Properties

Label 200.4
Level 200
Weight 4
Dimension 1826
Nonzero newspaces 10
Newform subspaces 44
Sturm bound 9600
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 44 \)
Sturm bound: \(9600\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(200))\).

Total New Old
Modular forms 3768 1908 1860
Cusp forms 3432 1826 1606
Eisenstein series 336 82 254

Trace form

\( 1826 q - 14 q^{2} - 16 q^{3} - 24 q^{4} + 11 q^{5} + 8 q^{6} - 28 q^{7} + 28 q^{8} - 127 q^{9} - 16 q^{10} - 120 q^{11} - 284 q^{12} - 86 q^{13} - 260 q^{14} + 56 q^{15} + 220 q^{16} + 170 q^{17} + 942 q^{18}+ \cdots - 10128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(200))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
200.4.a \(\chi_{200}(1, \cdot)\) 200.4.a.a 1 1
200.4.a.b 1
200.4.a.c 1
200.4.a.d 1
200.4.a.e 1
200.4.a.f 1
200.4.a.g 1
200.4.a.h 1
200.4.a.i 1
200.4.a.j 1
200.4.a.k 2
200.4.a.l 2
200.4.c \(\chi_{200}(49, \cdot)\) 200.4.c.a 2 1
200.4.c.b 2
200.4.c.c 2
200.4.c.d 2
200.4.c.e 2
200.4.c.f 2
200.4.c.g 2
200.4.d \(\chi_{200}(101, \cdot)\) 200.4.d.a 2 1
200.4.d.b 12
200.4.d.c 12
200.4.d.d 12
200.4.d.e 16
200.4.f \(\chi_{200}(149, \cdot)\) 200.4.f.a 4 1
200.4.f.b 12
200.4.f.c 12
200.4.f.d 24
200.4.j \(\chi_{200}(7, \cdot)\) None 0 2
200.4.k \(\chi_{200}(43, \cdot)\) 200.4.k.a 2 2
200.4.k.b 2
200.4.k.c 2
200.4.k.d 2
200.4.k.e 4
200.4.k.f 4
200.4.k.g 8
200.4.k.h 16
200.4.k.i 32
200.4.k.j 32
200.4.m \(\chi_{200}(41, \cdot)\) 200.4.m.a 44 4
200.4.m.b 48
200.4.o \(\chi_{200}(29, \cdot)\) 200.4.o.a 352 4
200.4.q \(\chi_{200}(9, \cdot)\) 200.4.q.a 88 4
200.4.t \(\chi_{200}(21, \cdot)\) 200.4.t.a 352 4
200.4.v \(\chi_{200}(3, \cdot)\) 200.4.v.a 704 8
200.4.w \(\chi_{200}(23, \cdot)\) None 0 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(200))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(200)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)