Properties

Label 1984.2.a.y.1.4
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,-2,0,4,0,4,0,-10,0,0,0,2,0,2,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.386509\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{3} +0.386509 q^{5} -1.44247 q^{7} -2.46410 q^{9} -5.78801 q^{11} +4.84398 q^{13} +0.282944 q^{15} +3.82898 q^{17} -1.33055 q^{19} -1.05596 q^{21} +7.29308 q^{23} -4.85061 q^{25} -4.00000 q^{27} -3.50507 q^{29} +1.00000 q^{31} -4.23712 q^{33} -0.557528 q^{35} -6.02513 q^{37} +3.54604 q^{39} +4.49843 q^{41} -9.50507 q^{43} -0.952398 q^{45} -11.8131 q^{47} -4.91928 q^{49} +2.80301 q^{51} -12.8281 q^{53} -2.23712 q^{55} -0.974028 q^{57} -7.36054 q^{59} +4.84398 q^{61} +3.55440 q^{63} +1.87224 q^{65} -10.8849 q^{67} +5.33891 q^{69} -8.21549 q^{71} +8.92820 q^{73} -3.55089 q^{75} +8.34904 q^{77} +0.490074 q^{79} +4.46410 q^{81} -17.5879 q^{83} +1.47994 q^{85} -2.56589 q^{87} -16.1780 q^{89} -6.98730 q^{91} +0.732051 q^{93} -0.514268 q^{95} -1.04760 q^{97} +14.2623 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 2 q^{5} + 4 q^{7} + 4 q^{9} - 10 q^{11} + 2 q^{15} + 2 q^{17} - 8 q^{19} + 2 q^{21} + 2 q^{23} - 2 q^{25} - 16 q^{27} + 4 q^{31} + 4 q^{33} - 12 q^{35} + 10 q^{37} + 2 q^{41} - 24 q^{43}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.732051 0.422650 0.211325 0.977416i \(-0.432222\pi\)
0.211325 + 0.977416i \(0.432222\pi\)
\(4\) 0 0
\(5\) 0.386509 0.172852 0.0864261 0.996258i \(-0.472455\pi\)
0.0864261 + 0.996258i \(0.472455\pi\)
\(6\) 0 0
\(7\) −1.44247 −0.545203 −0.272602 0.962127i \(-0.587884\pi\)
−0.272602 + 0.962127i \(0.587884\pi\)
\(8\) 0 0
\(9\) −2.46410 −0.821367
\(10\) 0 0
\(11\) −5.78801 −1.74515 −0.872576 0.488479i \(-0.837552\pi\)
−0.872576 + 0.488479i \(0.837552\pi\)
\(12\) 0 0
\(13\) 4.84398 1.34348 0.671739 0.740788i \(-0.265548\pi\)
0.671739 + 0.740788i \(0.265548\pi\)
\(14\) 0 0
\(15\) 0.282944 0.0730559
\(16\) 0 0
\(17\) 3.82898 0.928664 0.464332 0.885661i \(-0.346294\pi\)
0.464332 + 0.885661i \(0.346294\pi\)
\(18\) 0 0
\(19\) −1.33055 −0.305248 −0.152624 0.988284i \(-0.548772\pi\)
−0.152624 + 0.988284i \(0.548772\pi\)
\(20\) 0 0
\(21\) −1.05596 −0.230430
\(22\) 0 0
\(23\) 7.29308 1.52071 0.760356 0.649506i \(-0.225024\pi\)
0.760356 + 0.649506i \(0.225024\pi\)
\(24\) 0 0
\(25\) −4.85061 −0.970122
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −3.50507 −0.650875 −0.325437 0.945564i \(-0.605512\pi\)
−0.325437 + 0.945564i \(0.605512\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −4.23712 −0.737588
\(34\) 0 0
\(35\) −0.557528 −0.0942395
\(36\) 0 0
\(37\) −6.02513 −0.990526 −0.495263 0.868743i \(-0.664928\pi\)
−0.495263 + 0.868743i \(0.664928\pi\)
\(38\) 0 0
\(39\) 3.54604 0.567820
\(40\) 0 0
\(41\) 4.49843 0.702537 0.351269 0.936275i \(-0.385750\pi\)
0.351269 + 0.936275i \(0.385750\pi\)
\(42\) 0 0
\(43\) −9.50507 −1.44951 −0.724755 0.689007i \(-0.758047\pi\)
−0.724755 + 0.689007i \(0.758047\pi\)
\(44\) 0 0
\(45\) −0.952398 −0.141975
\(46\) 0 0
\(47\) −11.8131 −1.72312 −0.861562 0.507652i \(-0.830514\pi\)
−0.861562 + 0.507652i \(0.830514\pi\)
\(48\) 0 0
\(49\) −4.91928 −0.702754
\(50\) 0 0
\(51\) 2.80301 0.392500
\(52\) 0 0
\(53\) −12.8281 −1.76208 −0.881040 0.473041i \(-0.843156\pi\)
−0.881040 + 0.473041i \(0.843156\pi\)
\(54\) 0 0
\(55\) −2.23712 −0.301653
\(56\) 0 0
\(57\) −0.974028 −0.129013
\(58\) 0 0
\(59\) −7.36054 −0.958260 −0.479130 0.877744i \(-0.659048\pi\)
−0.479130 + 0.877744i \(0.659048\pi\)
\(60\) 0 0
\(61\) 4.84398 0.620208 0.310104 0.950703i \(-0.399636\pi\)
0.310104 + 0.950703i \(0.399636\pi\)
\(62\) 0 0
\(63\) 3.55440 0.447812
\(64\) 0 0
\(65\) 1.87224 0.232223
\(66\) 0 0
\(67\) −10.8849 −1.32981 −0.664904 0.746929i \(-0.731527\pi\)
−0.664904 + 0.746929i \(0.731527\pi\)
\(68\) 0 0
\(69\) 5.33891 0.642729
\(70\) 0 0
\(71\) −8.21549 −0.974999 −0.487500 0.873123i \(-0.662091\pi\)
−0.487500 + 0.873123i \(0.662091\pi\)
\(72\) 0 0
\(73\) 8.92820 1.04497 0.522484 0.852649i \(-0.325006\pi\)
0.522484 + 0.852649i \(0.325006\pi\)
\(74\) 0 0
\(75\) −3.55089 −0.410022
\(76\) 0 0
\(77\) 8.34904 0.951462
\(78\) 0 0
\(79\) 0.490074 0.0551376 0.0275688 0.999620i \(-0.491223\pi\)
