Properties

Label 2.70.a.b.1.3
Level $2$
Weight $70$
Character 2.1
Self dual yes
Analytic conductor $60.303$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2,70,Mod(1,2)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2, base_ring=CyclotomicField(1)) chi = DirichletCharacter(H, H._module([])) N = Newforms(chi, 70, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2.1"); S:= CuspForms(chi, 70); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 70 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,51539607552] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.3029906584\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 90823593763357992496952650x - 190864638684342453433100893828514036648 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{5}\cdot 5^{4}\cdot 7\cdot 23 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.04450e13\) of defining polynomial
Character \(\chi\) \(=\) 2.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.71799e10 q^{2} +3.22422e16 q^{3} +2.95148e20 q^{4} +6.21700e23 q^{5} +5.53917e26 q^{6} +1.85055e28 q^{7} +5.07060e30 q^{8} +2.05176e32 q^{9} +1.06807e34 q^{10} +5.55655e35 q^{11} +9.51623e36 q^{12} +1.02810e37 q^{13} +3.17923e38 q^{14} +2.00450e40 q^{15} +8.71123e40 q^{16} +5.26112e41 q^{17} +3.52490e42 q^{18} +1.07488e44 q^{19} +1.83493e44 q^{20} +5.96660e44 q^{21} +9.54608e45 q^{22} +1.83588e47 q^{23} +1.63488e47 q^{24} -1.30756e48 q^{25} +1.76626e47 q^{26} -2.02871e49 q^{27} +5.46187e48 q^{28} +6.22079e49 q^{29} +3.44370e50 q^{30} +4.33641e51 q^{31} +1.49658e51 q^{32} +1.79156e52 q^{33} +9.03854e51 q^{34} +1.15049e52 q^{35} +6.05573e52 q^{36} -3.89377e53 q^{37} +1.84664e54 q^{38} +3.31481e53 q^{39} +3.15239e54 q^{40} -5.46062e55 q^{41} +1.02505e55 q^{42} -2.76635e56 q^{43} +1.64000e56 q^{44} +1.27558e56 q^{45} +3.15401e57 q^{46} +3.45102e57 q^{47} +2.80869e57 q^{48} -2.01581e58 q^{49} -2.24636e58 q^{50} +1.69630e58 q^{51} +3.03441e57 q^{52} +2.16209e59 q^{53} -3.48530e59 q^{54} +3.45451e59 q^{55} +9.38342e58 q^{56} +3.46567e60 q^{57} +1.06872e60 q^{58} +7.71756e60 q^{59} +5.91624e60 q^{60} +4.12788e61 q^{61} +7.44990e61 q^{62} +3.79690e60 q^{63} +2.57110e61 q^{64} +6.39168e60 q^{65} +3.07787e62 q^{66} +1.64023e63 q^{67} +1.55281e62 q^{68} +5.91927e63 q^{69} +1.97652e62 q^{70} +1.10556e64 q^{71} +1.04037e63 q^{72} -1.41363e64 q^{73} -6.68944e63 q^{74} -4.21585e64 q^{75} +3.17250e64 q^{76} +1.02827e64 q^{77} +5.69481e63 q^{78} -1.23625e65 q^{79} +5.41577e64 q^{80} -8.25297e65 q^{81} -9.38127e65 q^{82} -1.32003e66 q^{83} +1.76103e65 q^{84} +3.27084e65 q^{85} -4.75256e66 q^{86} +2.00572e66 q^{87} +2.81751e66 q^{88} -5.61568e66 q^{89} +2.19143e66 q^{90} +1.90255e65 q^{91} +5.41855e67 q^{92} +1.39816e68 q^{93} +5.92880e67 q^{94} +6.68255e67 q^{95} +4.82530e67 q^{96} -7.29513e67 q^{97} -3.46313e68 q^{98} +1.14007e68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 51539607552 q^{2} - 23\!\cdots\!52 q^{3} + 88\!\cdots\!68 q^{4} - 58\!\cdots\!50 q^{5} - 40\!\cdots\!68 q^{6} + 92\!\cdots\!16 q^{7} + 15\!\cdots\!12 q^{8} + 36\!\cdots\!19 q^{9} - 10\!\cdots\!00 q^{10}+ \cdots - 38\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71799e10 0.707107
\(3\) 3.22422e16 1.11620 0.558100 0.829774i \(-0.311531\pi\)
0.558100 + 0.829774i \(0.311531\pi\)
\(4\) 2.95148e20 0.500000
\(5\) 6.21700e23 0.477656 0.238828 0.971062i \(-0.423237\pi\)
0.238828 + 0.971062i \(0.423237\pi\)
\(6\) 5.53917e26 0.789272
\(7\) 1.85055e28 0.129247 0.0646233 0.997910i \(-0.479415\pi\)
0.0646233 + 0.997910i \(0.479415\pi\)
\(8\) 5.07060e30 0.353553
\(9\) 2.05176e32 0.245901
\(10\) 1.06807e34 0.337754
\(11\) 5.55655e35 0.655779 0.327890 0.944716i \(-0.393663\pi\)
0.327890 + 0.944716i \(0.393663\pi\)
\(12\) 9.51623e36 0.558100
\(13\) 1.02810e37 0.0381056 0.0190528 0.999818i \(-0.493935\pi\)
0.0190528 + 0.999818i \(0.493935\pi\)
\(14\) 3.17923e38 0.0913912
\(15\) 2.00450e40 0.533160
\(16\) 8.71123e40 0.250000
\(17\) 5.26112e41 0.186462 0.0932310 0.995645i \(-0.470280\pi\)
0.0932310 + 0.995645i \(0.470280\pi\)
\(18\) 3.52490e42 0.173878
\(19\) 1.07488e44 0.821037 0.410518 0.911852i \(-0.365348\pi\)
0.410518 + 0.911852i \(0.365348\pi\)
\(20\) 1.83493e44 0.238828
\(21\) 5.96660e44 0.144265
\(22\) 9.54608e45 0.463706
\(23\) 1.83588e47 1.92412 0.962061 0.272833i \(-0.0879605\pi\)
0.962061 + 0.272833i \(0.0879605\pi\)
\(24\) 1.63488e47 0.394636
\(25\) −1.30756e48 −0.771844
\(26\) 1.76626e47 0.0269447
\(27\) −2.02871e49 −0.841725
\(28\) 5.46187e48 0.0646233
\(29\) 6.22079e49 0.219338 0.109669 0.993968i \(-0.465021\pi\)
0.109669 + 0.993968i \(0.465021\pi\)
\(30\) 3.44370e50 0.377001
\(31\) 4.33641e51 1.53162 0.765812 0.643065i \(-0.222337\pi\)
0.765812 + 0.643065i \(0.222337\pi\)
\(32\) 1.49658e51 0.176777
\(33\) 1.79156e52 0.731980
\(34\) 9.03854e51 0.131849
\(35\) 1.15049e52 0.0617355
\(36\) 6.05573e52 0.122951
\(37\) −3.89377e53 −0.307192 −0.153596 0.988134i \(-0.549086\pi\)
−0.153596 + 0.988134i \(0.549086\pi\)
\(38\) 1.84664e54 0.580561
\(39\) 3.31481e53 0.0425334
\(40\) 3.15239e54 0.168877
\(41\) −5.46062e55 −1.24795 −0.623977 0.781442i \(-0.714484\pi\)
−0.623977 + 0.781442i \(0.714484\pi\)
\(42\) 1.02505e55 0.102011
\(43\) −2.76635e56 −1.22249 −0.611245 0.791441i \(-0.709331\pi\)
−0.611245 + 0.791441i \(0.709331\pi\)
\(44\) 1.64000e56 0.327890
\(45\) 1.27558e56 0.117456
\(46\) 3.15401e57 1.36056
\(47\) 3.45102e57 0.708877 0.354439 0.935079i \(-0.384672\pi\)
0.354439 + 0.935079i \(0.384672\pi\)
\(48\) 2.80869e57 0.279050
\(49\) −2.01581e58 −0.983295
\(50\) −2.24636e58 −0.545776
\(51\) 1.69630e58 0.208129
\(52\) 3.03441e57 0.0190528
