Properties

Label 1984.2.b
Level $1984$
Weight $2$
Character orbit 1984.b
Rep. character $\chi_{1984}(991,\cdot)$
Character field $\Q$
Dimension $64$
Newform subspaces $3$
Sturm bound $512$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 248 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(512\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1984, [\chi])\).

Total New Old
Modular forms 268 64 204
Cusp forms 244 64 180
Eisenstein series 24 0 24

Trace form

\( 64 q - 64 q^{9} - 64 q^{25} - 96 q^{49} + 64 q^{81} - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1984.2.b.a 1984.b 248.b $8$ $15.842$ 8.0.3317760000.4 None 1984.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}+\beta _{2}q^{5}+\beta _{1}q^{7}+q^{9}+2\beta _{5}q^{11}+\cdots\)
1984.2.b.b 1984.b 248.b $16$ $15.842$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) \(\Q(\sqrt{-62}) \) 1984.2.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{5}q^{3}-\beta _{3}q^{7}+(-3+\beta _{8})q^{9}-\beta _{2}q^{11}+\cdots\)
1984.2.b.c 1984.b 248.b $40$ $15.842$ None 1984.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(992, [\chi])\)\(^{\oplus 2}\)