.619241\pi\)
\(524\) 587.058 0.0489423
\(525\) −8571.24 −0.712533
\(526\) −22091.1 −1.83121
\(527\) 0 0
\(528\) 16759.3 1.38135
\(529\) 2148.98 0.176624
\(530\) −2480.33 −0.203281
\(531\) 3964.22 0.323979
\(532\) 6726.23 0.548156
\(533\) 3714.31 0.301847
\(534\) 13962.5 1.13149
\(535\) −25643.2 −2.07224
\(536\) 53.0038 0.00427130
\(537\) 6388.57 0.513384
\(538\) 4644.20 0.372166
\(539\) 2437.01 0.194748
\(540\) −18884.0 −1.50488
\(541\) 6930.52 0.550770 0.275385 0.961334i \(-0.411195\pi\)
0.275385 + 0.961334i \(0.411195\pi\)
\(542\) −30512.0 −2.41809
\(543\) −4509.15 −0.356365
\(544\) 0 0
\(545\) 13671.1 1.07450
\(546\) 1594.03 0.124942
\(547\) 10626.2 0.830612 0.415306 0.909682i \(-0.363674\pi\)
0.415306 + 0.909682i \(0.363674\pi\)
\(548\) −865.383 −0.0674586
\(549\) 3283.71 0.255274
\(550\) 51143.8 3.96505
\(551\) 7451.85 0.576152
\(552\) −3581.54 −0.276160
\(553\) −3.23146 −0.000248491 0
\(554\) −8348.50 −0.640242
\(555\) −7131.20 −0.545410
\(556\) 392.882 0.0299674
\(557\) −21690.1 −1.64998 −0.824991 0.565145i \(-0.808820\pi\)
−0.824991 + 0.565145i \(0.808820\pi\)
\(558\) −8590.84 −0.651755
\(559\) 4579.25 0.346479
\(560\) 10469.4 0.790021
\(561\) 0 0
\(562\) 23674.9 1.77698
\(563\) 4332.97 0.324357 0.162179 0.986761i \(-0.448148\pi\)
0.162179 + 0.986761i \(0.448148\pi\)
\(564\) −16624.9 −1.24120
\(565\) 34309.9 2.55474
\(566\) −12370.3 −0.918662
\(567\) −3488.82 −0.258407
\(568\) 2669.72 0.197217
\(569\) 23267.4 1.71427 0.857136 0.515090i \(-0.172241\pi\)
0.857136 + 0.515090i \(0.172241\pi\)
\(570\) 52090.3 3.82776
\(571\) −18899.0 −1.38511 −0.692557 0.721363i \(-0.743516\pi\)
−0.692557 + 0.721363i \(0.743516\pi\)
\(572\) −4165.62 −0.304499
\(573\) 17405.9 1.26901
\(574\) −7300.90 −0.530895
\(575\) −32612.3 −2.36526
\(576\) 1817.10 0.131445
\(577\) −2353.02 −0.169770 −0.0848851 0.996391i \(-0.527052\pi\)
−0.0848851 + 0.996391i \(0.527052\pi\)
\(578\) 0 0
\(579\) 121.113 0.00869309
\(580\) −6009.11 −0.430198
\(581\) −1359.80 −0.0970983
\(582\) −12973.0 −0.923969
\(583\) 1639.85 0.116494
\(584\) 932.277 0.0660581
\(585\) −1826.68 −0.129101
\(586\) −24065.3 −1.69646
\(587\) −13490.3 −0.948558 −0.474279 0.880375i \(-0.657291\pi\)
−0.474279 + 0.880375i \(0.657291\pi\)
\(588\) −1372.24 −0.0962417
\(589\) 51474.6 3.60097
\(590\) 43734.7 3.05175
\(591\) 346.490 0.0241163
\(592\) 5971.75 0.414590
\(593\) −15267.2 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(594\) 28507.2 1.96913
\(595\) 0 0
\(596\) −5246.58 −0.360585
\(597\) −14997.8 −1.02817