\(53\) 2.16209e59 0.703649 0.351824 0.936066i \(-0.385561\pi\)
0.351824 + 0.936066i \(0.385561\pi\)
\(54\) −3.48530e59 −0.595189
\(55\) 3.45451e59 0.313237
\(56\) 9.38342e58 0.0456956
\(57\) 3.46567e60 0.916441
\(58\) 1.06872e60 0.155096
\(59\) 7.71756e60 0.620992 0.310496 0.950575i \(-0.399505\pi\)
0.310496 + 0.950575i \(0.399505\pi\)
\(60\) 5.91624e60 0.266580
\(61\) 4.12788e61 1.05159 0.525797 0.850610i \(-0.323767\pi\)
0.525797 + 0.850610i \(0.323767\pi\)
\(62\) 7.44990e61 1.08302
\(63\) 3.79690e60 0.0317819
\(64\) 2.57110e61 0.125000
\(65\) 6.39168e60 0.0182014
\(66\) 3.07787e62 0.517588
\(67\) 1.64023e63 1.64182 0.820910 0.571058i \(-0.193467\pi\)
0.820910 + 0.571058i \(0.193467\pi\)
\(68\) 1.55281e62 0.0932310
\(69\) 5.91927e63 2.14770
\(70\) 1.97652e62 0.0436536
\(71\) 1.10556e64 1.49683 0.748413 0.663234i \(-0.230816\pi\)
0.748413 + 0.663234i \(0.230816\pi\)
\(72\) 1.04037e63 0.0869392
\(73\) −1.41363e64 −0.733999 −0.367000 0.930221i \(-0.619615\pi\)
−0.367000 + 0.930221i \(0.619615\pi\)
\(74\) −6.68944e63 −0.217218
\(75\) −4.21585e64 −0.861532
\(76\) 3.17250e64 0.410518
\(77\) 1.02827e64 0.0847573
\(78\) 5.69481e63 0.0300757
\(79\) −1.23625e65 −0.420700 −0.210350 0.977626i \(-0.567460\pi\)
−0.210350 + 0.977626i \(0.567460\pi\)
\(80\) 5.41577e64 0.119414
\(81\) −8.25297e65 −1.18543
\(82\) −9.38127e65 −0.882437
\(83\) −1.32003e66 −0.817316 −0.408658 0.912688i \(-0.634003\pi\)
−0.408658 + 0.912688i \(0.634003\pi\)
\(84\) 1.76103e65 0.0721325
\(85\) 3.27084e65 0.0890648
\(86\) −4.75256e66 −0.864432
\(87\) 2.00572e66 0.244825
\(88\) 2.81751e66 0.231853
\(89\) −5.61568e66 −0.312930 −0.156465 0.987683i \(-0.550010\pi\)
−0.156465 + 0.987683i \(0.550010\pi\)
\(90\) 2.19143e66 0.0830541
\(91\) 1.90255e65 0.00492502
\(92\) 5.41855e67 0.962061
\(93\) 1.39816e68 1.70960
\(94\) 5.92880e67 0.501252
\(95\) 6.68255e67 0.392173
\(96\) 4.82530e67 0.197318
\(97\) −7.29513e67 −0.208645 −0.104323 0.994544i \(-0.533267\pi\)
−0.104323 + 0.994544i \(0.533267\pi\)
\(98\) −3.46313e68 −0.695295
\(99\) 1.14007e68 0.161257
\(100\) −3.85922e68 −0.385922
\(101\) 4.31349e67 0.0306014 0.0153007 0.999883i \(-0.495129\pi\)
0.0153007 + 0.999883i \(0.495129\pi\)
\(102\) 2.91423e68 0.147169
\(103\) −2.56474e69 −0.925036 −0.462518 0.886610i \(-0.653054\pi\)
−0.462518 + 0.886610i \(0.653054\pi\)
\(104\) 5.21307e67 0.0134724
\(105\) 3.70943e68 0.0689091
\(106\) 3.71444e69 0.497555
\(107\) −1.17988e70 −1.14314 −0.571568 0.820555i \(-0.693665\pi\)
−0.571568 + 0.820555i \(0.693665\pi\)
\(108\) −5.98769e69 −0.420862
\(109\) −2.64776e70 −1.35414 −0.677072 0.735917i \(-0.736751\pi\)
−0.677072 + 0.735917i \(0.736751\pi\)
\(110\) 5.93480e69 0.221492
\(111\) −1.25544e70 −0.342888
\(112\) 1.61206e69 0.0323117
\(113\) 1.07543e71 1.58627 0.793135 0.609045i \(-0.208447\pi\)
0.793135 + 0.609045i \(0.208447\pi\)
\(114\) 5.95397e70 0.648021
\(115\) 1.14136e71 0.919070
\(116\) 1.83605e70 0.109669
\(117\) 2.10941e69 0.00937020
\(118\) 1.32587e71 0.439107
\(119\) 9.73599e69 0.0240996
\(120\) 1.01640e71 0.188500
\(121\) −4.09199e71 −0.569954
\(122\) 7.09165e71 0.743589
\(123\) −1.76063e72 −1.39297
\(124\) 1.27988e72 0.765812
\(125\) −1.86611e72 −0.846333
\(126\) 6.52302e70 0.0224732
\(127\) −2.92448e72 −0.767043 −0.383521 0.923532i \(-0.625289\pi\)
−0.383521 + 0.923532i \(0.625289\pi\)
\(128\) 4.41712e71 0.0883883
\(129\) −8.91933e72 −1.36454
\(130\) 1.09808e71 0.0128703
\(131\) 3.86451e72 0.347724 0.173862 0.984770i \(-0.444375\pi\)
0.173862 + 0.984770i \(0.444375\pi\)
\(132\) 5.28774e72 0.365990
\(133\) 1.98913e72 0.106116
\(134\) 2.81790e73 1.16094
\(135\) −1.26125e73 −0.402055
\(136\) 2.66771e72 0.0659243
\(137\) −7.64047e73 −1.46643 −0.733214 0.679998i \(-0.761981\pi\)
−0.733214 + 0.679998i \(0.761981\pi\)
\(138\) 1.01692e74 1.51866
\(139\) 9.18748e72 0.106951 0.0534756 0.998569i \(-0.482970\pi\)
0.0534756 + 0.998569i \(0.482970\pi\)
\(140\) 3.39564e72 0.0308677
\(141\) 1.11269e74 0.791248
\(142\) 1.89935e74 1.05842
\(143\) 5.71267e72 0.0249888
\(144\) 1.78734e73 0.0614753
\(145\) 3.86747e73 0.104768
\(146\) −2.42859e74 −0.519016
\(147\) −6.49941e74 −1.09755
\(148\) −1.14924e74 −0.153596
\(149\) −1.50052e75 −1.58970 −0.794848 0.606809i \(-0.792449\pi\)
−0.794848 + 0.606809i \(0.792449\pi\)
\(150\) −7.24277e74 −0.609195
\(151\) 6.96162e73 0.0465592 0.0232796 0.999729i \(-0.492589\pi\)
0.0232796 + 0.999729i \(0.492589\pi\)
\(152\) 5.45031e74 0.290280
\(153\) 1.07946e74 0.0458512
\(154\) 1.76655e74 0.0599324
\(155\) 2.69595e75 0.731590
\(156\) 9.78360e73 0.0212667
\(157\) 3.17365e75 0.553377 0.276688 0.960960i \(-0.410763\pi\)
0.276688 + 0.960960i \(0.410763\pi\)
\(158\) −2.12386e75 −0.297480
\(159\) 6.97106e75 0.785413
\(160\) 9.30422e74 0.0844385
\(161\) 3.39739e75 0.248686
\(162\) −1.41785e76 −0.838228
\(163\) 2.84744e76 1.36139 0.680693 0.732568i \(-0.261679\pi\)
0.680693 + 0.732568i \(0.261679\pi\)
\(164\) −1.61169e76 −0.623977
\(165\) 1.11381e76 0.349635
\(166\) −2.26780e76 −0.577929
\(167\) 5.54430e76 1.14849 0.574247 0.818682i \(-0.305295\pi\)
0.574247 + 0.818682i \(0.305295\pi\)
\(168\) 3.02542e75 0.0510054
\(169\) −7.26876e76 −0.998548
\(170\) 5.61926e75 0.0629783
\(171\) 2.20541e76 0.201894
\(172\) −8.16483e76 −0.611245
\(173\) −3.12593e77 −1.91597 −0.957984 0.286823i \(-0.907401\pi\)
−0.957984 + 0.286823i \(0.907401\pi\)
\(174\) 3.44580e76 0.173118
\(175\) −2.41970e76 −0.0997583
\(176\) 4.84044e76 0.163945
\(177\) 2.48831e77 0.693150
\(178\) −9.64767e76 −0.221275
\(179\) 3.10675e77 0.587322 0.293661 0.955910i \(-0.405126\pi\)
0.293661 + 0.955910i \(0.405126\pi\)
\(180\) 3.76485e76 0.0587281
\(181\) −8.20229e77 −1.05688 −0.528438 0.848972i \(-0.677222\pi\)