0.0275688 + 0.999620i \(0.491223\pi\)
\(80\) 0 0
\(81\) 4.46410 0.496011
\(82\) 0 0
\(83\) −17.5879 −1.93052 −0.965261 0.261288i \(-0.915853\pi\)
−0.965261 + 0.261288i \(0.915853\pi\)
\(84\) 0 0
\(85\) 1.47994 0.160522
\(86\) 0 0
\(87\) −2.56589 −0.275092
\(88\) 0 0
\(89\) −16.1780 −1.71487 −0.857434 0.514595i \(-0.827942\pi\)
−0.857434 + 0.514595i \(0.827942\pi\)
\(90\) 0 0
\(91\) −6.98730 −0.732468
\(92\) 0 0
\(93\) 0.732051 0.0759101
\(94\) 0 0
\(95\) −0.514268 −0.0527628
\(96\) 0 0
\(97\) −1.04760 −0.106368 −0.0531839 0.998585i \(-0.516937\pi\)
−0.0531839 + 0.998585i \(0.516937\pi\)
\(98\) 0 0
\(99\) 14.2623 1.43341
\(100\) 0 0
\(101\) 12.3116 1.22505 0.612524 0.790452i \(-0.290154\pi\)
0.612524 + 0.790452i \(0.290154\pi\)
\(102\) 0 0
\(103\) 12.8246 1.26365 0.631825 0.775111i \(-0.282306\pi\)
0.631825 + 0.775111i \(0.282306\pi\)
\(104\) 0 0
\(105\) −0.408139 −0.0398303
\(106\) 0 0
\(107\) 17.6047 1.70191 0.850953 0.525241i \(-0.176025\pi\)
0.850953 + 0.525241i \(0.176025\pi\)
\(108\) 0 0
\(109\) 0.511704 0.0490123 0.0245062 0.999700i \(-0.492199\pi\)
0.0245062 + 0.999700i \(0.492199\pi\)
\(110\) 0 0
\(111\) −4.41070 −0.418645
\(112\) 0 0
\(113\) 17.2398 1.62178 0.810891 0.585197i \(-0.198983\pi\)
0.810891 + 0.585197i \(0.198983\pi\)
\(114\) 0 0
\(115\) 2.81884 0.262858
\(116\) 0 0
\(117\) −11.9360 −1.10349
\(118\) 0 0
\(119\) −5.52320 −0.506311
\(120\) 0 0
\(121\) 22.5011 2.04555
\(122\) 0 0
\(123\) 3.29308 0.296927
\(124\) 0 0
\(125\) −3.80735 −0.340540
\(126\) 0 0
\(127\) −2.01327 −0.178649 −0.0893244 0.996003i \(-0.528471\pi\)
−0.0893244 + 0.996003i \(0.528471\pi\)
\(128\) 0 0
\(129\) −6.95819 −0.612635
\(130\) 0 0
\(131\) −2.70435 −0.236280 −0.118140 0.992997i \(-0.537693\pi\)
−0.118140 + 0.992997i \(0.537693\pi\)
\(132\) 0 0
\(133\) 1.91928 0.166422
\(134\) 0 0
\(135\) −1.54604 −0.133062
\(136\) 0 0
\(137\) −2.53333 −0.216437 −0.108219 0.994127i \(-0.534515\pi\)
−0.108219 + 0.994127i \(0.534515\pi\)
\(138\) 0 0
\(139\) −1.05367 −0.0893711 −0.0446856 0.999001i \(-0.514229\pi\)
−0.0446856 + 0.999001i \(0.514229\pi\)
\(140\) 0 0
\(141\) −8.64782 −0.728278
\(142\) 0 0
\(143\) −28.0370 −2.34457
\(144\) 0 0
\(145\) −1.35474 −0.112505
\(146\) 0 0
\(147\) −3.60116 −0.297019
\(148\) 0 0
\(149\) 8.80301 0.721171 0.360585 0.932726i \(-0.382577\pi\)
0.360585 + 0.932726i \(0.382577\pi\)
\(150\) 0 0
\(151\) 21.7541 1.77032 0.885160 0.465287i \(-0.154049\pi\)
0.885160 + 0.465287i \(0.154049\pi\)
\(152\) 0 0
\(153\) −9.43500 −0.762774
\(154\) 0 0
\(155\) 0.386509 0.0310452
\(156\) 0 0
\(157\) 1.12085 0.0894538 0.0447269 0.998999i \(-0.485758\pi\)
0.0447269 + 0.998999i \(0.485758\pi\)
\(158\) 0 0
\(159\) −9.39085 −0.744743
\(160\) 0 0
\(161\) −10.5201 −0.829097
\(162\) 0 0
\(163\) 4.94983 0.387701 0.193850 0.981031i \(-0.437902\pi\)
0.193850 + 0.981031i \(0.437902\pi\)
\(164\) 0 0
\(165\) −1.63769 −0.127494
\(166\) 0 0
\(167\) −12.3104 −0.952605 −0.476303 0.879281i \(-0.658023\pi\)
−0.476303 + 0.879281i \(0.658023\pi\)
\(168\) 0 0
\(169\) 10.4641 0.804931
\(170\) 0 0
\(171\) 3.27860 0.250721
\(172\) 0 0
\(173\) −12.1552 −0.924142 −0.462071 0.886843i \(-0.652893\pi\)
−0.462071 + 0.886843i \(0.652893\pi\)
\(174\) 0 0
\(175\) 6.99687 0.528914
\(176\) 0 0
\(177\) −5.38829 −0.405008
\(178\) 0 0
\(179\) 7.18601 0.537108 0.268554 0.963265i \(-0.413454\pi\)
0.268554 + 0.963265i \(0.413454\pi\)
\(180\) 0 0
\(181\) 18.0526 1.34184 0.670918 0.741531i \(-0.265900\pi\)
0.670918 + 0.741531i \(0.265900\pi\)
\(182\) 0 0
\(183\) 3.54604 0.262131
\(184\) 0 0
\(185\) −2.32877 −0.171214
\(186\) 0 0
\(187\) −22.1622 −1.62066
\(188\) 0 0
\(189\) 5.76989 0.419697
\(190\) 0 0
\(191\) −4.44560 −0.321673 −0.160836 0.986981i \(-0.551419\pi\)
−0.160836 + 0.986981i \(0.551419\pi\)
\(192\) 0 0
\(193\) −14.4165 −1.03772 −0.518861 0.854859i \(-0.673644\pi\)
−0.518861 + 0.854859i \(0.673644\pi\)
\(194\) 0 0
\(195\) 1.37058 0.0981489
\(196\) 0 0
\(197\) 6.06381 0.432028 0.216014 0.976390i \(-0.430694\pi\)
0.216014 + 0.976390i \(0.430694\pi\)
\(198\) 0 0
\(199\) −19.5830 −1.38820 −0.694102 0.719876i \(-0.744198\pi\)
−0.694102 + 0.719876i \(0.744198\pi\)
\(200\) 0 0
\(201\) −7.96833 −0.562043
