Properties

Label 2.74
Level 2
Weight 74
Dimension 7
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 18
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 74 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{74}(\Gamma_1(2))\).

Total New Old
Modular forms 19 7 12
Cusp forms 17 7 10
Eisenstein series 2 0 2

Trace form

\( 7 q + 68719476736 q^{2} + 10\!\cdots\!04 q^{3} + 33\!\cdots\!72 q^{4} - 40\!\cdots\!10 q^{5} + 41\!\cdots\!28 q^{6} + 13\!\cdots\!48 q^{7} + 32\!\cdots\!56 q^{8} + 19\!\cdots\!11 q^{9} + 17\!\cdots\!40 q^{10}+ \cdots + 31\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{74}^{\mathrm{new}}(\Gamma_1(2))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2.74.a \(\chi_{2}(1, \cdot)\) 2.74.a.a 3 1
2.74.a.b 4

Decomposition of \(S_{74}^{\mathrm{old}}(\Gamma_1(2))\) into lower level spaces

\( S_{74}^{\mathrm{old}}(\Gamma_1(2)) \cong \) \(S_{74}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)