−0.528438 + 0.848972i \(0.677222\pi\)
\(182\) 3.26855e75 0.00348251
\(183\) 1.33092e78 1.17379
\(184\) 9.30899e77 0.680280
\(185\) −2.42075e77 −0.146732
\(186\) 2.40201e78 1.20887
\(187\) 2.92337e77 0.122278
\(188\) 1.01856e78 0.354439
\(189\) −3.75424e77 −0.108790
\(190\) 1.14805e78 0.277308
\(191\) −5.26000e78 −1.06007 −0.530035 0.847976i \(-0.677821\pi\)
−0.530035 + 0.847976i \(0.677821\pi\)
\(192\) 8.28980e77 0.139525
\(193\) −1.29881e79 −1.82733 −0.913665 0.406468i \(-0.866760\pi\)
−0.913665 + 0.406468i \(0.866760\pi\)
\(194\) −1.25329e78 −0.147534
\(195\) 2.06082e77 0.0203164
\(196\) −5.94961e78 −0.491648
\(197\) −1.02044e79 −0.707459 −0.353730 0.935348i \(-0.615087\pi\)
−0.353730 + 0.935348i \(0.615087\pi\)
\(198\) 1.95863e78 0.114026
\(199\) 8.60112e78 0.420847 0.210423 0.977610i \(-0.432516\pi\)
0.210423 + 0.977610i \(0.432516\pi\)
\(200\) −6.63009e78 −0.272888
\(201\) 5.28848e79 1.83260
\(202\) 7.41053e77 0.0216385
\(203\) 1.15119e78 0.0283488
\(204\) 5.00660e78 0.104064
\(205\) −3.39487e79 −0.596094
\(206\) −4.40619e79 −0.654099
\(207\) 3.76678e79 0.473144
\(208\) 8.95599e77 0.00952639
\(209\) 5.97265e79 0.538419
\(210\) 6.37276e78 0.0487261
\(211\) 6.89007e79 0.447177 0.223588 0.974684i \(-0.428223\pi\)
0.223588 + 0.974684i \(0.428223\pi\)
\(212\) 6.38136e79 0.351824
\(213\) 3.56459e80 1.67076
\(214\) −2.02702e80 −0.808319
\(215\) −1.71984e80 −0.583931
\(216\) −1.02868e80 −0.297595
\(217\) 8.02476e79 0.197957
\(218\) −4.54882e80 −0.957524
\(219\) −4.55784e80 −0.819290
\(220\) 1.01959e80 0.156619
\(221\) 5.40894e78 0.00710524
\(222\) −2.15683e80 −0.242458
\(223\) −1.31339e81 −1.26437 −0.632186 0.774817i \(-0.717842\pi\)
−0.632186 + 0.774817i \(0.717842\pi\)
\(224\) 2.76950e79 0.0228478
\(225\) −2.68279e80 −0.189797
\(226\) 1.84758e81 1.12166
\(227\) −3.17818e80 −0.165686 −0.0828430 0.996563i \(-0.526400\pi\)
−0.0828430 + 0.996563i \(0.526400\pi\)
\(228\) 1.02288e81 0.458220
\(229\) 4.86259e80 0.187302 0.0936512 0.995605i \(-0.470146\pi\)
0.0936512 + 0.995605i \(0.470146\pi\)
\(230\) 1.96085e81 0.649880
\(231\) 3.31537e80 0.0946060
\(232\) 3.15432e80 0.0775478
\(233\) 3.07932e81 0.652643 0.326322 0.945259i \(-0.394191\pi\)
0.326322 + 0.945259i \(0.394191\pi\)
\(234\) 3.62394e79 0.00662573
\(235\) 2.14550e81 0.338600
\(236\) 2.27782e81 0.310496
\(237\) −3.98595e81 −0.469585
\(238\) 1.67263e80 0.0170410
\(239\) 3.52234e81 0.310530 0.155265 0.987873i \(-0.450377\pi\)
0.155265 + 0.987873i \(0.450377\pi\)
\(240\) 1.74616e81 0.133290
\(241\) −1.81960e82 −1.20334 −0.601670 0.798745i \(-0.705498\pi\)
−0.601670 + 0.798745i \(0.705498\pi\)
\(242\) −7.02999e81 −0.403018
\(243\) −9.68217e81 −0.481456
\(244\) 1.21834e82 0.525797
\(245\) −1.25323e82 −0.469677
\(246\) −3.02473e82 −0.984976
\(247\) 1.10509e81 0.0312861
\(248\) 2.19882e82 0.541511
\(249\) −4.25607e82 −0.912287
\(250\) −3.20595e82 −0.598448
\(251\) 1.08392e83 1.76301 0.881507 0.472171i \(-0.156530\pi\)
0.881507 + 0.472171i \(0.156530\pi\)
\(252\) 1.12065e81 0.0158909
\(253\) 1.02011e83 1.26180
\(254\) −5.02421e82 −0.542381
\(255\) 1.05459e82 0.0994141
\(256\) 7.58855e81 0.0625000
\(257\) 5.84133e82 0.420552 0.210276 0.977642i \(-0.432564\pi\)
0.210276 + 0.977642i \(0.432564\pi\)
\(258\) −1.53233e83 −0.964878
\(259\) −7.20563e81 −0.0397036
\(260\) 1.88649e81 0.00910068
\(261\) 1.27636e82 0.0539356
\(262\) 6.63918e82 0.245878
\(263\) 3.63091e83 1.17908 0.589539 0.807740i \(-0.299310\pi\)
0.589539 + 0.807740i \(0.299310\pi\)
\(264\) 9.08427e82 0.258794
\(265\) 1.34417e83 0.336102
\(266\) 3.41730e82 0.0750355
\(267\) −1.81062e83 −0.349292
\(268\) 4.84112e83 0.820910
\(269\) −1.02126e84 −1.52294 −0.761470 0.648200i \(-0.775522\pi\)
−0.761470 + 0.648200i \(0.775522\pi\)
\(270\) −2.16681e83 −0.284296
\(271\) −1.54612e84 −1.78568 −0.892838 0.450377i \(-0.851289\pi\)
−0.892838 + 0.450377i \(0.851289\pi\)
\(272\) 4.58308e82 0.0466155
\(273\) 6.13424e81 0.00549730
\(274\) −1.31262e84 −1.03692
\(275\) −7.26550e83 −0.506159
\(276\) 1.74706e84 1.07385
\(277\) 1.96597e83 0.106666 0.0533328 0.998577i \(-0.483016\pi\)
0.0533328 + 0.998577i \(0.483016\pi\)
\(278\) 1.57840e83 0.0756260
\(279\) 8.89729e83 0.376628
\(280\) 5.83367e82 0.0218268
\(281\) 3.77859e84 1.25015 0.625075 0.780565i \(-0.285068\pi\)
0.625075 + 0.780565i \(0.285068\pi\)
\(282\) 1.91158e84 0.559497
\(283\) −1.42513e84 −0.369166 −0.184583 0.982817i \(-0.559093\pi\)
−0.184583 + 0.982817i \(0.559093\pi\)
\(284\) 3.26305e84 0.748413
\(285\) 2.15460e84 0.437744
\(286\) 9.81430e82 0.0176698
\(287\) −1.01052e84 −0.161294
\(288\) 3.07062e83 0.0434696
\(289\) −7.68435e84 −0.965232
\(290\) 6.64425e83 0.0740824
\(291\) −2.35211e84 −0.232890
\(292\) −4.17229e84 −0.367000
\(293\) 1.71289e85 1.33905 0.669526 0.742788i \(-0.266497\pi\)
0.669526 + 0.742788i \(0.266497\pi\)
\(294\) −1.11659e85 −0.776088
\(295\) 4.79801e84 0.296621
\(296\) −1.97437e84 −0.108609
\(297\) −1.12726e85 −0.551986
\(298\) −2.57787e85 −1.12408
\(299\) 1.88746e84 0.0733198
\(300\) −1.24430e85 −0.430766
\(301\) −5.11928e84 −0.158003
\(302\) 1.19600e84 0.0329223
\(303\) 1.39077e84 0.0341573
\(304\) 9.36356e84 0.205259
\(305\) 2.56630e85 0.502301
\(306\) 1.85449e84 0.0324217
\(307\) 5.38546e85 0.841296 0.420648 0.907224i \(-0.361803\pi\)
0.420648 + 0.907224i \(0.361803\pi\)
\(308\) 3.03492e84 0.0423786
\(309\) −8.26929e85 −1.03252
\(310\) 4.63160e85 0.517312
\(311\) 8.56444e85 0.855984 0.427992 0.903782i \(-0.359221\pi\)
0.427992 + 0.903782i \(0.359221\pi\)
\(312\) 1.68081e84 0.0150378
\(313\) −2.43129e85 −0.194786 −0.0973928 0.995246i \(-0.531050\pi\)
−0.0973928 + 0.995246i \(0.531050\pi\)