\(598\) 6065.03 0.414745
\(599\) −8040.64 −0.548467 −0.274233 0.961663i \(-0.588424\pi\)
−0.274233 + 0.961663i \(0.588424\pi\)
\(600\) 8158.87 0.555141
\(601\) −17415.6 −1.18203 −0.591013 0.806662i \(-0.701272\pi\)
−0.591013 + 0.806662i \(0.701272\pi\)
\(602\) −9001.05 −0.609394
\(603\) 54.2401 0.00366306
\(604\) −3483.35 −0.234661
\(605\) −22781.5 −1.53091
\(606\) −22553.5 −1.51184
\(607\) −9575.20 −0.640272 −0.320136 0.947372i \(-0.603729\pi\)
−0.320136 + 0.947372i \(0.603729\pi\)
\(608\) −35404.4 −2.36158
\(609\) −1520.27 −0.101157
\(610\) 36227.1 2.40458
\(611\) −7976.04 −0.528111
\(612\) 0 0
\(613\) −15777.3 −1.03954 −0.519770 0.854306i \(-0.673982\pi\)
−0.519770 + 0.854306i \(0.673982\pi\)
\(614\) −25077.2 −1.64826
\(615\) −24762.6 −1.62362
\(616\) −2319.76 −0.151730
\(617\) −2368.44 −0.154538 −0.0772688 0.997010i \(-0.524620\pi\)
−0.0772688 + 0.997010i \(0.524620\pi\)
\(618\) 6259.93 0.407462
\(619\) −17179.1 −1.11549 −0.557743 0.830014i \(-0.688333\pi\)
−0.557743 + 0.830014i \(0.688333\pi\)
\(620\) −41508.7 −2.68876
\(621\) −18177.8 −1.17464
\(622\) 28233.0 1.82000
\(623\) −5766.68 −0.370846
\(624\) −4527.46 −0.290454
\(625\) 24596.2 1.57415
\(626\) 5523.95 0.352686
\(627\) −34439.1 −2.19357
\(628\) 11092.3 0.704828
\(629\) 0 0
\(630\) 3590.55 0.227065
\(631\) 17802.6 1.12316 0.561578 0.827424i \(-0.310194\pi\)
0.561578 + 0.827424i \(0.310194\pi\)
\(632\) 3.07599 0.000193602 0
\(633\) 21975.7 1.37987
\(634\) −2871.43 −0.179872
\(635\) −15448.2 −0.965419
\(636\) −923.373 −0.0575694
\(637\) −658.351 −0.0409495
\(638\) 9071.33 0.562911
\(639\) 2731.99 0.169133
\(640\) −16591.4 −1.02474
\(641\) 21616.0 1.33195 0.665974 0.745975i \(-0.268016\pi\)
0.665974 + 0.745975i \(0.268016\pi\)
\(642\) −21797.4 −1.33999
\(643\) 25331.0 1.55359 0.776794 0.629755i \(-0.216845\pi\)
0.776794 + 0.629755i \(0.216845\pi\)
\(644\) −5221.15 −0.319475
\(645\) −30529.0 −1.86369
\(646\) 0 0
\(647\) −8177.66 −0.496904 −0.248452 0.968644i \(-0.579922\pi\)
−0.248452 + 0.968644i \(0.579922\pi\)
\(648\) 3320.97 0.201327
\(649\) −28914.9 −1.74886
\(650\) −13816.3 −0.833726
\(651\) −10501.5 −0.632235
\(652\) −3725.37 −0.223768
\(653\) −3747.71 −0.224593 −0.112296 0.993675i \(-0.535821\pi\)
−0.112296 + 0.993675i \(0.535821\pi\)
\(654\) 11620.8 0.694813
\(655\) −1877.71 −0.112012
\(656\) 20736.5 1.23418
\(657\) 954.021 0.0566513
\(658\) 15677.8 0.928852
\(659\) 11994.5 0.709012 0.354506 0.935054i \(-0.384649\pi\)
0.354506 + 0.935054i \(0.384649\pi\)
\(660\) 27771.4 1.63788
