Defining parameters
Level: | \( N \) | \(=\) | \( 1984 = 2^{6} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1984.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 248 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(512\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1984, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 268 | 64 | 204 |
Cusp forms | 244 | 64 | 180 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1984.2.b.a | $8$ | $15.842$ | 8.0.3317760000.4 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{5}q^{3}+\beta _{2}q^{5}+\beta _{1}q^{7}+q^{9}+2\beta _{5}q^{11}+\cdots\) |
1984.2.b.b | $16$ | $15.842$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | \(\Q(\sqrt{-62}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{3}-\beta _{3}q^{7}+(-3+\beta _{8})q^{9}-\beta _{2}q^{11}+\cdots\) |
1984.2.b.c | $40$ | $15.842$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(992, [\chi])\)\(^{\oplus 2}\)