Newspace parameters
| Level: | \( N \) | \(=\) | \( 200 = 2^{3} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 200.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(11.8003820011\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 149.1 | −2.79815 | − | 0.412714i | −7.69300 | 7.65933 | + | 2.30967i | 0 | 21.5262 | + | 3.17501i | 15.6248i | −20.4788 | − | 9.62394i | 32.1823 | 0 | ||||||||||
| 149.2 | −2.79815 | + | 0.412714i | −7.69300 | 7.65933 | − | 2.30967i | 0 | 21.5262 | − | 3.17501i | − | 15.6248i | −20.4788 | + | 9.62394i | 32.1823 | 0 | |||||||||
| 149.3 | −2.79756 | − | 0.416712i | 2.73090 | 7.65270 | + | 2.33156i | 0 | −7.63987 | − | 1.13800i | 31.2997i | −20.4373 | − | 9.71165i | −19.5422 | 0 | ||||||||||
| 149.4 | −2.79756 | + | 0.416712i | 2.73090 | 7.65270 | − | 2.33156i | 0 | −7.63987 | + | 1.13800i | − | 31.2997i | −20.4373 | + | 9.71165i | −19.5422 | 0 | |||||||||
| 149.5 | −2.15676 | − | 1.82985i | 5.31349 | 1.30327 | + | 7.89313i | 0 | −11.4600 | − | 9.72291i | 15.7169i | 11.6324 | − | 19.4084i | 1.23319 | 0 | ||||||||||
| 149.6 | −2.15676 | + | 1.82985i | 5.31349 | 1.30327 | − | 7.89313i | 0 | −11.4600 | + | 9.72291i | − | 15.7169i | 11.6324 | + | 19.4084i | 1.23319 | 0 | |||||||||
| 149.7 | −1.68939 | − | 2.26847i | −1.26108 | −2.29192 | + | 7.66467i | 0 | 2.13045 | + | 2.86072i | − | 14.2186i | 21.2590 | − | 7.74946i | −25.4097 | 0 | |||||||||
| 149.8 | −1.68939 | + | 2.26847i | −1.26108 | −2.29192 | − | 7.66467i | 0 | 2.13045 | − | 2.86072i | 14.2186i | 21.2590 | + | 7.74946i | −25.4097 | 0 | ||||||||||
| 149.9 | −0.673381 | − | 2.74710i | −5.16961 | −7.09312 | + | 3.69969i | 0 | 3.48111 | + | 14.2014i | − | 7.07059i | 14.9398 | + | 16.9942i | −0.275157 | 0 | |||||||||
| 149.10 | −0.673381 | + | 2.74710i | −5.16961 | −7.09312 | − | 3.69969i | 0 | 3.48111 | − | 14.2014i | 7.07059i | 14.9398 | − | 16.9942i | −0.275157 | 0 | ||||||||||
| 149.11 | −0.367242 | − | 2.80448i | 9.63387 | −7.73027 | + | 2.05985i | 0 | −3.53796 | − | 27.0180i | 21.1900i | 8.61568 | + | 20.9230i | 65.8115 | 0 | ||||||||||
| 149.12 | −0.367242 | + | 2.80448i | 9.63387 | −7.73027 | − | 2.05985i | 0 | −3.53796 | + | 27.0180i | − | 21.1900i | 8.61568 | − | 20.9230i | 65.8115 | 0 | |||||||||
| 149.13 | 0.367242 | − | 2.80448i | −9.63387 | −7.73027 | − | 2.05985i | 0 | −3.53796 | + | 27.0180i | 21.1900i | −8.61568 | + | 20.9230i | 65.8115 | 0 | ||||||||||
| 149.14 | 0.367242 | + | 2.80448i | −9.63387 | −7.73027 | + | 2.05985i | 0 | −3.53796 | − | 27.0180i | − | 21.1900i | −8.61568 | − | 20.9230i | 65.8115 | 0 | |||||||||
| 149.15 | 0.673381 | − | 2.74710i | 5.16961 | −7.09312 | − | 3.69969i | 0 | 3.48111 | − | 14.2014i | − | 7.07059i | −14.9398 | + | 16.9942i | −0.275157 | 0 | |||||||||
