Properties

Label 200.4.f.d.149.3
Level $200$
Weight $4$
Character 200.149
Analytic conductor $11.800$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [200,4,Mod(149,200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("200.149"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8003820011\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.3
Character \(\chi\) \(=\) 200.149
Dual form 200.4.f.d.149.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.79756 - 0.416712i) q^{2} +2.73090 q^{3} +(7.65270 + 2.33156i) q^{4} +(-7.63987 - 1.13800i) q^{6} +31.2997i q^{7} +(-20.4373 - 9.71165i) q^{8} -19.5422 q^{9} -34.7644i q^{11} +(20.8988 + 6.36726i) q^{12} -73.2979 q^{13} +(13.0430 - 87.5628i) q^{14} +(53.1277 + 35.6854i) q^{16} +16.6889i q^{17} +(54.6704 + 8.14346i) q^{18} -68.5157i q^{19} +85.4764i q^{21} +(-14.4867 + 97.2555i) q^{22} -82.5447i q^{23} +(-55.8123 - 26.5216i) q^{24} +(205.055 + 30.5441i) q^{26} -127.102 q^{27} +(-72.9770 + 239.527i) q^{28} -84.8247i q^{29} -34.9084 q^{31} +(-133.757 - 121.971i) q^{32} -94.9381i q^{33} +(6.95448 - 46.6883i) q^{34} +(-149.550 - 45.5637i) q^{36} -19.5402 q^{37} +(-28.5513 + 191.677i) q^{38} -200.169 q^{39} -299.703 q^{41} +(35.6191 - 239.126i) q^{42} -513.714 q^{43} +(81.0551 - 266.041i) q^{44} +(-34.3974 + 230.924i) q^{46} +355.157i q^{47} +(145.087 + 97.4534i) q^{48} -636.671 q^{49} +45.5758i q^{51} +(-560.927 - 170.898i) q^{52} +488.561 q^{53} +(355.576 + 52.9650i) q^{54} +(303.972 - 639.682i) q^{56} -187.110i q^{57} +(-35.3475 + 237.302i) q^{58} +540.267i q^{59} +666.853i q^{61} +(97.6585 + 14.5468i) q^{62} -611.664i q^{63} +(323.368 + 396.960i) q^{64} +(-39.5619 + 265.595i) q^{66} +84.8076 q^{67} +(-38.9111 + 127.715i) q^{68} -225.422i q^{69} -620.051 q^{71} +(399.390 + 189.787i) q^{72} -1120.50i q^{73} +(54.6649 + 8.14264i) q^{74} +(159.748 - 524.330i) q^{76} +1088.11 q^{77} +(559.986 + 83.4131i) q^{78} +155.358 q^{79} +180.535 q^{81} +(838.438 + 124.890i) q^{82} +73.5452 q^{83} +(-199.293 + 654.126i) q^{84} +(1437.15 + 214.071i) q^{86} -231.648i q^{87} +(-337.619 + 710.491i) q^{88} +1111.63 q^{89} -2294.20i q^{91} +(192.458 - 631.690i) q^{92} -95.3315 q^{93} +(147.998 - 993.574i) q^{94} +(-365.278 - 333.091i) q^{96} +1081.77i q^{97} +(1781.13 + 265.309i) q^{98} +679.371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 18 q^{6} + 216 q^{9} + 224 q^{14} + 338 q^{16} + 570 q^{24} - 376 q^{26} - 528 q^{31} - 930 q^{34} - 1400 q^{36} + 600 q^{39} - 40 q^{41} - 766 q^{44} + 824 q^{46} - 456 q^{49} + 1674 q^{54}+ \cdots + 5470 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.79756 0.416712i −0.989087 0.147330i
\(3\) 2.73090 0.525562 0.262781 0.964855i \(-0.415360\pi\)
0.262781 + 0.964855i \(0.415360\pi\)
\(4\) 7.65270 + 2.33156i 0.956588 + 0.291445i
\(5\) 0 0
\(6\) −7.63987 1.13800i −0.519827 0.0774312i
\(7\) 31.2997i 1.69002i 0.534747 + 0.845012i \(0.320407\pi\)
−0.534747 + 0.845012i \(0.679593\pi\)
\(8\) −20.4373 9.71165i −0.903210 0.429198i
\(9\) −19.5422 −0.723784
\(10\) 0 0
\(11\) 34.7644i 0.952896i −0.879203 0.476448i \(-0.841924\pi\)
0.879203 0.476448i \(-0.158076\pi\)
\(12\) 20.8988 + 6.36726i 0.502747 + 0.153172i
\(13\) −73.2979 −1.56378 −0.781891 0.623415i \(-0.785745\pi\)
−0.781891 + 0.623415i \(0.785745\pi\)
\(14\) 13.0430 87.5628i 0.248991 1.67158i
\(15\) 0 0
\(16\) 53.1277 + 35.6854i 0.830120 + 0.557585i
\(17\) 16.6889i 0.238097i 0.992888 + 0.119049i \(0.0379845\pi\)
−0.992888 + 0.119049i \(0.962016\pi\)
\(18\) 54.6704 + 8.14346i 0.715886 + 0.106635i
\(19\) 68.5157i 0.827294i −0.910437 0.413647i \(-0.864255\pi\)
0.910437 0.413647i \(-0.135745\pi\)
\(20\) 0 0
\(21\) 85.4764i 0.888214i
\(22\) −14.4867 + 97.2555i −0.140390 + 0.942497i
\(23\) 82.5447i 0.748338i −0.927361 0.374169i \(-0.877928\pi\)
0.927361 0.374169i \(-0.122072\pi\)
\(24\) −55.8123 26.5216i −0.474693 0.225571i
\(25\) 0 0
\(26\) 205.055 + 30.5441i 1.54672 + 0.230392i
\(27\) −127.102 −0.905956
\(28\) −72.9770 + 239.527i −0.492549 + 1.61666i
\(29\) 84.8247i 0.543157i −0.962416 0.271578i \(-0.912454\pi\)
0.962416 0.271578i \(-0.0875456\pi\)
\(30\) 0 0
\(31\) −34.9084 −0.202250 −0.101125 0.994874i \(-0.532244\pi\)
−0.101125 + 0.994874i \(0.532244\pi\)
\(32\) −133.757 121.971i −0.738912 0.673802i
\(33\) 94.9381i 0.500806i
\(34\) 6.95448 46.6883i 0.0350789 0.235499i
\(35\) 0 0
\(36\) −149.550 45.5637i −0.692363 0.210943i
\(37\) −19.5402 −0.0868213 −0.0434106 0.999057i \(-0.513822\pi\)
−0.0434106 + 0.999057i \(0.513822\pi\)
\(38\) −28.5513 + 191.677i −0.121885 + 0.818266i
\(39\) −200.169 −0.821865
\(40\) 0 0
\(41\) −299.703 −1.14160 −0.570802 0.821088i \(-0.693368\pi\)
−0.570802 + 0.821088i \(0.693368\pi\)
\(42\) 35.6191 239.126i 0.130861 0.878521i
\(43\) −513.714 −1.82188 −0.910938 0.412544i \(-0.864640\pi\)
−0.910938 + 0.412544i \(0.864640\pi\)
\(44\) 81.0551 266.041i 0.277716 0.911528i
\(45\) 0 0
\(46\) −34.3974 + 230.924i −0.110253 + 0.740171i
\(47\) 355.157i 1.10223i 0.834428 + 0.551117i \(0.185798\pi\)
−0.834428 + 0.551117i \(0.814202\pi\)
\(48\) 145.087 + 97.4534i 0.436280 + 0.293046i
\(49\) −636.671 −1.85618
\(50\) 0 0
\(51\) 45.5758i 0.125135i
\(52\) −560.927 170.898i −1.49590 0.455756i
\(53\) 488.561 1.26621 0.633104 0.774067i \(-0.281781\pi\)
0.633104 + 0.774067i \(0.281781\pi\)
\(54\) 355.576 + 52.9650i 0.896070 + 0.133475i
\(55\) 0 0
\(56\) 303.972 639.682i 0.725356 1.52645i
\(57\) 187.110i 0.434794i
\(58\) −35.3475 + 237.302i −0.0800233 + 0.537229i
\(59\) 540.267i 1.19215i 0.802929 + 0.596074i \(0.203274\pi\)
−0.802929 + 0.596074i \(0.796726\pi\)
\(60\) 0 0
\(61\) 666.853i 1.39970i 0.714290 + 0.699850i \(0.246750\pi\)
−0.714290 + 0.699850i \(0.753250\pi\)
\(62\) 97.6585 + 14.5468i 0.200043 + 0.0297975i
\(63\) 611.664i 1.22321i
\(64\) 323.368 + 396.960i 0.631578 + 0.775313i
\(65\) 0 0
\(66\) −39.5619 + 265.595i −0.0737838 + 0.495341i
\(67\) 84.8076 0.154640 0.0773201 0.997006i \(-0.475364\pi\)
0.0773201 + 0.997006i \(0.475364\pi\)
\(68\) −38.9111 + 127.715i −0.0693922 + 0.227761i
\(69\) 225.422i 0.393298i