\(314\) 5.45229e85 0.391297
\(315\) 2.36053e84 0.0151808
\(316\) −3.64877e85 −0.210350
\(317\) 5.50838e85 0.284760 0.142380 0.989812i \(-0.454524\pi\)
0.142380 + 0.989812i \(0.454524\pi\)
\(318\) 1.19762e86 0.555371
\(319\) 3.45661e85 0.143838
\(320\) 1.59845e85 0.0597070
\(321\) −3.80420e86 −1.27597
\(322\) 5.83666e85 0.175848
\(323\) 5.65510e85 0.153092
\(324\) −2.43585e86 −0.592717
\(325\) −1.34429e85 −0.0294116
\(326\) 4.89186e86 0.962646
\(327\) −8.53697e86 −1.51149
\(328\) −2.76886e86 −0.441219
\(329\) 6.38629e85 0.0916200
\(330\) 1.91351e86 0.247229
\(331\) −1.46082e87 −1.70032 −0.850160 0.526525i \(-0.823495\pi\)
−0.850160 + 0.526525i \(0.823495\pi\)
\(332\) −3.89604e86 −0.408658
\(333\) −7.98909e85 −0.0755390
\(334\) 9.52504e86 0.812108
\(335\) 1.01973e87 0.784225
\(336\) 5.19764e85 0.0360663
\(337\) 2.00726e87 1.25711 0.628553 0.777767i \(-0.283647\pi\)
0.628553 + 0.777767i \(0.283647\pi\)
\(338\) −1.24876e87 −0.706080
\(339\) 3.46744e87 1.77059
\(340\) 9.65381e85 0.0445324
\(341\) 2.40955e87 1.00441
\(342\) 3.78886e86 0.142761
\(343\) −7.52409e86 −0.256334
\(344\) −1.40271e87 −0.432216
\(345\) 3.68001e87 1.02586
\(346\) −5.37030e87 −1.35479
\(347\) −5.21635e87 −1.19124 −0.595620 0.803266i \(-0.703094\pi\)
−0.595620 + 0.803266i \(0.703094\pi\)
\(348\) 5.91985e86 0.122413
\(349\) −3.23555e87 −0.605998 −0.302999 0.952991i \(-0.597988\pi\)
−0.302999 + 0.952991i \(0.597988\pi\)
\(350\) −4.15701e86 −0.0705398
\(351\) −2.08571e86 −0.0320744
\(352\) 8.31581e86 0.115926
\(353\) −7.98746e87 −1.00967 −0.504837 0.863215i \(-0.668447\pi\)
−0.504837 + 0.863215i \(0.668447\pi\)
\(354\) 4.27489e87 0.490131
\(355\) 6.87329e87 0.714968
\(356\) −1.65746e87 −0.156465
\(357\) 3.13910e86 0.0269000
\(358\) 5.33735e87 0.415299
\(359\) −4.12498e87 −0.291517 −0.145758 0.989320i \(-0.546562\pi\)
−0.145758 + 0.989320i \(0.546562\pi\)
\(360\) 6.46796e86 0.0415271
\(361\) −5.58575e87 −0.325899
\(362\) −1.40914e88 −0.747324
\(363\) −1.31935e88 −0.636182
\(364\) 5.61533e85 0.00246251
\(365\) −8.78851e87 −0.350599
\(366\) 2.28651e88 0.829994
\(367\) 5.04350e88 1.66630 0.833150 0.553047i \(-0.186535\pi\)
0.833150 + 0.553047i \(0.186535\pi\)
\(368\) 1.59927e88 0.481031
\(369\) −1.12039e88 −0.306874
\(370\) −4.15883e87 −0.103756
\(371\) 4.00106e87 0.0909443
\(372\) 4.12663e88 0.854799
\(373\) 1.87047e88 0.353180 0.176590 0.984284i \(-0.443493\pi\)
0.176590 + 0.984284i \(0.443493\pi\)
\(374\) 5.02231e87 0.0864636
\(375\) −6.01675e88 −0.944676
\(376\) 1.74987e88 0.250626
\(377\) 6.39558e86 0.00835802
\(378\) −6.44973e87 −0.0769262
\(379\) −6.44808e87 −0.0702065 −0.0351033 0.999384i \(-0.511176\pi\)
−0.0351033 + 0.999384i \(0.511176\pi\)
\(380\) 1.97234e88 0.196087
\(381\) −9.42916e88 −0.856173
\(382\) −9.03661e88 −0.749583
\(383\) 5.69135e88 0.431378 0.215689 0.976462i \(-0.430800\pi\)
0.215689 + 0.976462i \(0.430800\pi\)
\(384\) 1.42418e88 0.0986590
\(385\) 6.39275e87 0.0404848
\(386\) −2.23133e89 −1.29212
\(387\) −5.67590e88 −0.300612
\(388\) −2.15314e88 −0.104323
\(389\) 6.70814e88 0.297400 0.148700 0.988882i \(-0.452491\pi\)
0.148700 + 0.988882i \(0.452491\pi\)
\(390\) 3.54046e87 0.0143658
\(391\) 9.65876e88 0.358776
\(392\) −1.02214e89 −0.347647
\(393\) 1.24600e89 0.388129
\(394\) −1.75310e89 −0.500249
\(395\) −7.68577e88 −0.200950
\(396\) 3.36490e88 0.0806284
\(397\) 5.87445e89 1.29031 0.645155 0.764051i \(-0.276793\pi\)
0.645155 + 0.764051i \(0.276793\pi\)
\(398\) 1.47766e89 0.297584
\(399\) 6.41340e88 0.118447
\(400\) −1.13904e89 −0.192961
\(401\) 6.46147e89 1.00427 0.502135 0.864789i \(-0.332548\pi\)
0.502135 + 0.864789i \(0.332548\pi\)
\(402\) 9.08555e89 1.29584
\(403\) 4.45825e88 0.0583634
\(404\) 1.27312e88 0.0153007
\(405\) −5.13087e89 −0.566230
\(406\) 1.97773e88 0.0200456
\(407\) −2.16359e89 −0.201450
\(408\) 8.60128e88 0.0735847
\(409\) −7.32374e89 −0.575810 −0.287905 0.957659i \(-0.592959\pi\)
−0.287905 + 0.957659i \(0.592959\pi\)
\(410\) −5.83234e89 −0.421502
\(411\) −2.46346e90 −1.63683
\(412\) −7.56977e89 −0.462518
\(413\) 1.42818e89 0.0802611
\(414\) 6.47128e89 0.334563
\(415\) −8.20663e89 −0.390396
\(416\) 1.53863e88 0.00673618
\(417\) 2.96225e89 0.119379
\(418\) 1.02609e90 0.380720
\(419\) 1.33621e90 0.456553 0.228276 0.973596i \(-0.426691\pi\)
0.228276 + 0.973596i \(0.426691\pi\)
\(420\) 1.09483e89 0.0344546
\(421\) −3.13405e90 −0.908603 −0.454301 0.890848i \(-0.650111\pi\)
−0.454301 + 0.890848i \(0.650111\pi\)
\(422\) 1.18371e90 0.316202
\(423\) 7.08067e89 0.174314
\(424\) 1.09631e90 0.248777
\(425\) −6.87921e89 −0.143920
\(426\) 6.12391e90 1.18140
\(427\) 7.63887e89 0.135915
\(428\) −3.48239e90 −0.571568
\(429\) 1.84189e89 0.0278925
\(430\) −2.95466e90 −0.412901
\(431\) 5.52645e90 0.712820 0.356410 0.934330i \(-0.384001\pi\)
0.356410 + 0.934330i \(0.384001\pi\)
\(432\) −1.76726e90 −0.210431
\(433\) −2.59298e90 −0.285080 −0.142540 0.989789i \(-0.545527\pi\)
−0.142540 + 0.989789i \(0.545527\pi\)
\(434\) 1.37864e90 0.139977
\(435\) 1.24696e90 0.116942
\(436\) −7.81481e90 −0.677072
\(437\) 1.97335e91 1.57978
\(438\) −7.83032e90 −0.579325
\(439\) 2.51327e91 1.71875 0.859377 0.511342i \(-0.170852\pi\)
0.859377 + 0.511342i \(0.170852\pi\)
\(440\) 1.75164e90 0.110746
\(441\) −4.13596e90 −0.241793
\(442\) 9.29249e88 0.00502417
\(443\) −1.41275e91 −0.706542 −0.353271 0.935521i \(-0.614931\pi\)
−0.353271 + 0.935521i \(0.614931\pi\)
\(444\) −3.70540e90 −0.171444
\(445\) −3.49127e90 −0.149473
\(446\) −2.25638e91 −0.894046
\(447\) −4.83800e91 −1.77442
\(448\) 4.75796e89 0.0161558
\(449\) −2.64831e90 −0.0832663 −0.0416332 0.999133i \(-0.513256\pi\)
−0.0416332 + 0.999133i \(0.513256\pi\)