| 149.16 | 0.673381 | + | 2.74710i | 5.16961 | −7.09312 | + | 3.69969i | 0 | 3.48111 | + | 14.2014i | 7.07059i | −14.9398 | − | 16.9942i | −0.275157 | 0 | ||||||||||
| 149.17 | 1.68939 | − | 2.26847i | 1.26108 | −2.29192 | − | 7.66467i | 0 | 2.13045 | − | 2.86072i | − | 14.2186i | −21.2590 | − | 7.74946i | −25.4097 | 0 | |||||||||
| 149.18 | 1.68939 | + | 2.26847i | 1.26108 | −2.29192 | + | 7.66467i | 0 | 2.13045 | + | 2.86072i | 14.2186i | −21.2590 | + | 7.74946i | −25.4097 | 0 | ||||||||||
| 149.19 | 2.15676 | − | 1.82985i | −5.31349 | 1.30327 | − | 7.89313i | 0 | −11.4600 | + | 9.72291i | 15.7169i | −11.6324 | − | 19.4084i | 1.23319 | 0 | ||||||||||
| 149.20 | 2.15676 | + | 1.82985i | −5.31349 | 1.30327 | + | 7.89313i | 0 | −11.4600 | − | 9.72291i | − | 15.7169i | −11.6324 | + | 19.4084i | 1.23319 | 0 | |||||||||
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 8.b | even | 2 | 1 | inner |
| 40.f | even | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 200.4.f.d | 24 | |
| 4.b | odd | 2 | 1 | 800.4.f.d | 24 | ||
| 5.b | even | 2 | 1 | inner | 200.4.f.d | 24 | |
| 5.c | odd | 4 | 1 | 200.4.d.c | ✓ | 12 | |
| 5.c | odd | 4 | 1 | 200.4.d.d | yes | 12 | |
| 8.b | even | 2 | 1 | inner | 200.4.f.d | 24 | |
| 8.d | odd | 2 | 1 | 800.4.f.d | 24 | ||
| 20.d | odd | 2 | 1 | 800.4.f.d | 24 | ||
| 20.e | even | 4 | 1 | 800.4.d.b | 12 | ||
| 20.e | even | 4 | 1 | 800.4.d.c | 12 | ||
| 40.e | odd | 2 | 1 | 800.4.f.d | 24 | ||
| 40.f | even | 2 | 1 | inner | 200.4.f.d | 24 | |
| 40.i | odd | 4 | 1 | 200.4.d.c | ✓ | 12 | |
| 40.i | odd | 4 | 1 | 200.4.d.d | yes | 12 | |
| 40.k | even | 4 | 1 | 800.4.d.b | 12 | ||
| 40.k | even | 4 | 1 | 800.4.d.c | 12 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 200.4.d.c | ✓ | 12 | 5.c | odd | 4 | 1 | |
| 200.4.d.c | ✓ | 12 | 40.i | odd | 4 | 1 | |
| 200.4.d.d | yes | 12 | 5.c | odd | 4 | 1 | |
| 200.4.d.d | yes | 12 | 40.i | odd | 4 | 1 | |
| 200.4.f.d | 24 | 1.a | even | 1 | 1 | trivial | |
| 200.4.f.d | 24 | 5.b | even | 2 | 1 | inner | |
| 200.4.f.d | 24 | 8.b | even | 2 | 1 | inner | |
| 200.4.f.d | 24 | 40.f | even | 2 | 1 | inner | |
| 800.4.d.b | 12 | 20.e | even | 4 | 1 | ||
| 800.4.d.b | 12 | 40.k | even | 4 | 1 | ||
| 800.4.d.c | 12 | 20.e | even | 4 | 1 | ||
| 800.4.d.c | 12 | 40.k | even | 4 | 1 | ||
| 800.4.f.d | 24 | 4.b | odd | 2 | 1 | ||
| 800.4.f.d | 24 | 8.d | odd | 2 | 1 | ||
| 800.4.f.d | 24 | 20.d | odd | 2 | 1 | ||
| 800.4.f.d | 24 | 40.e | odd | 2 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{12} - 216T_{3}^{10} + 16485T_{3}^{8} - 551120T_{3}^{6} + 8086707T_{3}^{4} - 42440280T_{3}^{2} + 49154791 \)
acting on \(S_{4}^{\mathrm{new}}(200, [\chi])\).