Properties

Label 1984.2.b.a
Level $1984$
Weight $2$
Character orbit 1984.b
Analytic conductor $15.842$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(991,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.991"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.3317760000.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 17x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} + \beta_{2} q^{5} + \beta_1 q^{7} + q^{9} + 2 \beta_{5} q^{11} - 3 \beta_{3} q^{13} - \beta_{6} q^{15} - \beta_{7} q^{17} - \beta_{4} q^{19} - \beta_{3} q^{21} - \beta_{6} q^{23} - 10 q^{25}+ \cdots + 2 \beta_{5} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{9} - 80 q^{25} - 32 q^{33} + 72 q^{41} + 48 q^{49} - 40 q^{81} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 17x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} + 33\nu^{2} ) / 112 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{4} + 17 ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{7} - 16\nu^{5} + 13\nu^{3} - 80\nu ) / 448 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - \nu^{2} ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{7} + 16\nu^{5} + 13\nu^{3} + 80\nu ) / 448 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -11\nu^{7} + 16\nu^{5} - 251\nu^{3} + 976\nu ) / 448 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 11\nu^{7} + 16\nu^{5} + 251\nu^{3} + 976\nu ) / 448 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} - \beta_{5} + \beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 7\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{7} - 3\beta_{6} + 11\beta_{5} + 11\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 7\beta_{2} - 17 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{7} - 5\beta_{6} + 61\beta_{5} - 61\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -33\beta_{4} - 7\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{7} - 13\beta_{6} - 251\beta_{5} - 251\beta_{3} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1984\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
991.1
1.72286 1.01575i
1.01575 + 1.72286i
−1.01575 + 1.72286i
−1.72286 1.01575i
−1.72286 + 1.01575i
−1.01575 1.72286i
1.01575 1.72286i
1.72286 + 1.01575i
0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.2 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.3 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.4 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.5 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.6 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.7 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
991.8 0 1.41421i 0 3.87298i 0 1.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 991.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
31.b odd 2 1 inner
124.d even 2 1 inner
248.b even 2 1 inner
248.g odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1984.2.b.a 8
4.b odd 2 1 inner 1984.2.b.a 8
8.b even 2 1 inner 1984.2.b.a 8
8.d odd 2 1 inner 1984.2.b.a 8
31.b odd 2 1 inner 1984.2.b.a 8
124.d even 2 1 inner 1984.2.b.a 8
248.b even 2 1 inner 1984.2.b.a 8
248.g odd 2 1 inner 1984.2.b.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1984.2.b.a 8 1.a even 1 1 trivial
1984.2.b.a 8 4.b odd 2 1 inner
1984.2.b.a 8 8.b even 2 1 inner
1984.2.b.a 8 8.d odd 2 1 inner
1984.2.b.a 8 31.b odd 2 1 inner
1984.2.b.a 8 124.d even 2 1 inner
1984.2.b.a 8 248.b even 2 1 inner
1984.2.b.a 8 248.g odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(1984, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + 2)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 15)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 18)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 30)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 15)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 30)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 50)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} - 58 T^{2} + 961)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 72)^{4} \) Copy content Toggle raw display
$41$ \( (T - 9)^{8} \) Copy content Toggle raw display
$43$ \( (T^{2} + 18)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 36)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 135)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 18)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 60)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 81)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 120)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 270)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 8)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 30)^{4} \) Copy content Toggle raw display
$97$ \( (T + 5)^{8} \) Copy content Toggle raw display
show more
show less