\(450\) −4.60900e90 −0.134207
\(451\) −3.03422e91 −0.818383
\(452\) 3.17412e91 0.793135
\(453\) 2.24458e90 0.0519694
\(454\) −5.46007e90 −0.117158
\(455\) 1.18281e89 0.00235247
\(456\) 1.75730e91 0.324011
\(457\) 9.09464e91 1.55481 0.777404 0.629002i \(-0.216536\pi\)
0.777404 + 0.629002i \(0.216536\pi\)
\(458\) 8.35386e90 0.132443
\(459\) −1.06733e91 −0.156950
\(460\) 3.36871e91 0.459535
\(461\) 1.96557e91 0.248775 0.124387 0.992234i \(-0.460303\pi\)
0.124387 + 0.992234i \(0.460303\pi\)
\(462\) 5.69576e90 0.0668965
\(463\) −2.64121e91 −0.287911 −0.143955 0.989584i \(-0.545982\pi\)
−0.143955 + 0.989584i \(0.545982\pi\)
\(464\) 5.41907e90 0.0548346
\(465\) 8.69233e91 0.816600
\(466\) 5.29023e91 0.461488
\(467\) −1.34827e92 −1.09231 −0.546153 0.837685i \(-0.683908\pi\)
−0.546153 + 0.837685i \(0.683908\pi\)
\(468\) 6.22588e89 0.00468510
\(469\) 3.03534e91 0.212200
\(470\) 3.68594e91 0.239426
\(471\) 1.02326e92 0.617679
\(472\) 3.91327e91 0.219554
\(473\) −1.53714e92 −0.801684
\(474\) −6.84781e91 −0.332047
\(475\) −1.40547e92 −0.633712
\(476\) 2.87356e90 0.0120498
\(477\) 4.43609e91 0.173028
\(478\) 6.05134e91 0.219578
\(479\) −5.36884e92 −1.81261 −0.906306 0.422622i \(-0.861110\pi\)
−0.906306 + 0.422622i \(0.861110\pi\)
\(480\) 2.99989e91 0.0942502
\(481\) −4.00317e90 −0.0117057
\(482\) −3.12605e92 −0.850890
\(483\) 1.09539e92 0.277584
\(484\) −1.20774e92 −0.284977
\(485\) −4.53538e91 −0.0996607
\(486\) −1.66338e92 −0.340441
\(487\) 4.31506e92 0.822692 0.411346 0.911479i \(-0.365059\pi\)
0.411346 + 0.911479i \(0.365059\pi\)
\(488\) 2.09309e92 0.371795
\(489\) 9.18077e92 1.51958
\(490\) −2.15303e92 −0.332112
\(491\) 8.02436e92 1.15372 0.576858 0.816844i \(-0.304279\pi\)
0.576858 + 0.816844i \(0.304279\pi\)
\(492\) −5.19645e92 −0.696483
\(493\) 3.27283e91 0.0408983
\(494\) 1.89852e91 0.0221226
\(495\) 7.08783e91 0.0770254
\(496\) 3.77755e92 0.382906
\(497\) 2.04591e92 0.193460
\(498\) −7.31188e92 −0.645085
\(499\) −7.25600e92 −0.597350 −0.298675 0.954355i \(-0.596545\pi\)
−0.298675 + 0.954355i \(0.596545\pi\)
\(500\) −5.50778e92 −0.423166
\(501\) 1.78761e93 1.28195
\(502\) 1.86217e93 1.24664
\(503\) −2.42944e93 −1.51849 −0.759244 0.650806i \(-0.774431\pi\)
−0.759244 + 0.650806i \(0.774431\pi\)
\(504\) 1.92526e91 0.0112366
\(505\) 2.68170e91 0.0146170
\(506\) 1.75254e93 0.892227
\(507\) −2.34361e93 −1.11458
\(508\) −8.63153e92 −0.383521
\(509\) 1.97970e93 0.821933 0.410966 0.911651i \(-0.365191\pi\)
0.410966 + 0.911651i \(0.365191\pi\)
\(510\) 1.81177e92 0.0702964
\(511\) −2.61599e92 −0.0948670
\(512\) 1.30370e92 0.0441942
\(513\) −2.18063e93 −0.691087
\(514\) 1.00353e93 0.297375
\(515\) −1.59450e93 −0.441849
\(516\) −2.63252e93 −0.682272
\(517\) 1.91758e93 0.464867
\(518\) −1.23792e92 −0.0280747
\(519\) −1.00787e94 −2.13860
\(520\) 3.24097e91 0.00643516
\(521\) 4.40568e93 0.818676 0.409338 0.912383i \(-0.365760\pi\)
0.409338 + 0.912383i \(0.365760\pi\)
\(522\) 2.19277e92 0.0381382
\(523\) −4.74724e93 −0.772917 −0.386458 0.922307i \(-0.626302\pi\)
−0.386458 + 0.922307i \(0.626302\pi\)
\(524\) 1.14060e93 0.173862
\(525\) −7.80166e92 −0.111350
\(526\) 6.23786e93 0.833733
\(527\) 2.28144e93 0.285590
\(528\) 1.56067e93 0.182995
\(529\) 2.46006e94 2.70225
\(530\) 2.30927e93 0.237660
\(531\) 1.58346e93 0.152703
\(532\) 5.87088e92 0.0530581
\(533\) −5.61405e92 −0.0475540
\(534\) −3.11062e93 −0.246987
\(535\) −7.33531e93 −0.546026
\(536\) 8.31698e93 0.580471
\(537\) 1.00168e94 0.655569
\(538\) −1.75451e94 −1.07688
\(539\) −1.12009e94 −0.644825
\(540\) −3.72255e93 −0.201028
\(541\) 2.81517e94 1.42626 0.713130 0.701032i \(-0.247277\pi\)
0.713130 + 0.701032i \(0.247277\pi\)
\(542\) −2.65621e94 −1.26266
\(543\) −2.64460e94 −1.17968
\(544\) 7.87368e92 0.0329621
\(545\) −1.64611e94 −0.646815
\(546\) 1.05385e92 0.00388718
\(547\) 4.85247e93 0.168035 0.0840175 0.996464i \(-0.473225\pi\)
0.0840175 + 0.996464i \(0.473225\pi\)
\(548\) −2.25507e94 −0.733214
\(549\) 8.46944e93 0.258588
\(550\) −1.24820e94 −0.357909
\(551\) 6.68663e93 0.180085
\(552\) 3.00143e94 0.759328
\(553\) −2.28775e93 −0.0543740
\(554\) 3.37751e93 0.0754240
\(555\) −7.80505e93 −0.163783
\(556\) 2.71167e93 0.0534756
\(557\) 1.39008e94 0.257652 0.128826 0.991667i \(-0.458879\pi\)
0.128826 + 0.991667i \(0.458879\pi\)
\(558\) 1.52854e94 0.266316
\(559\) −2.84408e93 −0.0465837
\(560\) 1.00222e93 0.0154339
\(561\) 9.42559e93 0.136487
\(562\) 6.49157e94 0.883989
\(563\) −1.23722e95 −1.58456 −0.792279 0.610159i \(-0.791105\pi\)
−0.792279 + 0.610159i \(0.791105\pi\)
\(564\) 3.28407e94 0.395624
\(565\) 6.68597e94 0.757692
\(566\) −2.44835e94 −0.261039
\(567\) −1.52726e94 −0.153213
\(568\) 5.60588e94 0.529208
\(569\) 6.90461e94 0.613431 0.306716 0.951801i \(-0.400770\pi\)
0.306716 + 0.951801i \(0.400770\pi\)
\(570\) 3.70158e94 0.309532
\(571\) 2.21707e95 1.74515 0.872575 0.488480i \(-0.162448\pi\)
0.872575 + 0.488480i \(0.162448\pi\)
\(572\) 1.68608e93 0.0124944
\(573\) −1.69594e95 −1.18325
\(574\) −1.73605e94 −0.114052
\(575\) −2.40051e95 −1.48512
\(576\) 5.27529e93 0.0307376
\(577\) 2.66164e95 1.46077 0.730387 0.683034i \(-0.239340\pi\)
0.730387 + 0.683034i \(0.239340\pi\)
\(578\) −1.32016e95 −0.682522
\(579\) −4.18764e95 −2.03966
\(580\) 1.14147e94 0.0523842
\(581\) −2.44279e94 −0.105635
\(582\) −4.04090e94 −0.164678
\(583\) 1.20138e95 0.461438
\(584\) −7.16793e94 −0.259508
\(585\) 1.31142e93 0.00447574
\(586\) 2.94273e95 0.946853
\(587\) −1.80219e95 −0.546746 −0.273373 0.961908i \(-0.588139\pi\)
−0.273373 + 0.961908i \(0.588139\pi\)
\(588\) −1.91829e95 −0.548777
\(589\) 4.66114e95 1.25752
\(590\) 8.24291e94 0.209742
\(591\) −3.29012e95 −0.789666