\(202\) 0 0
\(203\) 5.05596 0.354859
\(204\) 0 0
\(205\) 1.73869 0.121435
\(206\) 0 0
\(207\) −17.9709 −1.24906
\(208\) 0 0
\(209\) 7.70122 0.532705
\(210\) 0 0
\(211\) 21.3376 1.46894 0.734469 0.678642i \(-0.237431\pi\)
0.734469 + 0.678642i \(0.237431\pi\)
\(212\) 0 0
\(213\) −6.01416 −0.412083
\(214\) 0 0
\(215\) −3.67380 −0.250551
\(216\) 0 0
\(217\) −1.44247 −0.0979214
\(218\) 0 0
\(219\) 6.53590 0.441655
\(220\) 0 0
\(221\) 18.5475 1.24764
\(222\) 0 0
\(223\) −19.2023 −1.28588 −0.642941 0.765916i \(-0.722286\pi\)
−0.642941 + 0.765916i \(0.722286\pi\)
\(224\) 0 0
\(225\) 11.9524 0.796827
\(226\) 0 0
\(227\) −4.39230 −0.291528 −0.145764 0.989319i \(-0.546564\pi\)
−0.145764 + 0.989319i \(0.546564\pi\)
\(228\) 0 0
\(229\) 3.52090 0.232668 0.116334 0.993210i \(-0.462886\pi\)
0.116334 + 0.993210i \(0.462886\pi\)
\(230\) 0 0
\(231\) 6.11192 0.402135
\(232\) 0 0
\(233\) −3.11627 −0.204153 −0.102077 0.994777i \(-0.532549\pi\)
−0.102077 + 0.994777i \(0.532549\pi\)
\(234\) 0 0
\(235\) −4.56589 −0.297846
\(236\) 0 0
\(237\) 0.358759 0.0233039
\(238\) 0 0
\(239\) −0.357873 −0.0231489 −0.0115744 0.999933i \(-0.503684\pi\)
−0.0115744 + 0.999933i \(0.503684\pi\)
\(240\) 0 0
\(241\) 12.2804 0.791049 0.395524 0.918455i \(-0.370563\pi\)
0.395524 + 0.918455i \(0.370563\pi\)
\(242\) 0 0
\(243\) 15.2679 0.979439
\(244\) 0 0
\(245\) −1.90134 −0.121472
\(246\) 0 0
\(247\) −6.44514 −0.410094
\(248\) 0 0
\(249\) −12.8752 −0.815934
\(250\) 0 0
\(251\) −14.7091 −0.928428 −0.464214 0.885723i \(-0.653663\pi\)
−0.464214 + 0.885723i \(0.653663\pi\)
\(252\) 0 0
\(253\) −42.2125 −2.65387
\(254\) 0 0
\(255\) 1.08339 0.0678444
\(256\) 0 0
\(257\) 13.4653 0.839943 0.419972 0.907537i \(-0.362040\pi\)
0.419972 + 0.907537i \(0.362040\pi\)
\(258\) 0 0
\(259\) 8.69108 0.540038
\(260\) 0 0
\(261\) 8.63685 0.534607
\(262\) 0 0
\(263\) 21.7973 1.34408 0.672040 0.740515i \(-0.265418\pi\)
0.672040 + 0.740515i \(0.265418\pi\)
\(264\) 0 0
\(265\) −4.95819 −0.304579
\(266\) 0 0
\(267\) −11.8431 −0.724788
\(268\) 0 0
\(269\) −4.09380 −0.249603 −0.124802 0.992182i \(-0.539829\pi\)
−0.124802 + 0.992182i \(0.539829\pi\)
\(270\) 0 0
\(271\) 23.9525 1.45501 0.727505 0.686102i \(-0.240680\pi\)
0.727505 + 0.686102i \(0.240680\pi\)
\(272\) 0 0
\(273\) −5.11506 −0.309577
\(274\) 0 0
\(275\) 28.0754 1.69301
\(276\) 0 0
\(277\) −19.3049 −1.15992 −0.579961 0.814644i \(-0.696932\pi\)
−0.579961 + 0.814644i \(0.696932\pi\)
\(278\) 0 0
\(279\) −2.46410 −0.147522
\(280\) 0 0
\(281\) −5.46531 −0.326033 −0.163017 0.986623i \(-0.552122\pi\)
−0.163017 + 0.986623i \(0.552122\pi\)
\(282\) 0 0
\(283\) −0.674363 −0.0400867 −0.0200434 0.999799i \(-0.506380\pi\)
−0.0200434 + 0.999799i \(0.506380\pi\)
\(284\) 0 0
\(285\) −0.376471 −0.0223002
\(286\) 0 0
\(287\) −6.48886 −0.383025
\(288\) 0 0
\(289\) −2.33891 −0.137583
\(290\) 0 0
\(291\) −0.766898 −0.0449564
\(292\) 0 0
\(293\) −6.26711 −0.366128 −0.183064 0.983101i \(-0.558602\pi\)
−0.183064 + 0.983101i \(0.558602\pi\)
\(294\) 0 0
\(295\) −2.84491 −0.165637
\(296\) 0 0
\(297\) 23.1521 1.34342
\(298\) 0 0
\(299\) 35.3275 2.04304
\(300\) 0 0
\(301\) 13.7108 0.790277
\(302\) 0 0
\(303\) 9.01270 0.517766
\(304\) 0 0
\(305\) 1.87224 0.107204
\(306\) 0 0
\(307\) 15.1824 0.866503 0.433252 0.901273i \(-0.357366\pi\)
0.433252 + 0.901273i \(0.357366\pi\)
\(308\) 0 0
\(309\) 9.38829 0.534081
\(310\) 0 0
\(311\) 1.51114 0.0856887 0.0428443 0.999082i \(-0.486358\pi\)
0.0428443 + 0.999082i \(0.486358\pi\)
\(312\) 0 0
\(313\) 5.09296 0.287871 0.143936 0.989587i \(-0.454024\pi\)
0.143936 + 0.989587i \(0.454024\pi\)
\(314\) 0 0
\(315\) 1.37381 0.0774052
\(316\) 0 0
\(317\) 12.9357 0.726540 0.363270 0.931684i \(-0.381660\pi\)
0.363270 + 0.931684i \(0.381660\pi\)
\(318\) 0 0
\(319\) 20.2874 1.13588
\(320\) 0 0
\(321\) 12.8875 0.719311
\(322\) 0 0
\(323\) −5.09464 −0.283473
\(324\) 0 0
\(325\) −23.4962 −1.30334
\(326\) 0 0
\(327\) 0.374593 0.0207151
\(328\) 0 0
\(329\) 17.0401 0.939453
\(330\) 0 0
\(331\) −1.05367 −0.0579149 −0.0289575 0.999581i \(-0.509219\pi\)
−0.0289575 + 0.999581i \(0.509219\pi\)
\(332\) 0 0
\(333\) 14.8465 0.813585
\(334\) 0 0
\(335\) −4.20713 −0.229860