\(70\) 0 0
\(71\) −620.051 −1.03643 −0.518215 0.855250i \(-0.673403\pi\)
−0.518215 + 0.855250i \(0.673403\pi\)
\(72\) 399.390 + 189.787i 0.653729 + 0.310647i
\(73\) 1120.50i 1.79650i −0.439489 0.898248i \(-0.644840\pi\)
0.439489 0.898248i \(-0.355160\pi\)
\(74\) 54.6649 + 8.14264i 0.0858738 + 0.0127914i
\(75\) 0 0
\(76\) 159.748 524.330i 0.241110 0.791379i
\(77\) 1088.11 1.61042
\(78\) 559.986 + 83.4131i 0.812897 + 0.121085i
\(79\) 155.358 0.221255 0.110627 0.993862i \(-0.464714\pi\)
0.110627 + 0.993862i \(0.464714\pi\)
\(80\) 0 0
\(81\) 180.535 0.247648
\(82\) 838.438 + 124.890i 1.12915 + 0.168193i
\(83\) 73.5452 0.0972606 0.0486303 0.998817i \(-0.484514\pi\)
0.0486303 + 0.998817i \(0.484514\pi\)
\(84\) −199.293 + 654.126i −0.258865 + 0.849654i
\(85\) 0 0
\(86\) 1437.15 + 214.071i 1.80199 + 0.268417i
\(87\) 231.648i 0.285463i
\(88\) −337.619 + 710.491i −0.408981 + 0.860665i
\(89\) 1111.63 1.32396 0.661981 0.749521i \(-0.269716\pi\)
0.661981 + 0.749521i \(0.269716\pi\)
\(90\) 0 0
\(91\) 2294.20i 2.64283i
\(92\) 192.458 631.690i 0.218099 0.715851i
\(93\) −95.3315 −0.106295
\(94\) 147.998 993.574i 0.162392 1.09021i
\(95\) 0 0
\(96\) −365.278 333.091i −0.388345 0.354125i
\(97\) 1081.77i 1.13235i 0.824286 + 0.566173i \(0.191577\pi\)
−0.824286 + 0.566173i \(0.808423\pi\)
\(98\) 1781.13 + 265.309i 1.83593 + 0.273472i
\(99\) 679.371i 0.689691i
\(100\) 0 0
\(101\) 1309.04i 1.28965i 0.764332 + 0.644823i \(0.223069\pi\)
−0.764332 + 0.644823i \(0.776931\pi\)
\(102\) 18.9920 127.501i 0.0184362 0.123770i
\(103\) 51.0520i 0.0488379i −0.999702 0.0244189i \(-0.992226\pi\)
0.999702 0.0244189i \(-0.00777356\pi\)
\(104\) 1498.01 + 711.843i 1.41242 + 0.671173i
\(105\) 0 0
\(106\) −1366.78 203.589i −1.25239 0.186550i
\(107\) −1389.17 −1.25510 −0.627550 0.778576i \(-0.715942\pi\)
−0.627550 + 0.778576i \(0.715942\pi\)
\(108\) −972.675 296.346i −0.866627 0.264036i
\(109\) 1023.87i 0.899720i 0.893099 + 0.449860i \(0.148526\pi\)
−0.893099 + 0.449860i \(0.851474\pi\)
\(110\) 0 0
\(111\) −53.3624 −0.0456300
\(112\) −1116.94 + 1662.88i −0.942332 + 1.40292i
\(113\) 1005.40i 0.836994i 0.908218 + 0.418497i \(0.137443\pi\)
−0.908218 + 0.418497i \(0.862557\pi\)
\(114\) −77.9709 + 523.451i −0.0640583 + 0.430050i
\(115\) 0 0
\(116\) 197.774 649.138i 0.158300 0.519577i
\(117\) 1432.40 1.13184
\(118\) 225.136 1511.43i 0.175639 1.17914i
\(119\) −522.358 −0.402390
\(120\) 0 0
\(121\) 122.438 0.0919895
\(122\) 277.886 1865.56i 0.206218 1.38443i
\(123\) −818.460 −0.599984
\(124\) −267.144 81.3910i −0.193470 0.0589446i
\(125\) 0 0
\(126\) −254.888 + 1711.17i −0.180216 + 1.20986i
\(127\) 168.986i 0.118071i −0.998256 0.0590356i \(-0.981197\pi\)
0.998256 0.0590356i \(-0.0188025\pi\)
\(128\) −739.223 1245.27i −0.510459 0.859902i
\(129\) −1402.90 −0.957509
\(130\) 0 0
\(131\) 1221.13i 0.814434i −0.913331 0.407217i \(-0.866499\pi\)
0.913331 0.407217i \(-0.133501\pi\)
\(132\) 221.354 726.533i 0.145957 0.479065i
\(133\) 2144.52 1.39815
\(134\) −237.255 35.3404i −0.152953 0.0227832i
\(135\) 0 0
\(136\) 162.077 341.077i 0.102191 0.215052i
\(137\) 2091.31i 1.30418i −0.758143 0.652089i \(-0.773893\pi\)
0.758143 0.652089i \(-0.226107\pi\)
\(138\) −93.9360 + 630.631i −0.0579447 + 0.389006i
\(139\) 158.107i 0.0964781i 0.998836 + 0.0482390i \(0.0153609\pi\)
−0.998836 + 0.0482390i \(0.984639\pi\)
\(140\) 0 0
\(141\) 969.900i 0.579293i
\(142\) 1734.63 + 258.383i 1.02512 + 0.152697i
\(143\) 2548.16i 1.49012i
\(144\) −1038.23 697.371i −0.600828 0.403571i
\(145\) 0 0
\(146\) −466.925 + 3134.66i −0.264678 + 1.77689i
\(147\) −1738.69 −0.975540
\(148\) −149.535 45.5591i −0.0830522 0.0253036i
\(149\) 3129.78i 1.72081i −0.509607 0.860407i \(-0.670209\pi\)
0.509607 0.860407i \(-0.329791\pi\)
\(150\) 0 0
\(151\) −609.263 −0.328352 −0.164176 0.986431i \(-0.552496\pi\)
−0.164176 + 0.986431i \(0.552496\pi\)
\(152\) −665.400 + 1400.28i −0.355073 + 0.747220i
\(153\) 326.138i 0.172331i
\(154\) −3044.07 453.431i −1.59284 0.237263i
\(155\) 0 0
\(156\) −1531.84 466.706i −0.786186 0.239528i
\(157\) −1856.37 −0.943657 −0.471829 0.881690i \(-0.656406\pi\)
−0.471829 + 0.881690i \(0.656406\pi\)
\(158\) −434.623 64.7396i −0.218840 0.0325975i
\(159\) 1334.21 0.665471
\(160\) 0 0
\(161\) 2583.63 1.26471
\(162\) −505.058 75.2312i −0.244945 0.0364859i
\(163\) −3339.59 −1.60477 −0.802383 0.596810i \(-0.796435\pi\)
−0.802383 + 0.596810i \(0.796435\pi\)
\(164\) −2293.54 698.775i −1.09204 0.332714i
\(165\) 0 0
\(166\) −205.747 30.6472i −0.0961993 0.0143294i
\(167\) 1591.60i 0.737496i −0.929529 0.368748i \(-0.879786\pi\)
0.929529 0.368748i \(-0.120214\pi\)
\(168\) 830.117 1746.91i 0.381220 0.802244i
\(169\) 3175.58 1.44542
\(170\) 0 0
\(171\) 1338.95i 0.598782i
\(172\) −3931.30 1197.75i −1.74278 0.530976i
\(173\) 1688.21 0.741919 0.370960 0.928649i \(-0.379029\pi\)
0.370960 + 0.928649i \(0.379029\pi\)
\(174\) −96.5306 + 648.049i −0.0420573 + 0.282348i
\(175\) 0 0
\(176\) 1240.58 1846.95i 0.531320 0.791018i
\(177\) 1475.42i 0.626548i
\(178\) −3109.85 463.230i −1.30951 0.195059i
\(179\) 66.8624i 0.0279192i 0.999903 + 0.0139596i \(0.00444362\pi\)
−0.999903 + 0.0139596i \(0.995556\pi\)
\(180\) 0 0
\(181\) 1646.17i 0.676014i 0.941144 + 0.338007i \(0.109753\pi\)
−0.941144 + 0.338007i \(0.890247\pi\)
\(182\) −956.022 + 6418.17i −0.389369 + 2.61399i
\(183\) 1821.11i 0.735630i
\(184\) −801.646 + 1686.99i −0.321185 + 0.675906i
\(185\) 0 0
\(186\) 266.696 + 39.7258i 0.105135 + 0.0156604i
\(187\) 580.180 0.226882
\(188\) −828.069 + 2717.91i −0.321240 + 1.05438i
\(189\) 3978.26i 1.53109i
\(190\) 0 0
\(191\) 3408.02 1.29108 0.645538 0.763729i \(-0.276633\pi\)
0.645538 + 0.763729i \(0.276633\pi\)
\(192\) 883.086 + 1084.06i 0.331933 + 0.407475i
\(193\) 4312.88i 1.60854i 0.594265 + 0.804270i \(0.297443\pi\)
−0.594265 + 0.804270i \(0.702557\pi\)
\(194\) 450.789 3026.33i 0.166829 1.11999i
\(195\) 0 0
\(196\) −4872.25 1484.43i −1.77560 0.540975i
\(197\) 1425.64 0.515597 0.257799 0.966199i \(-0.417003\pi\)
0.257799 + 0.966199i \(0.417003\pi\)
\(198\) 283.102 1900.58i 0.101612 0.682165i