\(661\) 15094.2 0.888196 0.444098 0.895978i \(-0.353524\pi\)
0.444098 + 0.895978i \(0.353524\pi\)
\(662\) 26700.3 1.56758
\(663\) 0 0
\(664\) 1294.38 0.0756502
\(665\) −21513.8 −1.25454
\(666\) 2048.06 0.119160
\(667\) −5784.41 −0.335792
\(668\) −11621.5 −0.673126
\(669\) −19489.4 −1.12631
\(670\) 598.396 0.0345045
\(671\) −23951.3 −1.37799
\(672\) 7222.96 0.414630
\(673\) −31175.1 −1.78561 −0.892803 0.450447i \(-0.851265\pi\)
−0.892803 + 0.450447i \(0.851265\pi\)
\(674\) −6510.50 −0.372070
\(675\) 41409.7 2.36127
\(676\) −12570.5 −0.715207
\(677\) 14385.2 0.816645 0.408322 0.912838i \(-0.366114\pi\)
0.408322 + 0.912838i \(0.366114\pi\)
\(678\) 29164.3 1.65199
\(679\) 5358.01 0.302830
\(680\) 0 0
\(681\) 6073.59 0.341763
\(682\) 62661.3 3.51822
\(683\) 9627.72 0.539377 0.269688 0.962948i \(-0.413079\pi\)
0.269688 + 0.962948i \(0.413079\pi\)
\(684\) −6551.95 −0.366258
\(685\) 2767.93 0.154390
\(686\) 1294.06 0.0720227
\(687\) −3981.14 −0.221092
\(688\) 25565.3 1.41667
\(689\) −443.002 −0.0244950
\(690\) −40434.5 −2.23089
\(691\) 28261.2 1.55587 0.777936 0.628343i \(-0.216267\pi\)
0.777936 + 0.628343i \(0.216267\pi\)
\(692\) −5386.51 −0.295902
\(693\) −2373.87 −0.130124
\(694\) −4221.69 −0.230912
\(695\) −1256.63 −0.0685853
\(696\) 1447.13 0.0788123
\(697\) 0 0
\(698\) −6512.98 −0.353180
\(699\) −3981.73 −0.215455
\(700\) 11894.0 0.642213
\(701\) −3919.95 −0.211205 −0.105602 0.994408i \(-0.533677\pi\)
−0.105602 + 0.994408i \(0.533677\pi\)
\(702\) −7701.12 −0.414046
\(703\) −12271.5 −0.658364
\(704\) −13253.9 −0.709551
\(705\) 53174.7 2.84068
\(706\) 6728.78 0.358698
\(707\) 9314.84 0.495503
\(708\) 16281.5 0.864259
\(709\) 3491.48 0.184944 0.0924720 0.995715i \(-0.470523\pi\)
0.0924720 + 0.995715i \(0.470523\pi\)
\(710\) 30140.3 1.59316
\(711\) 3.14773 0.000166033 0
\(712\) 5489.24 0.288930
\(713\) −39956.5 −2.09871
\(714\) 0 0
\(715\) 13323.8 0.696895
\(716\) −8865.15 −0.462718
\(717\) 21457.8 1.11765
\(718\) −4859.95 −0.252607
\(719\) −31534.6 −1.63566 −0.817831 0.575459i \(-0.804823\pi\)
−0.817831 + 0.575459i \(0.804823\pi\)
\(720\) −10198.1 −0.527863
\(721\) −2585.42 −0.133545
\(722\) 63760.7 3.28660
\(723\) 7312.42 0.376144
\(724\) 6257.16 0.321195
\(725\) 13177.1 0.675013
\(726\) −19364.9 −0.989944
\(727\) 13535.2 0.690501 0.345251 0.938511i \(-0.387794\pi\)
0.345251 + 0.938511i \(0.387794\pi\)
\(728\) 626.677 0.0319041
\(729\) 21826.1 1.10888
\(730\) 10525.1 0.533632
\(731\) 0 0
\(732\) 13486.5 0.680979
\(733\) 11366.9 0.572777 0.286388 0.958114i \(-0.407545\pi\)