\(336\) 0 0
\(337\) −11.3161 −0.616425 −0.308213 0.951317i \(-0.599731\pi\)
−0.308213 + 0.951317i \(0.599731\pi\)
\(338\) 0 0
\(339\) 12.6204 0.685446
\(340\) 0 0
\(341\) −5.78801 −0.313438
\(342\) 0 0
\(343\) 17.1932 0.928346
\(344\) 0 0
\(345\) 2.06354 0.111097
\(346\) 0 0
\(347\) −20.4719 −1.09899 −0.549496 0.835496i \(-0.685180\pi\)
−0.549496 + 0.835496i \(0.685180\pi\)
\(348\) 0 0
\(349\) −3.42084 −0.183113 −0.0915567 0.995800i \(-0.529184\pi\)
−0.0915567 + 0.995800i \(0.529184\pi\)
\(350\) 0 0
\(351\) −19.3759 −1.03421
\(352\) 0 0
\(353\) −26.3993 −1.40509 −0.702547 0.711638i \(-0.747954\pi\)
−0.702547 + 0.711638i \(0.747954\pi\)
\(354\) 0 0
\(355\) −3.17536 −0.168531
\(356\) 0 0
\(357\) −4.04326 −0.213992
\(358\) 0 0
\(359\) −5.69799 −0.300728 −0.150364 0.988631i \(-0.548045\pi\)
−0.150364 + 0.988631i \(0.548045\pi\)
\(360\) 0 0
\(361\) −17.2296 −0.906823
\(362\) 0 0
\(363\) 16.4719 0.864553
\(364\) 0 0
\(365\) 3.45083 0.180625
\(366\) 0 0
\(367\) 21.9770 1.14719 0.573595 0.819139i \(-0.305548\pi\)
0.573595 + 0.819139i \(0.305548\pi\)
\(368\) 0 0
\(369\) −11.0846 −0.577041
\(370\) 0 0
\(371\) 18.5042 0.960692
\(372\) 0 0
\(373\) 25.7324 1.33237 0.666187 0.745785i \(-0.267925\pi\)
0.666187 + 0.745785i \(0.267925\pi\)
\(374\) 0 0
\(375\) −2.78717 −0.143929
\(376\) 0 0
\(377\) −16.9785 −0.874436
\(378\) 0 0
\(379\) −11.4122 −0.586203 −0.293102 0.956081i \(-0.594687\pi\)
−0.293102 + 0.956081i \(0.594687\pi\)
\(380\) 0 0
\(381\) −1.47382 −0.0755059
\(382\) 0 0
\(383\) 1.78942 0.0914351 0.0457175 0.998954i \(-0.485443\pi\)
0.0457175 + 0.998954i \(0.485443\pi\)
\(384\) 0 0
\(385\) 3.22698 0.164462
\(386\) 0 0
\(387\) 23.4215 1.19058
\(388\) 0 0
\(389\) −26.1503 −1.32587 −0.662937 0.748675i \(-0.730690\pi\)
−0.662937 + 0.748675i \(0.730690\pi\)
\(390\) 0 0
\(391\) 27.9251 1.41223
\(392\) 0 0
\(393\) −1.97972 −0.0998639
\(394\) 0 0
\(395\) 0.189418 0.00953066
\(396\) 0 0
\(397\) −1.76868 −0.0887673 −0.0443837 0.999015i \(-0.514132\pi\)
−0.0443837 + 0.999015i \(0.514132\pi\)
\(398\) 0 0
\(399\) 1.40501 0.0703383
\(400\) 0 0
\(401\) 19.5302 0.975292 0.487646 0.873042i \(-0.337856\pi\)
0.487646 + 0.873042i \(0.337856\pi\)
\(402\) 0 0
\(403\) 4.84398 0.241296
\(404\) 0 0
\(405\) 1.72542 0.0857366
\(406\) 0 0
\(407\) 34.8736 1.72862
\(408\) 0 0
\(409\) −18.2513 −0.902468 −0.451234 0.892406i \(-0.649016\pi\)
−0.451234 + 0.892406i \(0.649016\pi\)
\(410\) 0 0
\(411\) −1.85453 −0.0914772
\(412\) 0 0
\(413\) 10.6174 0.522446
\(414\) 0 0
\(415\) −6.79788 −0.333695
\(416\) 0 0
\(417\) −0.771340 −0.0377727
\(418\) 0 0
\(419\) 0.116835 0.00570774 0.00285387 0.999996i \(-0.499092\pi\)
0.00285387 + 0.999996i \(0.499092\pi\)
\(420\) 0 0
\(421\) −36.2683 −1.76761 −0.883805 0.467856i \(-0.845027\pi\)
−0.883805 + 0.467856i \(0.845027\pi\)
\(422\) 0 0
\(423\) 29.1088 1.41532
\(424\) 0 0
\(425\) −18.5729 −0.900918
\(426\) 0 0
\(427\) −6.98730 −0.338139
\(428\) 0 0
\(429\) −20.5245 −0.990932
\(430\) 0 0
\(431\) −13.9683 −0.672831 −0.336415 0.941714i \(-0.609215\pi\)
−0.336415 + 0.941714i \(0.609215\pi\)
\(432\) 0 0
\(433\) −5.92419 −0.284698 −0.142349 0.989817i \(-0.545466\pi\)
−0.142349 + 0.989817i \(0.545466\pi\)
\(434\) 0 0
\(435\) −0.991739 −0.0475503
\(436\) 0 0
\(437\) −9.70379 −0.464195
\(438\) 0 0
\(439\) 7.87971 0.376078 0.188039 0.982162i \(-0.439787\pi\)
0.188039 + 0.982162i \(0.439787\pi\)
\(440\) 0 0
\(441\) 12.1216 0.577219
\(442\) 0 0
\(443\) −33.0434 −1.56994 −0.784969 0.619535i \(-0.787321\pi\)
−0.784969 + 0.619535i \(0.787321\pi\)
\(444\) 0 0
\(445\) −6.25295 −0.296418
\(446\) 0 0
\(447\) 6.44425 0.304803
\(448\) 0 0
\(449\) 27.3459 1.29053 0.645267 0.763957i \(-0.276746\pi\)
0.645267 + 0.763957i \(0.276746\pi\)
\(450\) 0 0
\(451\) −26.0370 −1.22603
\(452\) 0 0
\(453\) 15.9251 0.748225
\(454\) 0 0
\(455\) −2.70065 −0.126609
\(456\) 0 0
\(457\) −22.8233 −1.06763 −0.533814 0.845602i \(-0.679242\pi\)
−0.533814 + 0.845602i \(0.679242\pi\)
\(458\) 0 0
\(459\) −15.3159 −0.714886
\(460\) 0 0
\(461\) 21.8515 1.01773 0.508864 0.860847i \(-0.330066\pi\)
0.508864 + 0.860847i \(0.330066\pi\)
\(462\) 0 0
\(463\) 19.1088 0.888061 0.444030 0.896012i \(-0.353548\pi\)