\(199\) 922.125 0.328481 0.164240 0.986420i \(-0.447483\pi\)
0.164240 + 0.986420i \(0.447483\pi\)
\(200\) 0 0
\(201\) 231.601 0.0812731
\(202\) 545.492 3662.11i 0.190004 1.27557i
\(203\) 2654.99 0.917948
\(204\) −106.263 + 348.778i −0.0364699 + 0.119703i
\(205\) 0 0
\(206\) −21.2740 + 142.821i −0.00719529 + 0.0483049i
\(207\) 1613.10i 0.541635i
\(208\) −3894.15 2615.67i −1.29813 0.871941i
\(209\) −2381.91 −0.788325
\(210\) 0 0
\(211\) 4106.85i 1.33994i −0.742389 0.669970i \(-0.766307\pi\)
0.742389 0.669970i \(-0.233693\pi\)
\(212\) 3738.81 + 1139.11i 1.21124 + 0.369029i
\(213\) −1693.30 −0.544709
\(214\) 3886.28 + 578.882i 1.24140 + 0.184914i
\(215\) 0 0
\(216\) 2597.63 + 1234.37i 0.818269 + 0.388835i
\(217\) 1092.62i 0.341807i
\(218\) 426.661 2864.35i 0.132556 0.889901i
\(219\) 3059.97i 0.944171i
\(220\) 0 0
\(221\) 1223.26i 0.372333i
\(222\) 149.285 + 22.2368i 0.0451321 + 0.00672267i
\(223\) 296.498i 0.0890359i 0.999009 + 0.0445179i \(0.0141752\pi\)
−0.999009 + 0.0445179i \(0.985825\pi\)
\(224\) 3817.66 4186.57i 1.13874 1.24878i
\(225\) 0 0
\(226\) 418.964 2812.68i 0.123314 0.827860i
\(227\) −712.060 −0.208199 −0.104099 0.994567i \(-0.533196\pi\)
−0.104099 + 0.994567i \(0.533196\pi\)
\(228\) 436.257 1431.89i 0.126719 0.415919i
\(229\) 5245.53i 1.51369i 0.653595 + 0.756844i \(0.273260\pi\)
−0.653595 + 0.756844i \(0.726740\pi\)
\(230\) 0 0
\(231\) 2971.53 0.846375
\(232\) −823.787 + 1733.59i −0.233122 + 0.490585i
\(233\) 1527.84i 0.429581i 0.976660 + 0.214790i \(0.0689068\pi\)
−0.976660 + 0.214790i \(0.931093\pi\)
\(234\) −4007.23 596.899i −1.11949 0.166754i
\(235\) 0 0
\(236\) −1259.66 + 4134.50i −0.347445 + 1.14039i
\(237\) 424.267 0.116283
\(238\) 1461.33 + 217.673i 0.397999 + 0.0592842i
\(239\) 1111.38 0.300792 0.150396 0.988626i \(-0.451945\pi\)
0.150396 + 0.988626i \(0.451945\pi\)
\(240\) 0 0
\(241\) −1006.39 −0.268992 −0.134496 0.990914i \(-0.542942\pi\)
−0.134496 + 0.990914i \(0.542942\pi\)
\(242\) −342.528 51.0215i −0.0909857 0.0135528i
\(243\) 3924.78 1.03611
\(244\) −1554.80 + 5103.22i −0.407935 + 1.33894i
\(245\) 0 0
\(246\) 2289.69 + 341.062i 0.593437 + 0.0883957i
\(247\) 5022.06i 1.29371i
\(248\) 713.435 + 339.018i 0.182674 + 0.0868052i
\(249\) 200.845 0.0511165
\(250\) 0 0
\(251\) 3073.70i 0.772950i 0.922300 + 0.386475i \(0.126307\pi\)
−0.922300 + 0.386475i \(0.873693\pi\)
\(252\) 1426.13 4680.88i 0.356499 1.17011i
\(253\) −2869.62 −0.713088
\(254\) −70.4184 + 472.747i −0.0173954 + 0.116783i
\(255\) 0 0
\(256\) 1549.10 + 3791.77i 0.378199 + 0.925724i
\(257\) 5320.81i 1.29145i −0.763570 0.645725i \(-0.776555\pi\)
0.763570 0.645725i \(-0.223445\pi\)
\(258\) 3924.71 + 584.607i 0.947060 + 0.141070i
\(259\) 611.602i 0.146730i
\(260\) 0 0
\(261\) 1657.66i 0.393128i
\(262\) −508.861 + 3416.20i −0.119991 + 0.805547i
\(263\) 5684.45i 1.33277i −0.745608 0.666385i \(-0.767841\pi\)
0.745608 0.666385i \(-0.232159\pi\)
\(264\) −922.006 + 1940.28i −0.214945 + 0.452333i
\(265\) 0 0
\(266\) −5999.43 893.648i −1.38289 0.205989i
\(267\) 3035.75 0.695824
\(268\) 649.007 + 197.734i 0.147927 + 0.0450691i
\(269\) 6128.17i 1.38900i 0.719493 + 0.694500i \(0.244374\pi\)
−0.719493 + 0.694500i \(0.755626\pi\)
\(270\) 0 0
\(271\) −4758.45 −1.06662 −0.533312 0.845918i \(-0.679053\pi\)
−0.533312 + 0.845918i \(0.679053\pi\)
\(272\) −595.551 + 886.643i −0.132759 + 0.197649i
\(273\) 6265.24i 1.38897i
\(274\) −871.473 + 5850.56i −0.192145 + 1.28995i
\(275\) 0 0
\(276\) 525.583 1725.08i 0.114625 0.376224i
\(277\) −780.996 −0.169406 −0.0847031 0.996406i \(-0.526994\pi\)
−0.0847031 + 0.996406i \(0.526994\pi\)
\(278\) 65.8851 442.314i 0.0142141 0.0954253i
\(279\) 682.187 0.146385
\(280\) 0 0
\(281\) −3327.18 −0.706344 −0.353172 0.935558i \(-0.614897\pi\)
−0.353172 + 0.935558i \(0.614897\pi\)
\(282\) 404.169 2713.36i 0.0853473 0.572971i
\(283\) −236.405 −0.0496566 −0.0248283 0.999692i \(-0.507904\pi\)
−0.0248283 + 0.999692i \(0.507904\pi\)
\(284\) −4745.07 1445.69i −0.991437 0.302062i
\(285\) 0 0
\(286\) 1061.85 7128.62i 0.219540 1.47386i
\(287\) 9380.61i 1.92934i
\(288\) 2613.91 + 2383.58i 0.534813 + 0.487687i
\(289\) 4634.48 0.943310
\(290\) 0 0
\(291\) 2954.22i 0.595119i
\(292\) 2612.50 8574.83i 0.523579 1.71851i
\(293\) −123.056 −0.0245359 −0.0122680 0.999925i \(-0.503905\pi\)
−0.0122680 + 0.999925i \(0.503905\pi\)
\(294\) 4864.08 + 724.532i 0.964895 + 0.143726i
\(295\) 0 0
\(296\) 399.349 + 189.768i 0.0784179 + 0.0372636i
\(297\) 4418.63i 0.863282i
\(298\) −1304.22 + 8755.75i −0.253528 + 1.70204i
\(299\) 6050.35i 1.17024i
\(300\) 0 0
\(301\) 16079.1i 3.07901i
\(302\) 1704.45 + 253.887i 0.324769 + 0.0483761i
\(303\) 3574.86i 0.677789i
\(304\) 2445.01 3640.08i 0.461286 0.686753i
\(305\) 0 0
\(306\) −135.906 + 912.390i −0.0253896 + 0.170451i
\(307\) 1706.98 0.317337 0.158669 0.987332i \(-0.449280\pi\)
0.158669 + 0.987332i \(0.449280\pi\)
\(308\) 8327.01 + 2537.00i 1.54051 + 0.469347i
\(309\) 139.418i 0.0256674i
\(310\) 0 0
\(311\) −7441.46 −1.35681 −0.678403 0.734690i \(-0.737328\pi\)
−0.678403 + 0.734690i \(0.737328\pi\)
\(312\) 4090.92 + 1943.97i 0.742317 + 0.352743i
\(313\) 70.7973i 0.0127850i −0.999980 0.00639249i \(-0.997965\pi\)
0.999980 0.00639249i \(-0.00203481\pi\)
\(314\) 5193.30 + 773.571i 0.933360 + 0.139029i
\(315\) 0 0
\(316\) 1188.91 + 362.226i 0.211650 + 0.0644835i
\(317\) −7516.28 −1.33172 −0.665862 0.746075i \(-0.731936\pi\)
−0.665862 + 0.746075i \(0.731936\pi\)
\(318\) −3732.54 555.983i −0.658209 0.0980439i
\(319\) −2948.88 −0.517572
\(320\) 0 0
\(321\) −3793.67 −0.659633
\(322\) −7227.85 1076.63i −1.25091 0.186330i
\(323\) 1143.45 0.196976
\(324\) 1381.58 + 420.928i 0.236897 + 0.0721755i
\(325\) 0 0
\(326\) 9342.71 + 1391.65i 1.58725 + 0.236430i
\(327\) 2796.10i 0.472859i
\(328\) 6125.13 + 2910.61i 1.03111 + 0.489974i
\(329\) −11116.3 −1.86280
\(330\) 0 0
\(331\) 7290.44i 1.21063i 0.795986 + 0.605316i \(0.206953\pi\)
−0.795986 + 0.605316i \(0.793047\pi\)
\(332\) 562.819 + 171.475i 0.0930383 + 0.0283461i
\(333\) 381.858 0.0628399