\(592\) −3.39195e94 −0.0767981
\(593\) −1.78168e95 −0.380578 −0.190289 0.981728i \(-0.560943\pi\)
−0.190289 + 0.981728i \(0.560943\pi\)
\(594\) −1.93662e95 −0.390313
\(595\) 6.05286e93 0.0115113
\(596\) −4.42874e95 −0.794848
\(597\) 2.77319e95 0.469749
\(598\) 3.24263e94 0.0518449
\(599\) 5.22978e95 0.789329 0.394664 0.918825i \(-0.370861\pi\)
0.394664 + 0.918825i \(0.370861\pi\)
\(600\) −2.13769e95 −0.304598
\(601\) 1.26651e96 1.70388 0.851940 0.523639i \(-0.175426\pi\)
0.851940 + 0.523639i \(0.175426\pi\)
\(602\) −8.79486e94 −0.111725
\(603\) 3.36537e95 0.403725
\(604\) 2.05471e94 0.0232796
\(605\) −2.54399e95 −0.272242
\(606\) 2.38932e94 0.0241529
\(607\) 1.53810e96 1.46884 0.734420 0.678695i \(-0.237454\pi\)
0.734420 + 0.678695i \(0.237454\pi\)
\(608\) 1.60865e95 0.145140
\(609\) 3.71170e94 0.0316429
\(610\) 4.40888e95 0.355180
\(611\) 3.54798e94 0.0270122
\(612\) 3.18600e94 0.0229256
\(613\) −2.40310e96 −1.63450 −0.817249 0.576284i \(-0.804502\pi\)
−0.817249 + 0.576284i \(0.804502\pi\)
\(614\) 9.25215e95 0.594886
\(615\) −1.09458e96 −0.665359
\(616\) 5.21395e94 0.0299662
\(617\) −3.11063e96 −1.69048 −0.845241 0.534385i \(-0.820543\pi\)
−0.845241 + 0.534385i \(0.820543\pi\)
\(618\) −1.42065e96 −0.730105
\(619\) −3.72010e95 −0.180812 −0.0904061 0.995905i \(-0.528816\pi\)
−0.0904061 + 0.995905i \(0.528816\pi\)
\(620\) 7.95703e95 0.365795
\(621\) −3.72446e96 −1.61958
\(622\) 1.47136e96 0.605272
\(623\) −1.03921e95 −0.0404452
\(624\) 2.88761e94 0.0106334
\(625\) 1.05493e96 0.367588
\(626\) −4.17692e95 −0.137734
\(627\) 1.92572e96 0.600983
\(628\) 9.36696e95 0.276688
\(629\) −2.04856e95 −0.0572797
\(630\) 4.05536e94 0.0107345
\(631\) 5.34080e96 1.33842 0.669211 0.743072i \(-0.266632\pi\)
0.669211 + 0.743072i \(0.266632\pi\)
\(632\) −6.26854e95 −0.148740
\(633\) 2.22151e96 0.499138
\(634\) 9.46333e95 0.201356
\(635\) −1.81815e96 −0.366383
\(636\) 2.05749e96 0.392706
\(637\) −2.07244e95 −0.0374690
\(638\) 5.93842e95 0.101709
\(639\) 2.26836e96 0.368071
\(640\) 2.74612e95 0.0422193
\(641\) −2.94492e96 −0.429014 −0.214507 0.976722i \(-0.568814\pi\)
−0.214507 + 0.976722i \(0.568814\pi\)
\(642\) −6.53556e96 −0.902245
\(643\) 1.02451e97 1.34041 0.670207 0.742175i \(-0.266206\pi\)
0.670207 + 0.742175i \(0.266206\pi\)
\(644\) 1.00273e96 0.124343
\(645\) −5.54515e96 −0.651783
\(646\) 9.71538e95 0.108253
\(647\) −4.89118e96 −0.516674 −0.258337 0.966055i \(-0.583174\pi\)
−0.258337 + 0.966055i \(0.583174\pi\)
\(648\) −4.18475e96 −0.419114
\(649\) 4.28830e96 0.407233
\(650\) −2.30948e95 −0.0207971
\(651\) 2.58736e96 0.220960
\(652\) 8.40415e96 0.680693
\(653\) 1.03477e96 0.0794947 0.0397474 0.999210i \(-0.487345\pi\)
0.0397474 + 0.999210i \(0.487345\pi\)
\(654\) −1.46664e97 −1.06879
\(655\) 2.40257e96 0.166093
\(656\) −4.75687e96 −0.311989
\(657\) −2.90042e96 −0.180491
\(658\) 1.09716e96 0.0647851
\(659\) 4.68643e96 0.262601 0.131300 0.991343i \(-0.458085\pi\)
0.131300 + 0.991343i \(0.458085\pi\)
\(660\) 3.28739e96 0.174818
\(661\) −1.62969e97 −0.822534 −0.411267 0.911515i \(-0.634914\pi\)
−0.411267 + 0.911515i \(0.634914\pi\)
\(662\) −2.50967e97 −1.20231
\(663\) 1.74396e95 0.00793087
\(664\) −6.69335e96 −0.288965
\(665\) 1.23664e96 0.0506871
\(666\) −1.37251e96 −0.0534141
\(667\) 1.14206e97 0.422034
\(668\) 1.63639e97 0.574247
\(669\) −4.23465e97 −1.41129
\(670\) 1.75189e97 0.554531
\(671\) 2.29368e97 0.689614
\(672\) 8.92948e95 0.0255027
\(673\) 5.17767e97 1.40480 0.702400 0.711783i \(-0.252112\pi\)
0.702400 + 0.711783i \(0.252112\pi\)
\(674\) 3.44845e97 0.888909
\(675\) 2.65265e97 0.649680
\(676\) −2.14536e97 −0.499274
\(677\) −8.38372e97 −1.85408 −0.927038 0.374966i \(-0.877654\pi\)
−0.927038 + 0.374966i \(0.877654\pi\)
\(678\) 5.95701e97 1.25200
\(679\) −1.35000e96 −0.0269667
\(680\) 1.65851e96 0.0314892
\(681\) −1.02471e97 −0.184939
\(682\) 4.13957e97 0.710223
\(683\) 3.70902e97 0.604985 0.302493 0.953152i \(-0.402181\pi\)
0.302493 + 0.953152i \(0.402181\pi\)
\(684\) 6.50921e96 0.100947
\(685\) −4.75008e97 −0.700449
\(686\) −1.29263e97 −0.181256
\(687\) 1.56781e97 0.209067
\(688\) −2.40983e97 −0.305623
\(689\) 2.22284e96 0.0268129
\(690\) 6.32221e97 0.725396
\(691\) −5.73502e97 −0.625954 −0.312977 0.949761i \(-0.601326\pi\)
−0.312977 + 0.949761i \(0.601326\pi\)
\(692\) −9.22610e97 −0.957984
\(693\) 2.10976e96 0.0208419
\(694\) −8.96161e97 −0.842334
\(695\) 5.71186e96 0.0510859
\(696\) 1.01702e97 0.0865589
\(697\) −2.87290e97 −0.232696
\(698\) −5.55863e97 −0.428505
\(699\) 9.92842e97 0.728480
\(700\) −7.14170e96 −0.0498791
\(701\) −1.75231e98 −1.16503 −0.582517 0.812818i \(-0.697932\pi\)
−0.582517 + 0.812818i \(0.697932\pi\)
\(702\) −3.58322e96 −0.0226800
\(703\) −4.18535e97 −0.252216
\(704\) 1.42865e97 0.0819724
\(705\) 6.91756e97 0.377945
\(706\) −1.37224e98 −0.713948
\(707\) 7.98235e95 0.00395513
\(708\) 7.34421e97 0.346575
\(709\) −5.43642e96 −0.0244353 −0.0122177 0.999925i \(-0.503889\pi\)
−0.0122177 + 0.999925i \(0.503889\pi\)
\(710\) 1.18082e98 0.505559
\(711\) −2.53649e97 −0.103451
\(712\) −2.84749e97 −0.110637
\(713\) 7.96111e98 2.94703
\(714\) 5.39293e96 0.0190211
\(715\) 3.55157e96 0.0119361
\(716\) 9.16950e97 0.293661
\(717\) 1.13568e98 0.346614
\(718\) −7.08667e97 −0.206134
\(719\) 4.76605e98 1.32133 0.660666 0.750680i \(-0.270274\pi\)
0.660666 + 0.750680i \(0.270274\pi\)
\(720\) 1.11119e97 0.0293641
\(721\) −4.74618e97 −0.119558
\(722\) −9.59624e97 −0.230445
\(723\) −5.86680e98 −1.34317
\(724\) −2.42089e98 −0.528438
\(725\) −8.13403e97 −0.169295
\(726\) −2.26663e98 −0.449849
\(727\) −9.13259e98 −1.72845 −0.864225 0.503106i \(-0.832191\pi\)