0.286388 + 0.958114i \(0.407545\pi\)
\(734\) 32674.6 1.64311
\(735\) 4389.10 0.220265
\(736\) 27482.3 1.37637
\(737\) −395.625 −0.0197735
\(738\) 7111.73 0.354724
\(739\) 15687.1 0.780866 0.390433 0.920631i \(-0.372325\pi\)
0.390433 + 0.920631i \(0.372325\pi\)
\(740\) 9895.67 0.491584
\(741\) 9303.63 0.461238
\(742\) 870.771 0.0430822
\(743\) −20784.3 −1.02625 −0.513124 0.858314i \(-0.671512\pi\)
−0.513124 + 0.858314i \(0.671512\pi\)
\(744\) 9996.24 0.492580
\(745\) 16781.2 0.825256
\(746\) 31400.4 1.54109
\(747\) 1324.57 0.0648775
\(748\) 0 0
\(749\) 9002.55 0.439180
\(750\) 49868.4 2.42791
\(751\) −3383.71 −0.164412 −0.0822059 0.996615i \(-0.526196\pi\)
−0.0822059 + 0.996615i \(0.526196\pi\)
\(752\) −44529.1 −2.15932
\(753\) 9790.33 0.473811
\(754\) −2450.59 −0.118362
\(755\) 11141.5 0.537060
\(756\) 6629.60 0.318937
\(757\) −22133.0 −1.06266 −0.531332 0.847164i \(-0.678308\pi\)
−0.531332 + 0.847164i \(0.678308\pi\)
\(758\) 19810.8 0.949290
\(759\) 26733.0 1.27845
\(760\) 20478.8 0.977426
\(761\) 9887.67 0.470996 0.235498 0.971875i \(-0.424328\pi\)
0.235498 + 0.971875i \(0.424328\pi\)
\(762\) −13131.3 −0.624276
\(763\) −4799.50 −0.227724
\(764\) −24153.4 −1.14377
\(765\) 0 0
\(766\) −26699.5 −1.25939
\(767\) 7811.28 0.367730
\(768\) −23680.6 −1.11263
\(769\) 41534.8 1.94770 0.973852 0.227185i \(-0.0729523\pi\)
0.973852 + 0.227185i \(0.0729523\pi\)
\(770\) −26189.4 −1.22571
\(771\) −9081.56 −0.424208
\(772\) −168.064 −0.00783517
\(773\) −24660.5 −1.14744 −0.573722 0.819050i \(-0.694501\pi\)
−0.573722 + 0.819050i \(0.694501\pi\)
\(774\) 8767.83 0.407175
\(775\) 91022.2 4.21886
\(776\) −5100.23 −0.235937
\(777\) 2503.55 0.115591
\(778\) −20999.2 −0.967684
\(779\) −42612.0 −1.95987
\(780\) −7502.37 −0.344395
\(781\) −19927.1 −0.912991
\(782\) 0 0
\(783\) 7344.80 0.335226
\(784\) −3675.48 −0.167433
\(785\) −35478.8 −1.61311
\(786\) −1596.10 −0.0724313
\(787\) −19161.0 −0.867872 −0.433936 0.900944i \(-0.642876\pi\)
−0.433936 + 0.900944i \(0.642876\pi\)
\(788\) −480.810 −0.0217362
\(789\) 26304.5 1.18690
\(790\) 34.7269 0.00156396
\(791\) −12045.2 −0.541437
\(792\) 2259.66 0.101381
\(793\) 6470.36 0.289747
\(794\) −12900.9 −0.576618
\(795\) 2953.41 0.131757
\(796\) 20811.9 0.926704
\(797\) 22511.6 1.00051 0.500253 0.865879i \(-0.333240\pi\)
0.500253 + 0.865879i \(0.333240\pi\)
\(798\) −18287.3 −0.811234
\(799\) 0 0
\(800\) −62605.5 −2.76680
\(801\) 5617.26 0.247786
\(802\) −18235.3 −0.802882
\(803\) −6958.60 −0.305808