\(334\) −663.240 + 4452.61i −0.108655 + 0.729448i
\(335\) 0 0
\(336\) −3050.26 + 4541.16i −0.495254 + 0.737324i
\(337\) 4645.79i 0.750957i 0.926831 + 0.375478i \(0.122522\pi\)
−0.926831 + 0.375478i \(0.877478\pi\)
\(338\) −8883.88 1323.30i −1.42964 0.212953i
\(339\) 2745.66i 0.439893i
\(340\) 0 0
\(341\) 1213.57i 0.192723i
\(342\) 557.955 3745.78i 0.0882186 0.592248i
\(343\) 9191.81i 1.44697i
\(344\) 10498.9 + 4989.01i 1.64554 + 0.781946i
\(345\) 0 0
\(346\) −4722.86 703.497i −0.733823 0.109307i
\(347\) 9363.62 1.44860 0.724302 0.689483i \(-0.242162\pi\)
0.724302 + 0.689483i \(0.242162\pi\)
\(348\) 540.100 1772.73i 0.0831966 0.273070i
\(349\) 1050.35i 0.161101i −0.996751 0.0805504i \(-0.974332\pi\)
0.996751 0.0805504i \(-0.0256678\pi\)
\(350\) 0 0
\(351\) 9316.32 1.41672
\(352\) −4240.25 + 4649.99i −0.642063 + 0.704106i
\(353\) 4294.72i 0.647550i −0.946134 0.323775i \(-0.895048\pi\)
0.946134 0.323775i \(-0.104952\pi\)
\(354\) 614.824 4127.57i 0.0923094 0.619711i
\(355\) 0 0
\(356\) 8506.97 + 2591.83i 1.26648 + 0.385861i
\(357\) −1426.51 −0.211481
\(358\) 27.8624 187.052i 0.00411333 0.0276145i
\(359\) −11047.3 −1.62411 −0.812054 0.583583i \(-0.801650\pi\)
−0.812054 + 0.583583i \(0.801650\pi\)
\(360\) 0 0
\(361\) 2164.60 0.315585
\(362\) 685.977 4605.25i 0.0995972 0.668637i
\(363\) 334.366 0.0483463
\(364\) 5349.06 17556.8i 0.770239 2.52810i
\(365\) 0 0
\(366\) 758.879 5094.67i 0.108380 0.727602i
\(367\) 4347.92i 0.618419i 0.950994 + 0.309209i \(0.100064\pi\)
−0.950994 + 0.309209i \(0.899936\pi\)
\(368\) 2945.64 4385.41i 0.417262 0.621210i
\(369\) 5856.85 0.826275
\(370\) 0 0
\(371\) 15291.8i 2.13992i
\(372\) −729.544 222.271i −0.101680 0.0309791i
\(373\) −5431.84 −0.754022 −0.377011 0.926209i \(-0.623048\pi\)
−0.377011 + 0.926209i \(0.623048\pi\)
\(374\) −1623.09 241.768i −0.224406 0.0334265i
\(375\) 0 0
\(376\) 3449.16 7258.46i 0.473077 0.995549i
\(377\) 6217.47i 0.849379i
\(378\) −1657.79 + 11129.4i −0.225575 + 1.51438i
\(379\) 9385.95i 1.27209i −0.771650 0.636047i \(-0.780568\pi\)
0.771650 0.636047i \(-0.219432\pi\)
\(380\) 0 0
\(381\) 461.483i 0.0620538i
\(382\) −9534.13 1420.16i −1.27699 0.190214i
\(383\) 2666.15i 0.355702i −0.984057 0.177851i \(-0.943086\pi\)
0.984057 0.177851i \(-0.0569144\pi\)
\(384\) −2018.75 3400.72i −0.268278 0.451932i
\(385\) 0 0
\(386\) 1797.23 12065.6i 0.236986 1.59099i
\(387\) 10039.1 1.31864
\(388\) −2522.22 + 8278.50i −0.330016 + 1.08319i
\(389\) 3089.22i 0.402647i −0.979525 0.201324i \(-0.935476\pi\)
0.979525 0.201324i \(-0.0645243\pi\)
\(390\) 0 0
\(391\) 1377.58 0.178177
\(392\) 13011.8 + 6183.12i 1.67652 + 0.796671i
\(393\) 3334.80i 0.428036i
\(394\) −3988.32 594.082i −0.509971 0.0759630i
\(395\) 0 0
\(396\) −1583.99 + 5199.03i −0.201007 + 0.659750i
\(397\) 2663.69 0.336743 0.168371 0.985724i \(-0.446149\pi\)
0.168371 + 0.985724i \(0.446149\pi\)
\(398\) −2579.70 384.261i −0.324896 0.0483951i
\(399\) 5856.48 0.734813
\(400\) 0 0
\(401\) −7804.95 −0.971971 −0.485986 0.873967i \(-0.661539\pi\)
−0.485986 + 0.873967i \(0.661539\pi\)
\(402\) −647.919 96.5111i −0.0803862 0.0119740i
\(403\) 2558.71 0.316275
\(404\) −3052.10 + 10017.7i −0.375860 + 1.23366i
\(405\) 0 0
\(406\) −7427.49 1106.37i −0.907931 0.135241i
\(407\) 679.303i 0.0827317i
\(408\) 442.616 931.447i 0.0537078 0.113023i
\(409\) −4203.14 −0.508146 −0.254073 0.967185i \(-0.581770\pi\)
−0.254073 + 0.967185i \(0.581770\pi\)
\(410\) 0 0
\(411\) 5711.15i 0.685427i
\(412\) 119.031 390.686i 0.0142335 0.0467177i
\(413\) −16910.2 −2.01476
\(414\) 672.200 4512.76i 0.0797991 0.535724i
\(415\) 0 0
\(416\) 9804.13 + 8940.22i 1.15550 + 1.05368i
\(417\) 431.775i 0.0507053i
\(418\) 6663.53 + 992.569i 0.779722 + 0.116144i
\(419\) 14112.6i 1.64546i −0.568435 0.822728i \(-0.692451\pi\)
0.568435 0.822728i \(-0.307549\pi\)
\(420\) 0 0
\(421\) 8042.17i 0.931001i −0.885048 0.465501i \(-0.845874\pi\)
0.885048 0.465501i \(-0.154126\pi\)
\(422\) −1711.37 + 11489.2i −0.197413 + 1.32532i
\(423\) 6940.54i 0.797780i
\(424\) −9984.87 4744.73i −1.14365 0.543454i
\(425\) 0 0
\(426\) 4737.11 + 705.619i 0.538765 + 0.0802520i
\(427\) −20872.3 −2.36553
\(428\) −10630.9 3238.92i −1.20061 0.365792i
\(429\) 6958.76i 0.783152i
\(430\) 0 0
\(431\) −14634.6 −1.63555 −0.817775 0.575539i \(-0.804792\pi\)
−0.817775 + 0.575539i \(0.804792\pi\)
\(432\) −6752.64 4535.69i −0.752052 0.505147i
\(433\) 7212.59i 0.800496i −0.916407 0.400248i \(-0.868924\pi\)
0.916407 0.400248i \(-0.131076\pi\)
\(434\) −455.310 + 3056.68i −0.0503584 + 0.338077i
\(435\) 0 0
\(436\) −2387.22 + 7835.41i −0.262218 + 0.860661i
\(437\) −5655.61 −0.619095
\(438\) −1275.13 + 8560.45i −0.139105 + 0.933868i
\(439\) −3676.98 −0.399756 −0.199878 0.979821i \(-0.564055\pi\)
−0.199878 + 0.979821i \(0.564055\pi\)
\(440\) 0 0
\(441\) 12441.9 1.34348
\(442\) −509.748 + 3422.15i −0.0548558 + 0.368269i
\(443\) 5290.59 0.567412 0.283706 0.958911i \(-0.408436\pi\)
0.283706 + 0.958911i \(0.408436\pi\)
\(444\) −408.366 124.417i −0.0436491 0.0132986i
\(445\) 0 0
\(446\) 123.555 829.472i 0.0131177 0.0880643i
\(447\) 8547.12i 0.904396i
\(448\) −12424.7 + 10121.3i −1.31030 + 1.06738i
\(449\) 6726.44 0.706994 0.353497 0.935436i \(-0.384992\pi\)
0.353497 + 0.935436i \(0.384992\pi\)
\(450\) 0 0
\(451\) 10419.0i 1.08783i
\(452\) −2344.15 + 7694.05i −0.243937 + 0.800658i
\(453\) −1663.84 −0.172569
\(454\) 1992.03 + 296.724i 0.205927 + 0.0306739i
\(455\) 0 0
\(456\) −1817.14 + 3824.02i −0.186613 + 0.392711i
\(457\) 5266.91i 0.539115i 0.962984 + 0.269557i \(0.0868774\pi\)
−0.962984 + 0.269557i \(0.913123\pi\)
\(458\) 2185.88 14674.7i 0.223012 1.49717i
\(459\) 2121.20i 0.215706i
\(460\) 0 0
\(461\) 8102.90i 0.818633i 0.912393 + 0.409316i \(0.134233\pi\)
−0.912393 + 0.409316i \(0.865767\pi\)
\(462\) −8313.05 1238.28i −0.837139 0.124696i
\(463\) 19671.2i 1.97451i 0.159147 + 0.987255i \(0.449126\pi\)
−0.159147 + 0.987255i \(0.550874\pi\)
\(464\) 3027.00 4506.54i 0.302856 0.450885i
\(465\) 0 0
\(466\) 636.671 4274.23i 0.0632902 0.424893i
\(467\) 3143.78 0.311514 0.155757 0.987795i \(-0.450218\pi\)