−0.864225 + 0.503106i \(0.832191\pi\)
\(728\) 9.64707e95 0.00174126
\(729\) 3.76441e98 0.648033
\(730\) −1.50985e98 −0.247911
\(731\) −1.45541e98 −0.227948
\(732\) 3.92819e98 0.586894
\(733\) −4.74182e98 −0.675862 −0.337931 0.941171i \(-0.609727\pi\)
−0.337931 + 0.941171i \(0.609727\pi\)
\(734\) 8.66467e98 1.17825
\(735\) −4.04068e98 −0.524254
\(736\) 2.74753e98 0.340140
\(737\) 9.11405e98 1.07667
\(738\) −1.92481e98 −0.216992
\(739\) −8.28685e98 −0.891572 −0.445786 0.895140i \(-0.647076\pi\)
−0.445786 + 0.895140i \(0.647076\pi\)
\(740\) −7.14481e97 −0.0733662
\(741\) 3.56304e97 0.0349215
\(742\) 6.87377e97 0.0643073
\(743\) −7.21940e98 −0.644744 −0.322372 0.946613i \(-0.604480\pi\)
−0.322372 + 0.946613i \(0.604480\pi\)
\(744\) 7.08949e98 0.604434
\(745\) −9.32870e98 −0.759328
\(746\) 3.21345e98 0.249736
\(747\) −2.70839e98 −0.200979
\(748\) 8.62826e97 0.0611390
\(749\) −2.18343e98 −0.147746
\(750\) −1.03367e99 −0.667987
\(751\) −1.90103e98 −0.117331 −0.0586653 0.998278i \(-0.518684\pi\)
−0.0586653 + 0.998278i \(0.518684\pi\)
\(752\) 3.00626e98 0.177219
\(753\) 3.49481e99 1.96787
\(754\) 1.09875e97 0.00591001
\(755\) 4.32804e97 0.0222393
\(756\) −1.10805e98 −0.0543950
\(757\) −9.69436e98 −0.454686 −0.227343 0.973815i \(-0.573004\pi\)
−0.227343 + 0.973815i \(0.573004\pi\)
\(758\) −1.10777e98 −0.0496435
\(759\) 3.28907e99 1.40842
\(760\) 3.38846e98 0.138654
\(761\) 3.44446e99 1.34695 0.673474 0.739211i \(-0.264801\pi\)
0.673474 + 0.739211i \(0.264801\pi\)
\(762\) −1.61992e99 −0.605406
\(763\) −4.89982e98 −0.175018
\(764\) −1.55248e99 −0.530035
\(765\) 6.71098e97 0.0219011
\(766\) 9.77767e98 0.305030
\(767\) 7.93440e97 0.0236632
\(768\) 2.44672e98 0.0697625
\(769\) 2.57365e98 0.0701601 0.0350800 0.999385i \(-0.488831\pi\)
0.0350800 + 0.999385i \(0.488831\pi\)
\(770\) 1.09827e98 0.0286271
\(771\) 1.88338e99 0.469420
\(772\) −3.83340e99 −0.913665
\(773\) −6.37046e99 −1.45204 −0.726020 0.687674i \(-0.758632\pi\)
−0.726020 + 0.687674i \(0.758632\pi\)
\(774\) −9.75112e98 −0.212565
\(775\) −5.67010e99 −1.18218
\(776\) −3.69907e98 −0.0737672
\(777\) −2.32325e98 −0.0443171
\(778\) 1.15245e99 0.210294
\(779\) −5.86954e99 −1.02462
\(780\) 6.08246e97 0.0101582
\(781\) 6.14312e99 0.981587
\(782\) 1.65936e99 0.253693
\(783\) −1.26202e99 −0.184623
\(784\) −1.75601e99 −0.245824
\(785\) 1.97306e99 0.264324
\(786\) 2.14062e99 0.274449
\(787\) −3.80820e99 −0.467295 −0.233648 0.972321i \(-0.575066\pi\)
−0.233648 + 0.972321i \(0.575066\pi\)
\(788\) −3.01180e99 −0.353730
\(789\) 1.17069e100 1.31609
\(790\) −1.32041e99 −0.142093
\(791\) 1.99015e99 0.205020
\(792\) 5.78085e98 0.0570129
\(793\) 4.24387e98 0.0400716
\(794\) 1.00922e100 0.912388
\(795\) 4.33390e99 0.375157
\(796\) 2.53860e99 0.210423
\(797\) −1.46568e99 −0.116339 −0.0581697 0.998307i \(-0.518526\pi\)
−0.0581697 + 0.998307i \(0.518526\pi\)
\(798\) 1.10181e99 0.0837546
\(799\) 1.81562e99 0.132179
\(800\) −1.95686e99 −0.136444
\(801\) −1.15220e99 −0.0769499
\(802\) 1.11007e100 0.710126
\(803\) −7.85488e99 −0.481342
\(804\) 1.56088e100 0.916299
\(805\) 2.11215e99 0.118787
\(806\) 7.65922e98 0.0412691
\(807\) −3.29277e100 −1.69990
\(808\) 2.18720e98 0.0108192
\(809\) 4.97434e99 0.235782 0.117891 0.993027i \(-0.462387\pi\)
0.117891 + 0.993027i \(0.462387\pi\)
\(810\) −8.81477e99 −0.400385
\(811\) 2.72384e100 1.18567 0.592834 0.805325i \(-0.298009\pi\)
0.592834 + 0.805325i \(0.298009\pi\)
\(812\) 3.39772e98 0.0141744
\(813\) −4.98504e100 −1.99317
\(814\) −3.71702e99 −0.142447
\(815\) 1.77025e100 0.650275
\(816\) 1.47769e99 0.0520322
\(817\) −2.97351e100 −1.00371
\(818\) −1.25821e100 −0.407159
\(819\) 3.90358e97 0.00121107
\(820\) −1.00199e100 −0.298047
\(821\) −9.60494e99 −0.273940 −0.136970 0.990575i \(-0.543736\pi\)
−0.136970 + 0.990575i \(0.543736\pi\)
\(822\) −4.23219e100 −1.15741
\(823\) 5.21342e100 1.36719 0.683594 0.729862i \(-0.260416\pi\)
0.683594 + 0.729862i \(0.260416\pi\)
\(824\) −1.30048e100 −0.327050
\(825\) −2.34256e100 −0.564975
\(826\) 2.45359e99 0.0567532
\(827\) 4.30086e100 0.954147 0.477074 0.878863i \(-0.341697\pi\)
0.477074 + 0.878863i \(0.341697\pi\)
\(828\) 1.11176e100 0.236572
\(829\) 9.09591e100 1.85659 0.928293 0.371850i \(-0.121276\pi\)
0.928293 + 0.371850i \(0.121276\pi\)
\(830\) −1.40989e100 −0.276052
\(831\) 6.33872e99 0.119060
\(832\) 2.64334e98 0.00476320
\(833\) −1.06054e100 −0.183347
\(834\) 5.08911e99 0.0844137
\(835\) 3.44689e100 0.548585
\(836\) 1.76281e100 0.269209
\(837\) −8.79732e100 −1.28921
\(838\) 2.29559e100 0.322832
\(839\) 5.00901e100 0.676028 0.338014 0.941141i \(-0.390245\pi\)
0.338014 + 0.941141i \(0.390245\pi\)
\(840\) 1.88091e99 0.0243630
\(841\) −7.65683e100 −0.951891
\(842\) −5.38426e100 −0.642479
\(843\) 1.21830e101 1.39542
\(844\) 2.03359e100 0.223588
\(845\) −4.51899e100 −0.476963
\(846\) 1.21645e100 0.123258
\(847\) −7.57245e99 −0.0736646
\(848\) 1.88344e100 0.175912
\(849\) −4.59492e100 −0.412062
\(850\) −1.18184e100 −0.101767
\(851\) −7.14847e100 −0.591076
\(852\) 1.05208e101 0.835378
\(853\) 2.37146e101 1.80831 0.904157 0.427201i \(-0.140500\pi\)
0.904157 + 0.427201i \(0.140500\pi\)
\(854\) 1.31235e100 0.0961064
\(855\) 1.37110e100 0.0964359
\(856\) −5.98270e100 −0.404159
\(857\) −2.22421e101 −1.44324 −0.721619 0.692291i \(-0.756602\pi\)
−0.721619 + 0.692291i \(0.756602\pi\)
\(858\) 3.16435e99 0.0197230
\(859\) −6.02462e100 −0.360716 −0.180358 0.983601i \(-0.557726\pi\)
−0.180358 + 0.983601i \(0.557726\pi\)
\(860\) −5.07607e100 −0.291965
\(861\) −3.25813e100 −0.180036
\(862\) 9.49436e100 0.504040
\(863\) −8.62662e100 −0.440016 −0.220008 0.975498i \(-0.570608\pi\)
−0.220008 + 0.975498i \(0.570608\pi\)