\(804\) 222.770 0.00977174
\(805\) 16699.9 0.731171
\(806\) −16927.8 −0.739771
\(807\) −5529.99 −0.241220
\(808\) −8866.69 −0.386051
\(809\) −18382.1 −0.798863 −0.399431 0.916763i \(-0.630792\pi\)
−0.399431 + 0.916763i \(0.630792\pi\)
\(810\) 37492.7 1.62637
\(811\) −39981.9 −1.73114 −0.865570 0.500788i \(-0.833044\pi\)
−0.865570 + 0.500788i \(0.833044\pi\)
\(812\) 2109.62 0.0911738
\(813\) 36331.6 1.56729
\(814\) −14938.5 −0.643234
\(815\) 11915.6 0.512129
\(816\) 0 0
\(817\) −52535.1 −2.24966
\(818\) −21471.5 −0.917768
\(819\) 641.293 0.0273609
\(820\) 34362.0 1.46338
\(821\) −35660.6 −1.51591 −0.757956 0.652306i \(-0.773802\pi\)
−0.757956 + 0.652306i \(0.773802\pi\)
\(822\) 2352.81 0.0998343
\(823\) −31669.5 −1.34135 −0.670673 0.741753i \(-0.733995\pi\)
−0.670673 + 0.741753i \(0.733995\pi\)
\(824\) 2461.03 0.104046
\(825\) −60898.6 −2.56996
\(826\) −15354.0 −0.646770
\(827\) 12830.7 0.539501 0.269750 0.962930i \(-0.413059\pi\)
0.269750 + 0.962930i \(0.413059\pi\)
\(828\) 5085.87 0.213462
\(829\) −16343.9 −0.684738 −0.342369 0.939566i \(-0.611229\pi\)
−0.342369 + 0.939566i \(0.611229\pi\)
\(830\) 14613.1 0.611120
\(831\) 9940.82 0.414974
\(832\) 3580.49 0.149196
\(833\) 0 0
\(834\) −1068.17 −0.0443498
\(835\) 37171.3 1.54056
\(836\) 47789.7 1.97708
\(837\) 50735.1 2.09517
\(838\) 26601.6 1.09658
\(839\) 29502.4 1.21399 0.606994 0.794706i \(-0.292375\pi\)
0.606994 + 0.794706i \(0.292375\pi\)
\(840\) −4177.94 −0.171610
\(841\) −22051.8 −0.904170
\(842\) 28020.9 1.14687
\(843\) −28190.4 −1.15176
\(844\) −30494.8 −1.24369
\(845\) 40206.7 1.63687
\(846\) −15271.6 −0.620625
\(847\) 7997.91 0.324453
\(848\) −2473.22 −0.100154
\(849\) 14729.7 0.595433
\(850\) 0 0
\(851\) 9525.63 0.383707
\(852\) 11220.6 0.451186
\(853\) −21444.5 −0.860782 −0.430391 0.902643i \(-0.641624\pi\)
−0.430391 + 0.902643i \(0.641624\pi\)
\(854\) −12718.2 −0.509613
\(855\) 20956.4 0.838239
\(856\) −8569.43 −0.342169
\(857\) −33131.2 −1.32058 −0.660292 0.751009i \(-0.729567\pi\)
−0.660292 + 0.751009i \(0.729567\pi\)
\(858\) 11325.5 0.450638
\(859\) −19063.9 −0.757222 −0.378611 0.925556i \(-0.623598\pi\)
−0.378611 + 0.925556i \(0.623598\pi\)
\(860\) 42363.9 1.67976
\(861\) 8693.41 0.344100
\(862\) −20271.8 −0.800998
\(863\) −30934.6 −1.22019 −0.610096 0.792327i \(-0.708869\pi\)
−0.610096 + 0.792327i \(0.708869\pi\)
\(864\) −34895.8 −1.37405
\(865\) 17228.7 0.677219
\(866\) −20368.3 −0.799242
\(867\) 0 0
\(868\) 14572.5 0.569840
\(869\) −22.9594 −0.000896255 0
\(870\) 16337.6 0.636664