0.155757 + 0.987795i \(0.450218\pi\)
\(468\) 10961.7 + 3339.72i 1.08271 + 0.329869i
\(469\) 2654.45i 0.261346i
\(470\) 0 0
\(471\) −5069.56 −0.495951
\(472\) 5246.88 11041.6i 0.511668 1.07676i
\(473\) 17858.9i 1.73606i
\(474\) −1186.91 176.797i −0.115014 0.0171320i
\(475\) 0 0
\(476\) −3997.45 1217.91i −0.384922 0.117275i
\(477\) −9547.54 −0.916461
\(478\) −3109.16 463.126i −0.297510 0.0443157i
\(479\) −7050.53 −0.672541 −0.336270 0.941765i \(-0.609166\pi\)
−0.336270 + 0.941765i \(0.609166\pi\)
\(480\) 0 0
\(481\) 1432.25 0.135770
\(482\) 2815.43 + 419.374i 0.266056 + 0.0396306i
\(483\) 7055.63 0.664684
\(484\) 936.982 + 285.471i 0.0879961 + 0.0268099i
\(485\) 0 0
\(486\) −10979.8 1635.50i −1.02480 0.152650i
\(487\) 2412.03i 0.224434i 0.993684 + 0.112217i \(0.0357952\pi\)
−0.993684 + 0.112217i \(0.964205\pi\)
\(488\) 6476.24 13628.7i 0.600749 1.26422i
\(489\) −9120.09 −0.843405
\(490\) 0 0
\(491\) 8009.43i 0.736172i −0.929792 0.368086i \(-0.880013\pi\)
0.929792 0.368086i \(-0.119987\pi\)
\(492\) −6263.43 1908.29i −0.573937 0.174862i
\(493\) 1415.63 0.129324
\(494\) 2092.75 14049.5i 0.190602 1.27959i
\(495\) 0 0
\(496\) −1854.60 1245.72i −0.167891 0.112771i
\(497\) 19407.4i 1.75159i
\(498\) −561.876 83.6945i −0.0505587 0.00753100i
\(499\) 4017.44i 0.360411i 0.983629 + 0.180206i \(0.0576763\pi\)
−0.983629 + 0.180206i \(0.942324\pi\)
\(500\) 0 0
\(501\) 4346.51i 0.387600i
\(502\) 1280.85 8598.87i 0.113879 0.764515i
\(503\) 685.739i 0.0607865i 0.999538 + 0.0303932i \(0.00967596\pi\)
−0.999538 + 0.0303932i \(0.990324\pi\)
\(504\) −5940.27 + 12500.8i −0.525001 + 1.10482i
\(505\) 0 0
\(506\) 8027.93 + 1195.80i 0.705306 + 0.105059i
\(507\) 8672.20 0.759657
\(508\) 393.999 1293.20i 0.0344112 0.112945i
\(509\) 888.059i 0.0773330i −0.999252 0.0386665i \(-0.987689\pi\)
0.999252 0.0386665i \(-0.0123110\pi\)
\(510\) 0 0
\(511\) 35071.2 3.03612
\(512\) −2753.63 11253.2i −0.237684 0.971342i
\(513\) 8708.49i 0.749492i
\(514\) −2217.25 + 14885.3i −0.190270 + 1.27736i
\(515\) 0 0
\(516\) −10736.0 3270.95i −0.915942 0.279061i
\(517\) 12346.8 1.05031
\(518\) −254.862 + 1710.99i −0.0216178 + 0.145129i
\(519\) 4610.33 0.389925
\(520\) 0 0
\(521\) −12190.8 −1.02512 −0.512562 0.858650i \(-0.671304\pi\)
−0.512562 + 0.858650i \(0.671304\pi\)
\(522\) 690.767 4637.40i 0.0579196 0.388838i
\(523\) −9047.07 −0.756406 −0.378203 0.925723i \(-0.623458\pi\)
−0.378203 + 0.925723i \(0.623458\pi\)
\(524\) 2847.14 9344.97i 0.237363 0.779078i
\(525\) 0 0
\(526\) −2368.78 + 15902.6i −0.196357 + 1.31823i
\(527\) 582.584i 0.0481551i
\(528\) 3387.91 5043.84i 0.279242 0.415729i
\(529\) 5353.36 0.439991
\(530\) 0 0
\(531\) 10558.0i 0.862858i
\(532\) 16411.4 + 5000.07i 1.33745 + 0.407482i
\(533\) 21967.6 1.78522
\(534\) −8492.71 1265.04i −0.688231 0.102516i
\(535\) 0 0
\(536\) −1733.24 823.622i −0.139673 0.0663714i
\(537\) 182.595i 0.0146733i
\(538\) 2553.68 17143.9i 0.204642 1.37384i
\(539\) 22133.5i 1.76875i
\(540\) 0 0
\(541\) 7504.70i 0.596400i −0.954503 0.298200i \(-0.903614\pi\)
0.954503 0.298200i \(-0.0963862\pi\)
\(542\) 13312.1 + 1982.90i 1.05498 + 0.157146i
\(543\) 4495.52i 0.355287i
\(544\) 2035.57 2232.27i 0.160430 0.175933i
\(545\) 0 0
\(546\) −2610.80 + 17527.4i −0.204637 + 1.37382i
\(547\) −5218.06 −0.407876 −0.203938 0.978984i \(-0.565374\pi\)
−0.203938 + 0.978984i \(0.565374\pi\)
\(548\) 4876.00 16004.1i 0.380095 1.24756i
\(549\) 13031.7i 1.01308i
\(550\) 0 0
\(551\) −5811.82 −0.449350
\(552\) −2189.22 + 4607.01i −0.168803 + 0.355231i
\(553\) 4862.65i 0.373926i
\(554\) 2184.89 + 325.451i 0.167558 + 0.0249586i
\(555\) 0 0
\(556\) −368.635 + 1209.95i −0.0281180 + 0.0922898i
\(557\) −10013.9 −0.761765 −0.380882 0.924623i \(-0.624380\pi\)
−0.380882 + 0.924623i \(0.624380\pi\)
\(558\) −1908.46 284.276i −0.144788 0.0215669i
\(559\) 37654.1 2.84902
\(560\) 0 0
\(561\) 1584.41 0.119241
\(562\) 9307.98 + 1386.48i 0.698636 + 0.104066i
\(563\) −8043.73 −0.602136 −0.301068 0.953603i \(-0.597343\pi\)
−0.301068 + 0.953603i \(0.597343\pi\)
\(564\) −2261.38 + 7422.36i −0.168832 + 0.554145i
\(565\) 0 0
\(566\) 661.357 + 98.5128i 0.0491147 + 0.00731590i
\(567\) 5650.69i 0.418530i
\(568\) 12672.2 + 6021.72i 0.936115 + 0.444834i
\(569\) 8205.39 0.604548 0.302274 0.953221i \(-0.402254\pi\)
0.302274 + 0.953221i \(0.402254\pi\)
\(570\) 0 0
\(571\) 3471.92i 0.254458i 0.991873 + 0.127229i \(0.0406083\pi\)
−0.991873 + 0.127229i \(0.959392\pi\)
\(572\) −5941.17 + 19500.3i −0.434288 + 1.42543i
\(573\) 9306.96 0.678541
\(574\) −3909.02 + 26242.8i −0.284250 + 1.90828i
\(575\) 0 0
\(576\) −6319.31 7757.46i −0.457126 0.561159i
\(577\) 3311.45i 0.238921i −0.992839 0.119460i \(-0.961884\pi\)
0.992839 0.119460i \(-0.0381165\pi\)
\(578\) −12965.2 1931.25i −0.933016 0.138978i
\(579\) 11778.1i 0.845388i
\(580\) 0 0
\(581\) 2301.94i 0.164373i
\(582\) 1231.06 8264.62i 0.0876789 0.588624i
\(583\) 16984.5i 1.20656i
\(584\) −10881.9 + 22899.9i −0.771053 + 1.62261i
\(585\) 0 0
\(586\) 344.257 + 51.2790i 0.0242682 + 0.00361488i
\(587\) 6777.87 0.476581 0.238290 0.971194i \(-0.423413\pi\)
0.238290 + 0.971194i \(0.423413\pi\)
\(588\) −13305.6 4053.85i −0.933190 0.284316i
\(589\) 2391.78i 0.167320i
\(590\) 0 0
\(591\) 3893.28 0.270979
\(592\) −1038.13 697.300i −0.0720721 0.0484102i
\(593\) 421.958i 0.0292205i −0.999893 0.0146102i \(-0.995349\pi\)
0.999893 0.0146102i \(-0.00465075\pi\)
\(594\) 1841.30 12361.4i 0.127187 0.853861i
\(595\) 0 0
\(596\) 7297.26 23951.3i 0.501522 1.64611i
\(597\) 2518.23 0.172637
\(598\) 2521.26 16926.2i 0.172411 1.15747i
\(599\) −4175.09 −0.284790 −0.142395 0.989810i \(-0.545480\pi\)
−0.142395 + 0.989810i \(0.545480\pi\)
\(600\) 0 0
\(601\) 9149.52 0.620993 0.310496 0.950575i \(-0.399505\pi\)
0.310496 + 0.950575i \(0.399505\pi\)
\(602\) −6700.35 + 44982.2i −0.453631 + 3.04541i
\(603\) −1657.32 −0.111926
\(604\) −4662.51 1420.53i −0.314097 0.0956963i
\(605\) 0 0
\(606\) 1489.69 10000.9i 0.0998587 0.670393i
\(607\) 128.094i 0.00856535i 0.999991 + 0.00428268i \(0.00136322\pi\)
