Properties

Label 2.74.a
Level $2$
Weight $74$
Character orbit 2.a
Rep. character $\chi_{2}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $2$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 74 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{74}(\Gamma_0(2))\).

Total New Old
Modular forms 19 7 12
Cusp forms 17 7 10
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(10\)\(4\)\(6\)\(9\)\(4\)\(5\)\(1\)\(0\)\(1\)

Trace form

\( 7 q + 68719476736 q^{2} + 10\!\cdots\!04 q^{3} + 33\!\cdots\!72 q^{4} - 40\!\cdots\!10 q^{5} + 41\!\cdots\!28 q^{6} + 13\!\cdots\!48 q^{7} + 32\!\cdots\!56 q^{8} + 19\!\cdots\!11 q^{9} + 17\!\cdots\!40 q^{10}+ \cdots + 31\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{74}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
2.74.a.a 2.a 1.a $3$ $67.497$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 2.74.a.a \(-206158430208\) \(-30\!\cdots\!72\) \(-32\!\cdots\!50\) \(-23\!\cdots\!64\) $+$ $\mathrm{SU}(2)$ \(q-2^{36}q^{2}+(-101346400339911324+\cdots)q^{3}+\cdots\)
2.74.a.b 2.a 1.a $4$ $67.497$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 2.74.a.b \(274877906944\) \(30\!\cdots\!76\) \(-78\!\cdots\!60\) \(36\!\cdots\!12\) $-$ $\mathrm{SU}(2)$ \(q+2^{36}q^{2}+(76266581430811044+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{74}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces

\( S_{74}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{74}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)