0.444030 + 0.896012i \(0.353548\pi\)
\(464\) 0 0
\(465\) 0.282944 0.0131212
\(466\) 0 0
\(467\) −11.7166 −0.542179 −0.271090 0.962554i \(-0.587384\pi\)
−0.271090 + 0.962554i \(0.587384\pi\)
\(468\) 0 0
\(469\) 15.7012 0.725015
\(470\) 0 0
\(471\) 0.820521 0.0378076
\(472\) 0 0
\(473\) 55.0155 2.52961
\(474\) 0 0
\(475\) 6.45396 0.296128
\(476\) 0 0
\(477\) 31.6098 1.44732
\(478\) 0 0
\(479\) 4.43934 0.202839 0.101419 0.994844i \(-0.467662\pi\)
0.101419 + 0.994844i \(0.467662\pi\)
\(480\) 0 0
\(481\) −29.1856 −1.33075
\(482\) 0 0
\(483\) −7.70122 −0.350418
\(484\) 0 0
\(485\) −0.404908 −0.0183859
\(486\) 0 0
\(487\) 41.6334 1.88659 0.943296 0.331954i \(-0.107708\pi\)
0.943296 + 0.331954i \(0.107708\pi\)
\(488\) 0 0
\(489\) 3.62353 0.163862
\(490\) 0 0
\(491\) −36.3355 −1.63980 −0.819899 0.572508i \(-0.805971\pi\)
−0.819899 + 0.572508i \(0.805971\pi\)
\(492\) 0 0
\(493\) −13.4208 −0.604444
\(494\) 0 0
\(495\) 5.51249 0.247768
\(496\) 0 0
\(497\) 11.8506 0.531573
\(498\) 0 0
\(499\) 16.0684 0.719320 0.359660 0.933083i \(-0.382893\pi\)
0.359660 + 0.933083i \(0.382893\pi\)
\(500\) 0 0
\(501\) −9.01182 −0.402618
\(502\) 0 0
\(503\) −9.33055 −0.416029 −0.208014 0.978126i \(-0.566700\pi\)
−0.208014 + 0.978126i \(0.566700\pi\)
\(504\) 0 0
\(505\) 4.75854 0.211752
\(506\) 0 0
\(507\) 7.66025 0.340204
\(508\) 0 0
\(509\) −33.1251 −1.46824 −0.734122 0.679018i \(-0.762406\pi\)
−0.734122 + 0.679018i \(0.762406\pi\)
\(510\) 0 0
\(511\) −12.8787 −0.569719
\(512\) 0 0
\(513\) 5.32219 0.234980
\(514\) 0 0
\(515\) 4.95684 0.218424
\(516\) 0 0
\(517\) 68.3746 3.00711
\(518\) 0 0
\(519\) −8.89821 −0.390588
\(520\) 0 0
\(521\) −32.1552 −1.40874 −0.704372 0.709831i \(-0.748771\pi\)
−0.704372 + 0.709831i \(0.748771\pi\)
\(522\) 0 0
\(523\) 3.88410 0.169840 0.0849200 0.996388i \(-0.472937\pi\)
0.0849200 + 0.996388i \(0.472937\pi\)
\(524\) 0 0
\(525\) 5.12206 0.223545
\(526\) 0 0
\(527\) 3.82898 0.166793
\(528\) 0 0
\(529\) 30.1890 1.31257
\(530\) 0 0
\(531\) 18.1371 0.787084
\(532\) 0 0
\(533\) 21.7903 0.943843
\(534\) 0 0
\(535\) 6.80436 0.294178
\(536\) 0 0
\(537\) 5.26053 0.227009
\(538\) 0 0
\(539\) 28.4728 1.22641
\(540\) 0 0
\(541\) 21.9995 0.945834 0.472917 0.881107i \(-0.343201\pi\)
0.472917 + 0.881107i \(0.343201\pi\)
\(542\) 0 0
\(543\) 13.2154 0.567127
\(544\) 0 0
\(545\) 0.197778 0.00847189
\(546\) 0 0
\(547\) −18.0384 −0.771264 −0.385632 0.922653i \(-0.626017\pi\)
−0.385632 + 0.922653i \(0.626017\pi\)
\(548\) 0 0
\(549\) −11.9360 −0.509418
\(550\) 0 0
\(551\) 4.66366 0.198678
\(552\) 0 0
\(553\) −0.706918 −0.0300612
\(554\) 0 0
\(555\) −1.70478 −0.0723638
\(556\) 0 0
\(557\) −15.1859 −0.643446 −0.321723 0.946834i \(-0.604262\pi\)
−0.321723 + 0.946834i \(0.604262\pi\)
\(558\) 0 0
\(559\) −46.0423 −1.94738
\(560\) 0 0
\(561\) −16.2238 −0.684971
\(562\) 0 0
\(563\) 32.9252 1.38763 0.693815 0.720153i \(-0.255928\pi\)
0.693815 + 0.720153i \(0.255928\pi\)
\(564\) 0 0
\(565\) 6.66333 0.280329
\(566\) 0 0
\(567\) −6.43934 −0.270427
\(568\) 0 0
\(569\) 16.5792 0.695034 0.347517 0.937674i \(-0.387025\pi\)
0.347517 + 0.937674i \(0.387025\pi\)
\(570\) 0 0
\(571\) 14.8626 0.621979 0.310990 0.950413i \(-0.399340\pi\)
0.310990 + 0.950413i \(0.399340\pi\)
\(572\) 0 0
\(573\) −3.25441 −0.135955
\(574\) 0 0
\(575\) −35.3759 −1.47528
\(576\) 0 0
\(577\) −9.40589 −0.391572 −0.195786 0.980647i \(-0.562726\pi\)
−0.195786 + 0.980647i \(0.562726\pi\)
\(578\) 0 0
\(579\) −10.5536 −0.438593
\(580\) 0 0
\(581\) 25.3700 1.05253
\(582\) 0 0
\(583\) 74.2495 3.07510
\(584\) 0 0
\(585\) −4.61339 −0.190740
\(586\) 0 0
\(587\) −1.83127 −0.0755847 −0.0377924 0.999286i \(-0.512033\pi\)
−0.0377924 + 0.999286i \(0.512033\pi\)
\(588\) 0 0
\(589\) −1.33055 −0.0548242
\(590\) 0 0
\(591\) 4.43902 0.182597
\(592\) 0 0
\(593\) −17.2282 −0.707477 −0.353739 0.935344i \(-0.615090\pi\)
−0.353739 + 0.935344i \(0.615090\pi\)
\(594\) 0 0
\(595\) −2.13477 −0.0875169
\(596\) 0 0
\(597\) −14.3358 −0.586724
\(598\) 0 0
\(599\) 11.0917 0.453197 0.226598 0.973988i \(-0.427240\pi\)
0.226598 + 0.973988i \(0.427240\pi\)
\(600\) 0 0
\(601\) 34.2583 1.39742 0.698712 0.715403i \(-0.253757\pi\)