−0.999991 + 0.00428268i \(0.998637\pi\)
\(608\) −8356.94 + 9164.48i −0.557432 + 0.611297i
\(609\) 7250.51 0.482439
\(610\) 0 0
\(611\) 26032.3i 1.72366i
\(612\) 760.408 2495.83i 0.0502250 0.164850i
\(613\) 17342.6 1.14268 0.571338 0.820715i \(-0.306425\pi\)
0.571338 + 0.820715i \(0.306425\pi\)
\(614\) −4775.38 711.320i −0.313874 0.0467533i
\(615\) 0 0
\(616\) −22238.1 10567.4i −1.45455 0.691188i
\(617\) 18906.1i 1.23360i −0.787120 0.616800i \(-0.788429\pi\)
0.787120 0.616800i \(-0.211571\pi\)
\(618\) −58.0972 + 390.030i −0.00378157 + 0.0253873i
\(619\) 20922.5i 1.35856i −0.733881 0.679279i \(-0.762293\pi\)
0.733881 0.679279i \(-0.237707\pi\)
\(620\) 0 0
\(621\) 10491.6i 0.677961i
\(622\) 20818.0 + 3100.95i 1.34200 + 0.199898i
\(623\) 34793.7i 2.23753i
\(624\) −10634.5 7143.13i −0.682247 0.458260i
\(625\) 0 0
\(626\) −29.5021 + 198.060i −0.00188361 + 0.0126455i
\(627\) −6504.75 −0.414314
\(628\) −14206.2 4328.23i −0.902691 0.275024i
\(629\) 326.105i 0.0206719i
\(630\) 0 0
\(631\) −21508.0 −1.35693 −0.678463 0.734635i \(-0.737354\pi\)
−0.678463 + 0.734635i \(0.737354\pi\)
\(632\) −3175.10 1508.78i −0.199840 0.0949622i
\(633\) 11215.4i 0.704222i
\(634\) 21027.3 + 3132.13i 1.31719 + 0.196203i
\(635\) 0 0
\(636\) 10210.3 + 3110.79i 0.636581 + 0.193948i
\(637\) 46666.6 2.90267
\(638\) 8249.66 + 1228.83i 0.511924 + 0.0762539i
\(639\) 12117.1 0.750152
\(640\) 0 0
\(641\) 21724.6 1.33864 0.669320 0.742974i \(-0.266585\pi\)
0.669320 + 0.742974i \(0.266585\pi\)
\(642\) 10613.0 + 1580.87i 0.652435 + 0.0971838i
\(643\) −4224.08 −0.259069 −0.129535 0.991575i \(-0.541348\pi\)
−0.129535 + 0.991575i \(0.541348\pi\)
\(644\) 19771.7 + 6023.87i 1.20981 + 0.368593i
\(645\) 0 0
\(646\) −3198.88 476.491i −0.194827 0.0290206i
\(647\) 14990.5i 0.910877i −0.890267 0.455439i \(-0.849482\pi\)
0.890267 0.455439i \(-0.150518\pi\)
\(648\) −3689.65 1753.29i −0.223678 0.106290i
\(649\) 18782.0 1.13599
\(650\) 0 0
\(651\) 2983.85i 0.179641i
\(652\) −25556.9 7786.44i −1.53510 0.467700i
\(653\) −258.080 −0.0154662 −0.00773311 0.999970i \(-0.502462\pi\)
−0.00773311 + 0.999970i \(0.502462\pi\)
\(654\) 1165.17 7822.27i 0.0696663 0.467699i
\(655\) 0 0
\(656\) −15922.5 10695.0i −0.947668 0.636541i
\(657\) 21896.9i 1.30028i
\(658\) 31098.6 + 4632.31i 1.84248 + 0.274447i
\(659\) 7828.25i 0.462739i 0.972866 + 0.231370i \(0.0743207\pi\)
−0.972866 + 0.231370i \(0.925679\pi\)
\(660\) 0 0
\(661\) 26579.2i 1.56401i 0.623271 + 0.782006i \(0.285803\pi\)
−0.623271 + 0.782006i \(0.714197\pi\)
\(662\) 3038.02 20395.5i 0.178362 1.19742i
\(663\) 3340.61i 0.195684i
\(664\) −1503.07 714.245i −0.0878468 0.0417441i
\(665\) 0 0
\(666\) −1068.27 159.125i −0.0621541 0.00925820i
\(667\) −7001.83 −0.406465
\(668\) 3710.91 12180.1i 0.214939 0.705480i
\(669\) 809.708i 0.0467939i
\(670\) 0 0
\(671\) 23182.7 1.33377
\(672\) 10425.7 11433.1i 0.598480 0.656312i
\(673\) 11616.5i 0.665355i 0.943041 + 0.332677i \(0.107952\pi\)
−0.943041 + 0.332677i \(0.892048\pi\)
\(674\) 1935.96 12996.9i 0.110639 0.742762i
\(675\) 0 0
\(676\) 24301.8 + 7404.04i 1.38267 + 0.421259i
\(677\) −6063.77 −0.344239 −0.172119 0.985076i \(-0.555061\pi\)
−0.172119 + 0.985076i \(0.555061\pi\)
\(678\) 1144.15 7681.15i 0.0648094 0.435092i
\(679\) −33859.2 −1.91369
\(680\) 0 0
\(681\) −1944.57 −0.109421
\(682\) 505.710 3395.04i 0.0283939 0.190620i
\(683\) 15228.2 0.853136 0.426568 0.904455i \(-0.359722\pi\)
0.426568 + 0.904455i \(0.359722\pi\)
\(684\) −3121.83 + 10246.5i −0.174512 + 0.572787i
\(685\) 0 0
\(686\) −3830.34 + 25714.6i −0.213182 + 1.43118i
\(687\) 14325.0i 0.795538i
\(688\) −27292.4 18332.1i −1.51238 1.01585i
\(689\) −35810.5 −1.98007
\(690\) 0 0
\(691\) 18344.1i 1.00990i −0.863148 0.504951i \(-0.831511\pi\)
0.863148 0.504951i \(-0.168489\pi\)
\(692\) 12919.3 + 3936.15i 0.709711 + 0.216228i
\(693\) −21264.1 −1.16559
\(694\) −26195.3 3901.93i −1.43280 0.213423i
\(695\) 0 0
\(696\) −2249.68 + 4734.26i −0.122520 + 0.257833i
\(697\) 5001.72i 0.271813i
\(698\) −437.695 + 2938.43i −0.0237350 + 0.159343i
\(699\) 4172.39i 0.225772i
\(700\) 0 0
\(701\) 23884.3i 1.28687i 0.765499 + 0.643437i \(0.222492\pi\)
−0.765499 + 0.643437i \(0.777508\pi\)
\(702\) −26063.0 3882.22i −1.40126 0.208725i
\(703\) 1338.81i 0.0718267i
\(704\) 13800.1 11241.7i 0.738792 0.601828i
\(705\) 0 0
\(706\) −1789.66 + 12014.8i −0.0954036 + 0.640484i
\(707\) −40972.5 −2.17953
\(708\) −3440.02 + 11290.9i −0.182604 + 0.599349i
\(709\) 13849.0i 0.733582i 0.930303 + 0.366791i \(0.119544\pi\)
−0.930303 + 0.366791i \(0.880456\pi\)
\(710\) 0 0
\(711\) −3036.03 −0.160141
\(712\) −22718.7 10795.8i −1.19582 0.568242i
\(713\) 2881.51i 0.151351i
\(714\) 3990.75 + 594.444i 0.209174 + 0.0311576i
\(715\) 0 0
\(716\) −155.893 + 511.678i −0.00813689 + 0.0267071i
\(717\) 3035.08 0.158085
\(718\) 30905.5 + 4603.55i 1.60638 + 0.239280i
\(719\) 3172.16 0.164536 0.0822682 0.996610i \(-0.473784\pi\)
0.0822682 + 0.996610i \(0.473784\pi\)
\(720\) 0 0
\(721\) 1597.91 0.0825372
\(722\) −6055.60 902.015i −0.312141 0.0464952i
\(723\) −2748.34 −0.141372
\(724\) −3838.13 + 12597.6i −0.197021 + 0.646666i
\(725\) 0 0
\(726\) −935.411 139.335i −0.0478187 0.00712286i
\(727\) 15403.4i 0.785805i 0.919580 + 0.392902i \(0.128529\pi\)
−0.919580 + 0.392902i \(0.871471\pi\)
\(728\) −22280.5 + 46887.3i −1.13430 + 2.38703i
\(729\) 5843.75 0.296893
\(730\) 0 0
\(731\) 8573.33i 0.433784i
\(732\) −4246.02 + 13936.4i −0.214395 + 0.703695i
\(733\) 35460.6 1.78686 0.893430 0.449203i \(-0.148292\pi\)
0.893430 + 0.449203i \(0.148292\pi\)
\(734\) 1811.83 12163.6i 0.0911117 0.611670i
\(735\) 0 0
\(736\) −10068.1 + 11041.0i −0.504231 + 0.552956i
\(737\) 2948.28i 0.147356i
\(738\) −16384.9 2440.62i −0.817258 0.121735i
\(739\) 26202.9i 1.30432i −0.758083 0.652158i \(-0.773864\pi\)
0.758083 0.652158i \(-0.226136\pi\)
\(740\) 0 0
\(741\) 13714.7i 0.679924i
\(742\) 6372.28 42779.8i 0.315275 2.11657i
\(743\) 22682.3i 1.11996i −0.828506 0.559981i \(-0.810809\pi\)
0.828506 0.559981i \(-0.189191\pi\)
\(744\) 1948.32 + 925.826i 0.0960066 + 0.0456216i