\(864\) −3.03612e100 −0.148797
\(865\) −1.94339e101 −0.915174
\(866\) −4.45471e100 −0.201582
\(867\) −2.47761e101 −1.07739
\(868\) 2.36849e100 0.0989786
\(869\) −6.86929e100 −0.275886
\(870\) 2.14226e100 0.0826908
\(871\) 1.68632e100 0.0625625
\(872\) −1.34257e101 −0.478762
\(873\) −1.49679e100 −0.0513061
\(874\) 3.39020e101 1.11707
\(875\) −3.45333e100 −0.109386
\(876\) −1.34524e101 −0.409645
\(877\) 4.31920e101 1.26450 0.632248 0.774766i \(-0.282132\pi\)
0.632248 + 0.774766i \(0.282132\pi\)
\(878\) 4.31777e101 1.21534
\(879\) 5.52275e101 1.49465
\(880\) 3.00930e100 0.0783093
\(881\) 1.44190e100 0.0360799 0.0180400 0.999837i \(-0.494257\pi\)
0.0180400 + 0.999837i \(0.494257\pi\)
\(882\) −7.10552e100 −0.170974
\(883\) 6.46049e101 1.49493 0.747466 0.664300i \(-0.231270\pi\)
0.747466 + 0.664300i \(0.231270\pi\)
\(884\) 1.59644e99 0.00355262
\(885\) 1.54698e101 0.331088
\(886\) −2.42709e101 −0.499601
\(887\) −3.88485e101 −0.769147 −0.384574 0.923094i \(-0.625652\pi\)
−0.384574 + 0.923094i \(0.625652\pi\)
\(888\) −6.36583e100 −0.121229
\(889\) −5.41190e100 −0.0991377
\(890\) −5.99795e100 −0.105693
\(891\) −4.58581e101 −0.777383
\(892\) −3.87643e101 −0.632186
\(893\) 3.70944e101 0.582014
\(894\) −8.31161e101 −1.25470
\(895\) 1.93146e101 0.280538
\(896\) 8.17411e99 0.0114239
\(897\) 6.08559e100 0.0818395
\(898\) −4.54975e100 −0.0588782
\(899\) 2.69759e101 0.335944
\(900\) −7.91821e100 −0.0948987
\(901\) 1.13750e101 0.131204
\(902\) −5.21275e101 −0.578684
\(903\) −1.65057e101 −0.176363
\(904\) 5.45310e101 0.560831
\(905\) −5.09936e101 −0.504824
\(906\) 3.85616e100 0.0367479
\(907\) −1.61004e102 −1.47702 −0.738509 0.674244i \(-0.764470\pi\)
−0.738509 + 0.674244i \(0.764470\pi\)
\(908\) −9.38032e100 −0.0828430
\(909\) 8.85027e99 0.00752493
\(910\) 2.03206e99 0.00166344
\(911\) 5.23191e100 0.0412360 0.0206180 0.999787i \(-0.493437\pi\)
0.0206180 + 0.999787i \(0.493437\pi\)
\(912\) 3.01902e101 0.229110
\(913\) −7.33482e101 −0.535979
\(914\) 1.56245e102 1.09941
\(915\) 8.27434e101 0.560668
\(916\) 1.43518e101 0.0936512
\(917\) 7.15148e100 0.0449422
\(918\) −1.83366e101 −0.110980
\(919\) −8.39784e101 −0.489534 −0.244767 0.969582i \(-0.578711\pi\)
−0.244767 + 0.969582i \(0.578711\pi\)
\(920\) 5.78740e101 0.324940
\(921\) 1.73639e102 0.939054
\(922\) 3.37682e101 0.175910
\(923\) 1.13663e101 0.0570374
\(924\) 9.78525e100 0.0473030
\(925\) 5.09132e101 0.237105
\(926\) −4.53756e101 −0.203584
\(927\) −5.26223e101 −0.227467
\(928\) 9.30990e100 0.0387739
\(929\) 1.68209e102 0.675005 0.337502 0.941325i \(-0.390418\pi\)
0.337502 + 0.941325i \(0.390418\pi\)
\(930\) 1.49333e102 0.577424
\(931\) −2.16676e102 −0.807321
\(932\) 9.08855e101 0.326322
\(933\) 2.76137e102 0.955449
\(934\) −2.31631e102 −0.772377
\(935\) 1.81746e101 0.0584068
\(936\) 1.06960e100 0.00331287
\(937\) −2.64553e102 −0.789762 −0.394881 0.918732i \(-0.629214\pi\)
−0.394881 + 0.918732i \(0.629214\pi\)
\(938\) 5.21468e101 0.150048
\(939\) −7.83901e101 −0.217419
\(940\) 6.33239e101 0.169300
\(941\) 3.41300e102 0.879617 0.439809 0.898091i \(-0.355046\pi\)
0.439809 + 0.898091i \(0.355046\pi\)
\(942\) 1.75794e102 0.436765
\(943\) −1.00250e103 −2.40122
\(944\) 6.72294e101 0.155248
\(945\) −2.33401e101 −0.0519643
\(946\) −2.64078e102 −0.566876
\(947\) 3.95402e101 0.0818398 0.0409199 0.999162i \(-0.486971\pi\)
0.0409199 + 0.999162i \(0.486971\pi\)
\(948\) −1.17644e102 −0.234792
\(949\) −1.45334e101 −0.0279695
\(950\) −2.41458e102 −0.448102
\(951\) 1.77603e102 0.317849
\(952\) 4.93673e100 0.00852049
\(953\) 5.57782e102 0.928452 0.464226 0.885717i \(-0.346333\pi\)
0.464226 + 0.885717i \(0.346333\pi\)
\(954\) 7.62115e101 0.122349
\(955\) −3.27014e102 −0.506349
\(956\) 1.03961e102 0.155265
\(957\) 1.11449e102 0.160551
\(958\) −9.22359e102 −1.28171
\(959\) −1.41391e102 −0.189531
\(960\) 5.15377e101 0.0666450
\(961\) 1.07885e103 1.34587
\(962\) −6.87740e100 −0.00827721
\(963\) −2.42083e102 −0.281098
\(964\) −5.37052e102 −0.601670
\(965\) −8.07467e102 −0.872836
\(966\) 1.88187e102 0.196281
\(967\) 1.21649e103 1.22433 0.612163 0.790732i \(-0.290300\pi\)
0.612163 + 0.790732i \(0.290300\pi\)
\(968\) −2.07489e102 −0.201509
\(969\) 1.82333e102 0.170881
\(970\) −7.79172e101 −0.0704707
\(971\) 1.44003e103 1.25692 0.628460 0.777842i \(-0.283685\pi\)
0.628460 + 0.777842i \(0.283685\pi\)
\(972\) −2.85767e102 −0.240728
\(973\) 1.70019e101 0.0138231
\(974\) 7.41321e102 0.581731
\(975\) −4.33430e101 −0.0328292
\(976\) 3.59589e102 0.262899
\(977\) 1.02741e103 0.725075 0.362537 0.931969i \(-0.381911\pi\)
0.362537 + 0.931969i \(0.381911\pi\)
\(978\) 1.57724e103 1.07450
\(979\) −3.12038e102 −0.205213
\(980\) −3.69887e102 −0.234839
\(981\) −5.43258e102 −0.332985
\(982\) 1.37857e103 0.815800
\(983\) −3.79071e102 −0.216583 −0.108291 0.994119i \(-0.534538\pi\)
−0.108291 + 0.994119i \(0.534538\pi\)
\(984\) −8.92743e102 −0.492488
\(985\) −6.34406e102 −0.337922
\(986\) 5.62269e101 0.0289195
\(987\) 2.05908e102 0.102266
\(988\) 3.26164e101 0.0156430
\(989\) −5.07868e103 −2.35222
\(990\) 1.21768e102 0.0544652
\(991\) −3.01753e102 −0.130350 −0.0651748 0.997874i \(-0.520761\pi\)
−0.0651748 + 0.997874i \(0.520761\pi\)
\(992\) 6.48978e102 0.270755
\(993\) −4.71001e103 −1.89790
\(994\) 3.51484e102 0.136797
\(995\) 5.34732e102 0.201020
\(996\) −1.25617e103 −0.456144
\(997\) −1.49967e103 −0.526031 −0.263016 0.964792i \(-0.584717\pi\)
−0.263016 + 0.964792i \(0.584717\pi\)
\(998\) −1.24657e103 −0.422390
\(999\) 7.89933e102 0.258571
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2.70.a.b.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.70.a.b.1.3 3 1.1 even 1 trivial