0.698712 + 0.715403i \(0.253757\pi\)
\(602\) 0 0
\(603\) 26.8216 1.09226
\(604\) 0 0
\(605\) 8.69688 0.353578
\(606\) 0 0
\(607\) 40.5026 1.64395 0.821974 0.569525i \(-0.192873\pi\)
0.821974 + 0.569525i \(0.192873\pi\)
\(608\) 0 0
\(609\) 3.70122 0.149981
\(610\) 0 0
\(611\) −57.2226 −2.31498
\(612\) 0 0
\(613\) 11.6577 0.470850 0.235425 0.971893i \(-0.424352\pi\)
0.235425 + 0.971893i \(0.424352\pi\)
\(614\) 0 0
\(615\) 1.27281 0.0513245
\(616\) 0 0
\(617\) −20.5112 −0.825751 −0.412876 0.910787i \(-0.635476\pi\)
−0.412876 + 0.910787i \(0.635476\pi\)
\(618\) 0 0
\(619\) −39.1251 −1.57257 −0.786285 0.617864i \(-0.787998\pi\)
−0.786285 + 0.617864i \(0.787998\pi\)
\(620\) 0 0
\(621\) −29.1723 −1.17065
\(622\) 0 0
\(623\) 23.3363 0.934951
\(624\) 0 0
\(625\) 22.7815 0.911259
\(626\) 0 0
\(627\) 5.63769 0.225147
\(628\) 0 0
\(629\) −23.0701 −0.919866
\(630\) 0 0
\(631\) 5.07880 0.202184 0.101092 0.994877i \(-0.467766\pi\)
0.101092 + 0.994877i \(0.467766\pi\)
\(632\) 0 0
\(633\) 15.6202 0.620846
\(634\) 0 0
\(635\) −0.778147 −0.0308798
\(636\) 0 0
\(637\) −23.8289 −0.944134
\(638\) 0 0
\(639\) 20.2438 0.800832
\(640\) 0 0
\(641\) −25.2507 −0.997343 −0.498672 0.866791i \(-0.666179\pi\)
−0.498672 + 0.866791i \(0.666179\pi\)
\(642\) 0 0
\(643\) 19.9456 0.786578 0.393289 0.919415i \(-0.371337\pi\)
0.393289 + 0.919415i \(0.371337\pi\)
\(644\) 0 0
\(645\) −2.68941 −0.105895
\(646\) 0 0
\(647\) −37.3459 −1.46822 −0.734110 0.679031i \(-0.762400\pi\)
−0.734110 + 0.679031i \(0.762400\pi\)
\(648\) 0 0
\(649\) 42.6029 1.67231
\(650\) 0 0
\(651\) −1.05596 −0.0413864
\(652\) 0 0
\(653\) 21.7566 0.851402 0.425701 0.904864i \(-0.360028\pi\)
0.425701 + 0.904864i \(0.360028\pi\)
\(654\) 0 0
\(655\) −1.04526 −0.0408416
\(656\) 0 0
\(657\) −22.0000 −0.858302
\(658\) 0 0
\(659\) 18.4307 0.717956 0.358978 0.933346i \(-0.383125\pi\)
0.358978 + 0.933346i \(0.383125\pi\)
\(660\) 0 0
\(661\) −32.7788 −1.27495 −0.637474 0.770472i \(-0.720021\pi\)
−0.637474 + 0.770472i \(0.720021\pi\)
\(662\) 0 0
\(663\) 13.5777 0.527314
\(664\) 0 0
\(665\) 0.741818 0.0287664
\(666\) 0 0
\(667\) −25.5628 −0.989794
\(668\) 0 0
\(669\) −14.0571 −0.543478
\(670\) 0 0
\(671\) −28.0370 −1.08236
\(672\) 0 0
\(673\) −34.7422 −1.33921 −0.669607 0.742715i \(-0.733538\pi\)
−0.669607 + 0.742715i \(0.733538\pi\)
\(674\) 0 0
\(675\) 19.4024 0.746800
\(676\) 0 0
\(677\) −15.8913 −0.610750 −0.305375 0.952232i \(-0.598782\pi\)
−0.305375 + 0.952232i \(0.598782\pi\)
\(678\) 0 0
\(679\) 1.51114 0.0579921
\(680\) 0 0
\(681\) −3.21539 −0.123214
\(682\) 0 0
\(683\) 15.3895 0.588863 0.294431 0.955673i \(-0.404870\pi\)
0.294431 + 0.955673i \(0.404870\pi\)
\(684\) 0 0
\(685\) −0.979157 −0.0374117
\(686\) 0 0
\(687\) 2.57748 0.0983370
\(688\) 0 0
\(689\) −62.1392 −2.36732
\(690\) 0 0
\(691\) −4.70645 −0.179042 −0.0895209 0.995985i \(-0.528534\pi\)
−0.0895209 + 0.995985i \(0.528534\pi\)
\(692\) 0 0
\(693\) −20.5729 −0.781500
\(694\) 0 0
\(695\) −0.407253 −0.0154480
\(696\) 0 0
\(697\) 17.2244 0.652421
\(698\) 0 0
\(699\) −2.28127 −0.0862854
\(700\) 0 0
\(701\) −18.9797 −0.716853 −0.358426 0.933558i \(-0.616687\pi\)
−0.358426 + 0.933558i \(0.616687\pi\)
\(702\) 0 0
\(703\) 8.01672 0.302356
\(704\) 0 0
\(705\) −3.34246 −0.125884
\(706\) 0 0
\(707\) −17.7591 −0.667900
\(708\) 0 0
\(709\) 32.9920 1.23904 0.619520 0.784980i \(-0.287327\pi\)
0.619520 + 0.784980i \(0.287327\pi\)
\(710\) 0 0
\(711\) −1.20759 −0.0452882
\(712\) 0 0
\(713\) 7.29308 0.273128
\(714\) 0 0
\(715\) −10.8366 −0.405264
\(716\) 0 0
\(717\) −0.261981 −0.00978386
\(718\) 0 0
\(719\) 0.381599 0.0142313 0.00711563 0.999975i \(-0.497735\pi\)
0.00711563 + 0.999975i \(0.497735\pi\)
\(720\) 0 0
\(721\) −18.4992 −0.688945
\(722\) 0 0
\(723\) 8.98986 0.334337
\(724\) 0 0
\(725\) 17.0017 0.631428
\(726\) 0 0
\(727\) 7.10043 0.263340 0.131670 0.991294i \(-0.457966\pi\)
0.131670 + 0.991294i \(0.457966\pi\)
\(728\) 0 0
\(729\) −2.21539 −0.0820515
\(730\) 0 0
\(731\) −36.3947 −1.34611
\(732\) 0 0
\(733\) −6.19966 −0.228990 −0.114495 0.993424i \(-0.536525\pi\)
−0.114495 + 0.993424i \(0.536525\pi\)
\(734\) 0 0
\(735\) −1.39188 −0.0513403
\(736\) 0 0
\(737\) 63.0022 2.32072
\(738\) 0 0