\(745\) 0 0
\(746\) 15195.9 + 2263.52i 0.745793 + 0.111090i
\(747\) −1437.23 −0.0703957
\(748\) 4439.94 + 1352.72i 0.217033 + 0.0661235i
\(749\) 43480.4i 2.12115i
\(750\) 0 0
\(751\) −16294.9 −0.791756 −0.395878 0.918303i \(-0.629560\pi\)
−0.395878 + 0.918303i \(0.629560\pi\)
\(752\) −12673.9 + 18868.7i −0.614589 + 0.914987i
\(753\) 8393.98i 0.406233i
\(754\) 2590.90 17393.8i 0.125139 0.840110i
\(755\) 0 0
\(756\) 9275.54 30444.4i 0.446227 1.46462i
\(757\) −6340.22 −0.304411 −0.152206 0.988349i \(-0.548638\pi\)
−0.152206 + 0.988349i \(0.548638\pi\)
\(758\) −3911.24 + 26257.8i −0.187418 + 1.25821i
\(759\) −7836.64 −0.374772
\(760\) 0 0
\(761\) −21014.7 −1.00103 −0.500514 0.865729i \(-0.666855\pi\)
−0.500514 + 0.865729i \(0.666855\pi\)
\(762\) −192.306 + 1291.03i −0.00914239 + 0.0613766i
\(763\) −32047.0 −1.52055
\(764\) 26080.5 + 7945.98i 1.23503 + 0.376277i
\(765\) 0 0
\(766\) −1111.02 + 7458.71i −0.0524055 + 0.351820i
\(767\) 39600.4i 1.86426i
\(768\) 4230.45 + 10354.9i 0.198767 + 0.486526i
\(769\) −20861.6 −0.978267 −0.489133 0.872209i \(-0.662687\pi\)
−0.489133 + 0.872209i \(0.662687\pi\)
\(770\) 0 0
\(771\) 14530.6i 0.678738i
\(772\) −10055.7 + 33005.2i −0.468800 + 1.53871i
\(773\) −31160.2 −1.44988 −0.724939 0.688813i \(-0.758132\pi\)
−0.724939 + 0.688813i \(0.758132\pi\)
\(774\) −28085.0 4183.41i −1.30425 0.194276i
\(775\) 0 0
\(776\) 10505.8 22108.6i 0.486001 1.02275i
\(777\) 1670.23i 0.0771158i
\(778\) −1287.32 + 8642.29i −0.0593220 + 0.398253i
\(779\) 20534.4i 0.944441i
\(780\) 0 0
\(781\) 21555.7i 0.987610i
\(782\) −3853.87 574.055i −0.176233 0.0262509i
\(783\) 10781.4i 0.492076i
\(784\) −33824.8 22719.9i −1.54085 1.03498i
\(785\) 0 0
\(786\) −1389.65 + 9329.30i −0.0630626 + 0.423365i
\(787\) 8330.18 0.377305 0.188652 0.982044i \(-0.439588\pi\)
0.188652 + 0.982044i \(0.439588\pi\)
\(788\) 10910.0 + 3323.96i 0.493214 + 0.150268i
\(789\) 15523.7i 0.700454i
\(790\) 0 0
\(791\) −31468.8 −1.41454
\(792\) 6597.82 13884.5i 0.296014 0.622936i
\(793\) 48878.9i 2.18883i
\(794\) −7451.84 1109.99i −0.333068 0.0496123i
\(795\) 0 0
\(796\) 7056.75 + 2149.99i 0.314221 + 0.0957340i
\(797\) −12575.3 −0.558898 −0.279449 0.960161i \(-0.590152\pi\)
−0.279449 + 0.960161i \(0.590152\pi\)
\(798\) −16383.9 2440.47i −0.726795 0.108260i
\(799\) −5927.19 −0.262439
\(800\) 0 0
\(801\) −21723.7 −0.958262
\(802\) 21834.8 + 3252.42i 0.961365 + 0.143201i
\(803\) −38953.4 −1.71187
\(804\) 1772.38 + 539.992i 0.0777449 + 0.0236866i
\(805\) 0 0
\(806\) −7158.16 1066.25i −0.312823 0.0465967i
\(807\) 16735.4i 0.730006i
\(808\) 12712.9 26753.2i 0.553514 1.16482i
\(809\) 11092.0 0.482046 0.241023 0.970519i \(-0.422517\pi\)
0.241023 + 0.970519i \(0.422517\pi\)
\(810\) 0 0
\(811\) 15824.3i 0.685162i 0.939488 + 0.342581i \(0.111301\pi\)
−0.939488 + 0.342581i \(0.888699\pi\)
\(812\) 20317.8 + 6190.25i 0.878098 + 0.267531i
\(813\) −12994.9 −0.560578
\(814\) 283.074 1900.39i 0.0121889 0.0818288i
\(815\) 0 0
\(816\) −1626.39 + 2421.34i −0.0697734 + 0.103877i
\(817\) 35197.5i 1.50723i
\(818\) 11758.5 + 1751.50i 0.502601 + 0.0748652i
\(819\) 44833.7i 1.91284i
\(820\) 0 0
\(821\) 20277.4i 0.861979i −0.902357 0.430990i \(-0.858165\pi\)
0.902357 0.430990i \(-0.141835\pi\)
\(822\) −2379.91 + 15977.3i −0.100984 + 0.677947i
\(823\) 32147.3i 1.36158i −0.732477 0.680792i \(-0.761636\pi\)
0.732477 0.680792i \(-0.238364\pi\)
\(824\) −495.799 + 1043.37i −0.0209611 + 0.0441109i
\(825\) 0 0
\(826\) 47307.3 + 7046.68i 1.99277 + 0.296835i
\(827\) −20611.4 −0.866661 −0.433330 0.901235i \(-0.642662\pi\)
−0.433330 + 0.901235i \(0.642662\pi\)
\(828\) −3761.04 + 12344.6i −0.157857 + 0.518121i
\(829\) 14373.9i 0.602204i 0.953592 + 0.301102i \(0.0973544\pi\)
−0.953592 + 0.301102i \(0.902646\pi\)
\(830\) 0 0
\(831\) −2132.82 −0.0890335
\(832\) −23702.2 29096.3i −0.987650 1.21242i
\(833\) 10625.3i 0.441952i
\(834\) 179.926 1207.92i 0.00747041 0.0501519i
\(835\) 0 0
\(836\) −18228.0 5553.55i −0.754102 0.229753i
\(837\) 4436.94 0.183229
\(838\) −5880.90 + 39480.9i −0.242425 + 1.62750i
\(839\) −17880.7 −0.735768 −0.367884 0.929872i \(-0.619918\pi\)
−0.367884 + 0.929872i \(0.619918\pi\)
\(840\) 0 0
\(841\) 17193.8 0.704981
\(842\) −3351.27 + 22498.5i −0.137164 + 0.920842i
\(843\) −9086.20 −0.371228
\(844\) 9575.35 31428.5i 0.390518 1.28177i
\(845\) 0 0
\(846\) −2892.21 + 19416.6i −0.117537 + 0.789074i
\(847\) 3832.27i 0.155465i
\(848\) 25956.1 + 17434.5i 1.05110 + 0.706018i
\(849\) −645.598 −0.0260976
\(850\) 0 0
\(851\) 1612.94i 0.0649717i
\(852\) −12958.3 3948.03i −0.521062 0.158752i
\(853\) 32787.6 1.31609 0.658045 0.752978i \(-0.271384\pi\)
0.658045 + 0.752978i \(0.271384\pi\)
\(854\) 58391.5 + 8697.74i 2.33971 + 0.348513i
\(855\) 0 0
\(856\) 28390.8 + 13491.1i 1.13362 + 0.538687i
\(857\) 18652.5i 0.743472i 0.928338 + 0.371736i \(0.121237\pi\)
−0.928338 + 0.371736i \(0.878763\pi\)
\(858\) 2899.80 19467.6i 0.115382 0.774606i
\(859\) 25357.7i 1.00721i −0.863934 0.503605i \(-0.832007\pi\)
0.863934 0.503605i \(-0.167993\pi\)
\(860\) 0 0
\(861\) 25617.5i 1.01399i
\(862\) 40941.1 + 6098.40i 1.61770 + 0.240966i
\(863\) 29233.8i 1.15311i 0.817059 + 0.576554i \(0.195603\pi\)
−0.817059 + 0.576554i \(0.804397\pi\)
\(864\) 17000.9 + 15502.8i 0.669422 + 0.610435i
\(865\) 0 0
\(866\) −3005.58 + 20177.7i −0.117937 + 0.791761i
\(867\) 12656.3 0.495768
\(868\) 2547.51 8361.52i 0.0996178 0.326968i
\(869\) 5400.92i 0.210833i
\(870\) 0 0
\(871\) −6216.22 −0.241824
\(872\) 9943.51 20925.3i 0.386158 0.812636i
\(873\) 21140.2i 0.819574i
\(874\) 15821.9 + 2356.76i 0.612339 + 0.0912113i
\(875\) 0 0
\(876\) 7134.49 23417.0i 0.275174 0.903182i
\(877\) 5427.91 0.208994 0.104497 0.994525i \(-0.466677\pi\)
0.104497 + 0.994525i \(0.466677\pi\)
\(878\) 10286.6 + 1532.24i 0.395393 + 0.0588960i
\(879\) −336.054 −0.0128951
\(880\) 0 0
\(881\) 23309.0 0.891375 0.445688 0.895189i \(-0.352959\pi\)
0.445688 + 0.895189i \(0.352959\pi\)
\(882\) −34807.1 5184.71i −1.32882 0.197934i
\(883\) −12533.3 −0.477665 −0.238833 0.971061i \(-0.576765\pi\)