\(871\) 106.877 0.00415773
\(872\) 4568.59 0.177422
\(873\) −5219.18 −0.202340
\(874\) −69580.5 −2.69290
\(875\) −20596.2 −0.795746
\(876\) 3918.27 0.151125
\(877\) −6769.89 −0.260665 −0.130332 0.991470i \(-0.541604\pi\)
−0.130332 + 0.991470i \(0.541604\pi\)
\(878\) 5245.68 0.201632
\(879\) 28655.3 1.09957
\(880\) 74384.7 2.84944
\(881\) −2253.05 −0.0861603 −0.0430802 0.999072i \(-0.513717\pi\)
−0.0430802 + 0.999072i \(0.513717\pi\)
\(882\) −1260.53 −0.0481229
\(883\) −5039.29 −0.192056 −0.0960281 0.995379i \(-0.530614\pi\)
−0.0960281 + 0.995379i \(0.530614\pi\)
\(884\) 0 0
\(885\) −52076.3 −1.97800
\(886\) −62254.9 −2.36060
\(887\) 23459.1 0.888025 0.444013 0.896021i \(-0.353555\pi\)
0.444013 + 0.896021i \(0.353555\pi\)
\(888\) −2383.10 −0.0900582
\(889\) 5423.38 0.204606
\(890\) 61971.7 2.33404
\(891\) −24788.0 −0.932020
\(892\) 27044.6 1.01516
\(893\) 91504.3 3.42898
\(894\) 14264.5 0.533641
\(895\) 28355.2 1.05901
\(896\) 5824.76 0.217178
\(897\) −7221.83 −0.268818
\(898\) 51860.3 1.92717
\(899\) 16144.5 0.598943
\(900\) −11585.8 −0.429103
\(901\) 0 0
\(902\) −51872.8 −1.91483
\(903\) 10717.8 0.394980
\(904\) 11465.7 0.421839
\(905\) −20013.5 −0.735108
\(906\) 9470.56 0.347283
\(907\) −38192.8 −1.39820 −0.699101 0.715023i \(-0.746416\pi\)
−0.699101 + 0.715023i \(0.746416\pi\)
\(908\) −8428.06 −0.308034
\(909\) −9073.50 −0.331077
\(910\) 7074.98 0.257729
\(911\) 16467.6 0.598899 0.299450 0.954112i \(-0.403197\pi\)
0.299450 + 0.954112i \(0.403197\pi\)
\(912\) 51940.9 1.88589
\(913\) −9661.38 −0.350214
\(914\) 16028.4 0.580055
\(915\) −43136.7 −1.55853
\(916\) 5524.46 0.199272
\(917\) 659.207 0.0237393
\(918\) 0 0
\(919\) −8376.08 −0.300654 −0.150327 0.988636i \(-0.548033\pi\)
−0.150327 + 0.988636i \(0.548033\pi\)
\(920\) −15896.4 −0.569662
\(921\) 29860.2 1.06832
\(922\) −36300.7 −1.29664
\(923\) 5383.23 0.191973
\(924\) −9749.72 −0.347124
\(925\) −21699.7 −0.771331
\(926\) −18364.9 −0.651738
\(927\) 2518.43 0.0892299
\(928\) −11104.3 −0.392797
\(929\) −16875.6 −0.595986 −0.297993 0.954568i \(-0.596317\pi\)
−0.297993 + 0.954568i \(0.596317\pi\)
\(930\) 112854. 3.97918
\(931\) 7552.87 0.265881
\(932\) 5525.28 0.194192
\(933\) −33617.9 −1.17964
\(934\) 26352.1 0.923198
\(935\) 0 0
\(936\) −610.440 −0.0213171
\(937\) −21226.7 −0.740071 −0.370035 0.929018i \(-0.620654\pi\)
−0.370035 + 0.929018i \(0.620654\pi\)
\(938\) −210.079 −0.00731271
\(939\) −6577.55 −0.228594
\(940\) −73788.4 −2.56033
\(941\) −28301.2 −0.980439 −0.490220 0.871599i \(-0.663083\pi\)