\(739\) −2.91378 −0.107185 −0.0535925 0.998563i \(-0.517067\pi\)
−0.0535925 + 0.998563i \(0.517067\pi\)
\(740\) 0 0
\(741\) −4.71817 −0.173326
\(742\) 0 0
\(743\) −38.6303 −1.41721 −0.708604 0.705606i \(-0.750675\pi\)
−0.708604 + 0.705606i \(0.750675\pi\)
\(744\) 0 0
\(745\) 3.40244 0.124656
\(746\) 0 0
\(747\) 43.3383 1.58567
\(748\) 0 0
\(749\) −25.3942 −0.927885
\(750\) 0 0
\(751\) 9.30756 0.339638 0.169819 0.985475i \(-0.445682\pi\)
0.169819 + 0.985475i \(0.445682\pi\)
\(752\) 0 0
\(753\) −10.7678 −0.392400
\(754\) 0 0
\(755\) 8.40814 0.306004
\(756\) 0 0
\(757\) 26.0647 0.947337 0.473669 0.880703i \(-0.342929\pi\)
0.473669 + 0.880703i \(0.342929\pi\)
\(758\) 0 0
\(759\) −30.9017 −1.12166
\(760\) 0 0
\(761\) 30.4380 1.10338 0.551688 0.834051i \(-0.313984\pi\)
0.551688 + 0.834051i \(0.313984\pi\)
\(762\) 0 0
\(763\) −0.738118 −0.0267217
\(764\) 0 0
\(765\) −3.64671 −0.131847
\(766\) 0 0
\(767\) −35.6543 −1.28740
\(768\) 0 0
\(769\) −8.61662 −0.310723 −0.155362 0.987858i \(-0.549654\pi\)
−0.155362 + 0.987858i \(0.549654\pi\)
\(770\) 0 0
\(771\) 9.85729 0.355002
\(772\) 0 0
\(773\) 15.1411 0.544587 0.272293 0.962214i \(-0.412218\pi\)
0.272293 + 0.962214i \(0.412218\pi\)
\(774\) 0 0
\(775\) −4.85061 −0.174239
\(776\) 0 0
\(777\) 6.36231 0.228247
\(778\) 0 0
\(779\) −5.98538 −0.214448
\(780\) 0 0
\(781\) 47.5514 1.70152
\(782\) 0 0
\(783\) 14.0203 0.501044
\(784\) 0 0
\(785\) 0.433220 0.0154623
\(786\) 0 0
\(787\) −5.63727 −0.200947 −0.100473 0.994940i \(-0.532036\pi\)
−0.100473 + 0.994940i \(0.532036\pi\)
\(788\) 0 0
\(789\) 15.9567 0.568075
\(790\) 0 0
\(791\) −24.8679 −0.884201
\(792\) 0 0
\(793\) 23.4641 0.833235
\(794\) 0 0
\(795\) −3.62965 −0.128730
\(796\) 0 0
\(797\) −3.30919 −0.117217 −0.0586087 0.998281i \(-0.518666\pi\)
−0.0586087 + 0.998281i \(0.518666\pi\)
\(798\) 0 0
\(799\) −45.2323 −1.60020
\(800\) 0 0
\(801\) 39.8643 1.40854
\(802\) 0 0
\(803\) −51.6766 −1.82363
\(804\) 0 0
\(805\) −4.06610 −0.143311
\(806\) 0 0
\(807\) −2.99687 −0.105495
\(808\) 0 0
\(809\) −49.6476 −1.74552 −0.872758 0.488153i \(-0.837671\pi\)
−0.872758 + 0.488153i \(0.837671\pi\)
\(810\) 0 0
\(811\) 28.4980 1.00070 0.500349 0.865824i \(-0.333205\pi\)
0.500349 + 0.865824i \(0.333205\pi\)
\(812\) 0 0
\(813\) 17.5344 0.614960
\(814\) 0 0
\(815\) 1.91316 0.0670149
\(816\) 0 0
\(817\) 12.6469 0.442460
\(818\) 0 0
\(819\) 17.2174 0.601625
\(820\) 0 0
\(821\) 8.40328 0.293277 0.146638 0.989190i \(-0.453155\pi\)
0.146638 + 0.989190i \(0.453155\pi\)
\(822\) 0 0
\(823\) 31.5123 1.09845 0.549226 0.835674i \(-0.314923\pi\)
0.549226 + 0.835674i \(0.314923\pi\)
\(824\) 0 0
\(825\) 20.5526 0.715550
\(826\) 0 0
\(827\) 29.4804 1.02513 0.512567 0.858647i \(-0.328695\pi\)
0.512567 + 0.858647i \(0.328695\pi\)
\(828\) 0 0
\(829\) 42.5091 1.47640 0.738201 0.674581i \(-0.235676\pi\)
0.738201 + 0.674581i \(0.235676\pi\)
\(830\) 0 0
\(831\) −14.1322 −0.490241
\(832\) 0 0
\(833\) −18.8358 −0.652622
\(834\) 0 0
\(835\) −4.75807 −0.164660
\(836\) 0 0
\(837\) −4.00000 −0.138260
\(838\) 0 0
\(839\) −51.3072 −1.77132 −0.885661 0.464332i \(-0.846294\pi\)
−0.885661 + 0.464332i \(0.846294\pi\)
\(840\) 0 0
\(841\) −16.7145 −0.576362
\(842\) 0 0
\(843\) −4.00089 −0.137798
\(844\) 0 0
\(845\) 4.04447 0.139134
\(846\) 0 0
\(847\) −32.4572 −1.11524
\(848\) 0 0
\(849\) −0.493668 −0.0169426
\(850\) 0 0
\(851\) −43.9418 −1.50631
\(852\) 0 0
\(853\) −37.4094 −1.28088 −0.640438 0.768010i \(-0.721247\pi\)
−0.640438 + 0.768010i \(0.721247\pi\)
\(854\) 0 0
\(855\) 1.26721 0.0433377
\(856\) 0 0
\(857\) −36.4796 −1.24612 −0.623059 0.782175i \(-0.714110\pi\)
−0.623059 + 0.782175i \(0.714110\pi\)
\(858\) 0 0
\(859\) 42.6570 1.45544 0.727719 0.685876i \(-0.240581\pi\)
0.727719 + 0.685876i \(0.240581\pi\)
\(860\) 0 0
\(861\) −4.75018 −0.161886
\(862\) 0 0
\(863\) 16.8921 0.575014 0.287507 0.957779i \(-0.407174\pi\)
0.287507 + 0.957779i \(0.407174\pi\)
\(864\) 0 0
\(865\) −4.69809 −0.159740
\(866\) 0 0
\(867\) −1.71220 −0.0581493
\(868\) 0 0
\(869\) −2.83655 −0.0962235
\(870\) 0 0
\(871\) −52.7264 −1.78657
\(872\) 0 0
\(873\) 2.58140 0.0873671
\(874\) 0 0
\(875\) 5.49200 0.185663
\(876\) 0 0