−0.238833 + 0.971061i \(0.576765\pi\)
\(884\) 2852.10 9361.26i 0.108514 0.356169i
\(885\) 0 0
\(886\) −14800.7 2204.65i −0.561220 0.0835968i
\(887\) 29703.3i 1.12439i 0.827003 + 0.562197i \(0.190044\pi\)
−0.827003 + 0.562197i \(0.809956\pi\)
\(888\) 1090.58 + 518.237i 0.0412135 + 0.0195843i
\(889\) 5289.19 0.199543
\(890\) 0 0
\(891\) 6276.19i 0.235982i
\(892\) −691.303 + 2269.01i −0.0259490 + 0.0851706i
\(893\) 24333.8 0.911871
\(894\) −3561.69 + 23911.1i −0.133245 + 0.894526i
\(895\) 0 0
\(896\) 38976.6 23137.5i 1.45326 0.862687i
\(897\) 16522.9i 0.615033i
\(898\) −18817.6 2802.99i −0.699279 0.104161i
\(899\) 2961.10i 0.109853i
\(900\) 0 0
\(901\) 8153.55i 0.301481i
\(902\) 4341.72 29147.8i 0.160270 1.07596i
\(903\) 43910.4i 1.61821i
\(904\) 9764.12 20547.7i 0.359237 0.755982i
\(905\) 0 0
\(906\) 4654.69 + 693.342i 0.170686 + 0.0254246i
\(907\) 25888.3 0.947749 0.473875 0.880592i \(-0.342855\pi\)
0.473875 + 0.880592i \(0.342855\pi\)
\(908\) −5449.18 1660.21i −0.199160 0.0606784i
\(909\) 25581.4i 0.933425i
\(910\) 0 0
\(911\) 23119.5 0.840816 0.420408 0.907335i \(-0.361887\pi\)
0.420408 + 0.907335i \(0.361887\pi\)
\(912\) 6677.09 9940.70i 0.242435 0.360932i
\(913\) 2556.75i 0.0926793i
\(914\) 2194.79 14734.5i 0.0794278 0.533232i
\(915\) 0 0
\(916\) −12230.3 + 40142.5i −0.441156 + 1.44798i
\(917\) 38221.1 1.37641
\(918\) −883.929 + 5934.18i −0.0317800 + 0.213352i
\(919\) −24277.7 −0.871434 −0.435717 0.900084i \(-0.643505\pi\)
−0.435717 + 0.900084i \(0.643505\pi\)
\(920\) 0 0
\(921\) 4661.60 0.166780
\(922\) 3376.58 22668.4i 0.120609 0.809699i
\(923\) 45448.4 1.62075
\(924\) 22740.3 + 6928.30i 0.809632 + 0.246671i
\(925\) 0 0
\(926\) 8197.23 55031.4i 0.290905 1.95296i
\(927\) 997.667i 0.0353481i
\(928\) −10346.2 + 11345.9i −0.365980 + 0.401345i
\(929\) −43087.8 −1.52171 −0.760853 0.648924i \(-0.775219\pi\)
−0.760853 + 0.648924i \(0.775219\pi\)
\(930\) 0 0
\(931\) 43621.9i 1.53561i
\(932\) −3562.25 + 11692.1i −0.125199 + 0.410932i
\(933\) −20321.9 −0.713086
\(934\) −8794.93 1310.05i −0.308114 0.0458953i
\(935\) 0 0
\(936\) −29274.4 13911.0i −1.02229 0.485784i
\(937\) 45230.7i 1.57697i −0.615053 0.788486i \(-0.710865\pi\)
0.615053 0.788486i \(-0.289135\pi\)
\(938\) 1106.14 7425.99i 0.0385041 0.258494i
\(939\) 193.341i 0.00671931i
\(940\) 0 0
\(941\) 3631.17i 0.125795i 0.998020 + 0.0628973i \(0.0200341\pi\)
−0.998020 + 0.0628973i \(0.979966\pi\)
\(942\) 14182.4 + 2112.55i 0.490539 + 0.0730685i
\(943\) 24738.9i 0.854305i
\(944\) −19279.6 + 28703.1i −0.664724 + 0.989626i
\(945\) 0 0
\(946\) 7442.04 49961.5i 0.255773 1.71711i
\(947\) 38493.1 1.32086 0.660432 0.750886i \(-0.270373\pi\)
0.660432 + 0.750886i \(0.270373\pi\)
\(948\) 3246.79 + 989.203i 0.111235 + 0.0338901i
\(949\) 82130.0i 2.80933i
\(950\) 0 0
\(951\) −20526.2 −0.699904
\(952\) 10675.6 + 5072.96i 0.363443 + 0.172705i
\(953\) 15541.2i 0.528258i 0.964487 + 0.264129i \(0.0850844\pi\)
−0.964487 + 0.264129i \(0.914916\pi\)
\(954\) 26709.8 + 3978.58i 0.906460 + 0.135022i
\(955\) 0 0
\(956\) 8505.07 + 2591.25i 0.287734 + 0.0876642i
\(957\) −8053.10 −0.272016
\(958\) 19724.3 + 2938.04i 0.665202 + 0.0990855i
\(959\) 65457.2 2.20409
\(960\) 0 0
\(961\) −28572.4 −0.959095
\(962\) −4006.82 596.838i −0.134288 0.0200030i
\(963\) 27147.3 0.908421
\(964\) −7701.57 2346.45i −0.257314 0.0783962i
\(965\) 0 0
\(966\) −19738.6 2940.17i −0.657430 0.0979279i
\(967\) 7995.61i 0.265896i 0.991123 + 0.132948i \(0.0424443\pi\)
−0.991123 + 0.132948i \(0.957556\pi\)
\(968\) −2502.31 1189.08i −0.0830859 0.0394818i
\(969\) 3122.66 0.103523
\(970\) 0 0
\(971\) 34412.7i 1.13734i −0.822567 0.568669i \(-0.807459\pi\)
0.822567 0.568669i \(-0.192541\pi\)
\(972\) 30035.2 + 9150.85i 0.991131 + 0.301969i
\(973\) −4948.70 −0.163050
\(974\) 1005.12 6747.79i 0.0330659 0.221985i
\(975\) 0 0
\(976\) −23796.9 + 35428.3i −0.780452 + 1.16192i
\(977\) 23300.8i 0.763007i −0.924367 0.381503i \(-0.875407\pi\)
0.924367 0.381503i \(-0.124593\pi\)
\(978\) 25514.0 + 3800.46i 0.834201 + 0.124259i
\(979\) 38645.1i 1.26160i
\(980\) 0 0
\(981\) 20008.7i 0.651203i
\(982\) −3337.63 + 22406.9i −0.108460 + 0.728139i
\(983\) 47674.2i 1.54687i −0.633877 0.773434i \(-0.718537\pi\)
0.633877 0.773434i \(-0.281463\pi\)
\(984\) 16727.1 + 7948.59i 0.541912 + 0.257512i
\(985\) 0 0
\(986\) −3960.32 589.911i −0.127913 0.0190533i
\(987\) −30357.6 −0.979019
\(988\) −11709.2 + 38432.3i −0.377044 + 1.23754i
\(989\) 42404.4i 1.36338i
\(990\) 0 0
\(991\) 43640.7 1.39888 0.699441 0.714691i \(-0.253433\pi\)
0.699441 + 0.714691i \(0.253433\pi\)
\(992\) 4669.26 + 4257.82i 0.149445 + 0.136276i
\(993\) 19909.5i 0.636262i
\(994\) −8087.31 + 54293.4i −0.258062 + 1.73248i
\(995\) 0 0
\(996\) 1537.00 + 468.281i 0.0488975 + 0.0148976i
\(997\) −25244.6 −0.801909 −0.400955 0.916098i \(-0.631321\pi\)
−0.400955 + 0.916098i \(0.631321\pi\)
\(998\) 1674.12 11239.0i 0.0530994 0.356478i
\(999\) 2483.60 0.0786563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.f.d.149.3 24
4.3 odd 2 800.4.f.d.49.10 24
5.2 odd 4 200.4.d.d.101.7 yes 12
5.3 odd 4 200.4.d.c.101.6 yes 12
5.4 even 2 inner 200.4.f.d.149.22 24
8.3 odd 2 800.4.f.d.49.16 24
8.5 even 2 inner 200.4.f.d.149.21 24
20.3 even 4 800.4.d.b.401.5 12
20.7 even 4 800.4.d.c.401.8 12
20.19 odd 2 800.4.f.d.49.15 24
40.3 even 4 800.4.d.b.401.8 12
40.13 odd 4 200.4.d.c.101.5 12
40.19 odd 2 800.4.f.d.49.9 24
40.27 even 4 800.4.d.c.401.5 12
40.29 even 2 inner 200.4.f.d.149.4 24
40.37 odd 4 200.4.d.d.101.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.4.d.c.101.5 12 40.13 odd 4
200.4.d.c.101.6 yes 12 5.3 odd 4
200.4.d.d.101.7 yes 12 5.2 odd 4
200.4.d.d.101.8 yes 12 40.37 odd 4
200.4.f.d.149.3 24 1.1 even 1 trivial
200.4.f.d.149.4 24 40.29 even 2 inner
200.4.f.d.149.21 24 8.5 even 2 inner
200.4.f.d.149.22 24 5.4 even 2 inner
800.4.d.b.401.5 12 20.3 even 4
800.4.d.b.401.8 12 40.3 even 4
800.4.d.c.401.5 12 40.27 even 4
800.4.d.c.401.8 12 20.7 even 4
800.4.f.d.49.9 24 40.19 odd 2
800.4.f.d.49.10 24 4.3 odd 2
800.4.f.d.49.15 24 20.19 odd 2
800.4.f.d.49.16 24 8.3 odd 2