−0.490220 + 0.871599i \(0.663083\pi\)
\(942\) −30157.9 −1.04310
\(943\) 33077.1 1.14225
\(944\) 43609.3 1.50356
\(945\) −21204.8 −0.729938
\(946\) −63952.3 −2.19796
\(947\) 4441.24 0.152398 0.0761991 0.997093i \(-0.475722\pi\)
0.0761991 + 0.997093i \(0.475722\pi\)
\(948\) 12.9281 0.000442915 0
\(949\) 1879.85 0.0643017
\(950\) 158507. 5.41330
\(951\) 3419.10 0.116585
\(952\) 0 0
\(953\) −39500.6 −1.34265 −0.671327 0.741162i \(-0.734275\pi\)
−0.671327 + 0.741162i \(0.734275\pi\)
\(954\) −848.209 −0.0287859
\(955\) 77254.7 2.61770
\(956\) −29776.0 −1.00735
\(957\) −10801.5 −0.364852
\(958\) −28815.7 −0.971808
\(959\) −971.737 −0.0327206
\(960\) −23870.5 −0.802517
\(961\) 81729.3 2.74342
\(962\) 4035.58 0.135252
\(963\) −8769.30 −0.293444
\(964\) −10147.1 −0.339022
\(965\) 537.552 0.0179320
\(966\) 14195.3 0.472802
\(967\) 6485.44 0.215675 0.107837 0.994169i \(-0.465607\pi\)
0.107837 + 0.994169i \(0.465607\pi\)
\(968\) −7613.13 −0.252784
\(969\) 0 0
\(970\) −57579.9 −1.90596
\(971\) −41476.3 −1.37079 −0.685395 0.728172i \(-0.740370\pi\)
−0.685395 + 0.728172i \(0.740370\pi\)
\(972\) −11613.6 −0.383237
\(973\) 441.166 0.0145356
\(974\) −20414.1 −0.671571
\(975\) 16451.6 0.540381
\(976\) 36123.2 1.18471
\(977\) −15965.6 −0.522810 −0.261405 0.965229i \(-0.584186\pi\)
−0.261405 + 0.965229i \(0.584186\pi\)
\(978\) 10128.6 0.331161
\(979\) −40972.2 −1.33756
\(980\) −6090.57 −0.198527
\(981\) 4675.15 0.152157
\(982\) 67656.1 2.19857
\(983\) −8196.83 −0.265960 −0.132980 0.991119i \(-0.542455\pi\)
−0.132980 + 0.991119i \(0.542455\pi\)
\(984\) −8275.16 −0.268092
\(985\) 1537.87 0.0497469
\(986\) 0 0
\(987\) −18668.1 −0.602037
\(988\) −12910.3 −0.415718
\(989\) 40779.7 1.31114
\(990\) 25510.8 0.818976
\(991\) −50887.6 −1.63118 −0.815590 0.578630i \(-0.803587\pi\)
−0.815590 + 0.578630i \(0.803587\pi\)
\(992\) −76704.1 −2.45500
\(993\) −31792.8 −1.01603
\(994\) −10581.4 −0.337646
\(995\) −66566.7 −2.12091
\(996\) 5440.15 0.173070
\(997\) −18147.3 −0.576459 −0.288230 0.957561i \(-0.593067\pi\)
−0.288230 + 0.957561i \(0.593067\pi\)
\(998\) −36925.8 −1.17121
\(999\) −12095.2 −0.383059
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.g.1.5 7
17.16 even 2 119.4.a.d.1.5 7
51.50 odd 2 1071.4.a.o.1.3 7
68.67 odd 2 1904.4.a.p.1.3 7
119.118 odd 2 833.4.a.f.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.a.d.1.5 7 17.16 even 2
833.4.a.f.1.5 7 119.118 odd 2
1071.4.a.o.1.3 7 51.50 odd 2
1904.4.a.p.1.3 7 68.67 odd 2
2023.4.a.g.1.5 7 1.1 even 1 trivial