\(877\) −45.3974 −1.53296 −0.766480 0.642268i \(-0.777994\pi\)
−0.766480 + 0.642268i \(0.777994\pi\)
\(878\) 0 0
\(879\) −4.58784 −0.154744
\(880\) 0 0
\(881\) −44.2026 −1.48922 −0.744612 0.667497i \(-0.767366\pi\)
−0.744612 + 0.667497i \(0.767366\pi\)
\(882\) 0 0
\(883\) 9.08722 0.305809 0.152905 0.988241i \(-0.451137\pi\)
0.152905 + 0.988241i \(0.451137\pi\)
\(884\) 0 0
\(885\) −2.08262 −0.0700066
\(886\) 0 0
\(887\) −3.50872 −0.117811 −0.0589056 0.998264i \(-0.518761\pi\)
−0.0589056 + 0.998264i \(0.518761\pi\)
\(888\) 0 0
\(889\) 2.90408 0.0973999
\(890\) 0 0
\(891\) −25.8383 −0.865615
\(892\) 0 0
\(893\) 15.7179 0.525981
\(894\) 0 0
\(895\) 2.77746 0.0928402
\(896\) 0 0
\(897\) 25.8615 0.863492
\(898\) 0 0
\(899\) −3.50507 −0.116901
\(900\) 0 0
\(901\) −49.1187 −1.63638
\(902\) 0 0
\(903\) 10.0370 0.334010
\(904\) 0 0
\(905\) 6.97748 0.231939
\(906\) 0 0
\(907\) −0.740931 −0.0246022 −0.0123011 0.999924i \(-0.503916\pi\)
−0.0123011 + 0.999924i \(0.503916\pi\)
\(908\) 0 0
\(909\) −30.3370 −1.00621
\(910\) 0 0
\(911\) −20.8824 −0.691864 −0.345932 0.938260i \(-0.612437\pi\)
−0.345932 + 0.938260i \(0.612437\pi\)
\(912\) 0 0
\(913\) 101.799 3.36905
\(914\) 0 0
\(915\) 1.37058 0.0453098
\(916\) 0 0
\(917\) 3.90095 0.128821
\(918\) 0 0
\(919\) −18.0254 −0.594603 −0.297302 0.954784i \(-0.596087\pi\)
−0.297302 + 0.954784i \(0.596087\pi\)
\(920\) 0 0
\(921\) 11.1143 0.366227
\(922\) 0 0
\(923\) −39.7956 −1.30989
\(924\) 0 0
\(925\) 29.2256 0.960931
\(926\) 0 0
\(927\) −31.6012 −1.03792
\(928\) 0 0
\(929\) −0.191439 −0.00628090 −0.00314045 0.999995i \(-0.501000\pi\)
−0.00314045 + 0.999995i \(0.501000\pi\)
\(930\) 0 0
\(931\) 6.54533 0.214514
\(932\) 0 0
\(933\) 1.10623 0.0362163
\(934\) 0 0
\(935\) −8.56589 −0.280135
\(936\) 0 0
\(937\) −51.1839 −1.67211 −0.836053 0.548649i \(-0.815142\pi\)
−0.836053 + 0.548649i \(0.815142\pi\)
\(938\) 0 0
\(939\) 3.72830 0.121669
\(940\) 0 0
\(941\) 24.1319 0.786678 0.393339 0.919393i \(-0.371320\pi\)
0.393339 + 0.919393i \(0.371320\pi\)
\(942\) 0 0
\(943\) 32.8075 1.06836
\(944\) 0 0
\(945\) 2.23011 0.0725456
\(946\) 0 0
\(947\) 31.6416 1.02821 0.514107 0.857726i \(-0.328123\pi\)
0.514107 + 0.857726i \(0.328123\pi\)
\(948\) 0 0
\(949\) 43.2480 1.40389
\(950\) 0 0
\(951\) 9.46957 0.307072
\(952\) 0 0
\(953\) −21.1529 −0.685211 −0.342605 0.939479i \(-0.611309\pi\)
−0.342605 + 0.939479i \(0.611309\pi\)
\(954\) 0 0
\(955\) −1.71827 −0.0556018
\(956\) 0 0
\(957\) 14.8514 0.480077
\(958\) 0 0
\(959\) 3.65426 0.118002
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −43.3797 −1.39789
\(964\) 0 0
\(965\) −5.57211 −0.179373
\(966\) 0 0
\(967\) −4.92475 −0.158369 −0.0791847 0.996860i \(-0.525232\pi\)
−0.0791847 + 0.996860i \(0.525232\pi\)
\(968\) 0 0
\(969\) −3.72953 −0.119810
\(970\) 0 0
\(971\) 2.86822 0.0920457 0.0460228 0.998940i \(-0.485345\pi\)
0.0460228 + 0.998940i \(0.485345\pi\)
\(972\) 0 0
\(973\) 1.51989 0.0487254
\(974\) 0 0
\(975\) −17.2004 −0.550855
\(976\) 0 0
\(977\) 1.67244 0.0535061 0.0267531 0.999642i \(-0.491483\pi\)
0.0267531 + 0.999642i \(0.491483\pi\)
\(978\) 0 0
\(979\) 93.6386 2.99270
\(980\) 0 0
\(981\) −1.26089 −0.0402571
\(982\) 0 0
\(983\) −25.7169 −0.820242 −0.410121 0.912031i \(-0.634514\pi\)
−0.410121 + 0.912031i \(0.634514\pi\)
\(984\) 0 0
\(985\) 2.34372 0.0746770
\(986\) 0 0
\(987\) 12.4742 0.397059
\(988\) 0 0
\(989\) −69.3213 −2.20429
\(990\) 0 0
\(991\) 17.2868 0.549134 0.274567 0.961568i \(-0.411466\pi\)
0.274567 + 0.961568i \(0.411466\pi\)
\(992\) 0 0
\(993\) −0.771340 −0.0244777
\(994\) 0 0
\(995\) −7.56902 −0.239954
\(996\) 0 0
\(997\) −26.3133 −0.833349 −0.416675 0.909056i \(-0.636805\pi\)
−0.416675 + 0.909056i \(0.636805\pi\)
\(998\) 0 0
\(999\) 24.1005 0.762507
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.y.1.4 4
4.3 odd 2 1984.2.a.z.1.2 4
8.3 odd 2 992.2.a.e.1.3 4
8.5 even 2 992.2.a.f.1.1 yes 4
24.5 odd 2 8928.2.a.bn.1.3 4
24.11 even 2 8928.2.a.bm.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
992.2.a.e.1.3 4 8.3 odd 2
992.2.a.f.1.1 yes 4 8.5 even 2
1984.2.a.y.1.4 4 1.1 even 1 trivial
1984.2.a.z.1.2 4 4.3 odd 2
8928.2.a.bm.1.3 4 24.11 even 2
8928.2.a.bn.1.3 4 24.5 odd 2