Properties

Label 1984.2.a.x
Level $1984$
Weight $2$
Character orbit 1984.a
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,2,0,3,0,-5,0,7,0,8,0,-2,0,-8,0,-4,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 248)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1 + 1) q^{3} + ( - \beta_{2} + 1) q^{5} + (\beta_{2} - 2 \beta_1 - 1) q^{7} + ( - 2 \beta_1 + 3) q^{9} + ( - \beta_{2} - \beta_1 + 3) q^{11} + (\beta_{2} + \beta_1 - 1) q^{13} + (2 \beta_{2} - 2 \beta_1 - 2) q^{15}+ \cdots + (\beta_{2} - 7 \beta_1 + 17) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 3 q^{5} - 5 q^{7} + 7 q^{9} + 8 q^{11} - 2 q^{13} - 8 q^{15} - 4 q^{17} + 5 q^{19} + 16 q^{21} + 2 q^{25} + 8 q^{27} + 20 q^{29} - 3 q^{31} - 11 q^{35} - 4 q^{37} + 4 q^{39} - 5 q^{41} + 12 q^{43}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.470683
2.34292
−1.81361
0 −2.24914 0 3.77846 0 −4.71982 0 2.05863 0
1.2 0 1.14637 0 −1.48929 0 −3.19656 0 −1.68585 0
1.3 0 3.10278 0 0.710831 0 2.91638 0 6.62721 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1984.2.a.x 3
4.b odd 2 1 1984.2.a.v 3
8.b even 2 1 496.2.a.j 3
8.d odd 2 1 248.2.a.e 3
24.f even 2 1 2232.2.a.w 3
24.h odd 2 1 4464.2.a.br 3
40.e odd 2 1 6200.2.a.p 3
248.b even 2 1 7688.2.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
248.2.a.e 3 8.d odd 2 1
496.2.a.j 3 8.b even 2 1
1984.2.a.v 3 4.b odd 2 1
1984.2.a.x 3 1.a even 1 1 trivial
2232.2.a.w 3 24.f even 2 1
4464.2.a.br 3 24.h odd 2 1
6200.2.a.p 3 40.e odd 2 1
7688.2.a.s 3 248.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1984))\):

\( T_{3}^{3} - 2T_{3}^{2} - 6T_{3} + 8 \) Copy content Toggle raw display
\( T_{5}^{3} - 3T_{5}^{2} - 4T_{5} + 4 \) Copy content Toggle raw display
\( T_{7}^{3} + 5T_{7}^{2} - 8T_{7} - 44 \) Copy content Toggle raw display
\( T_{19}^{3} - 5T_{19}^{2} - 24T_{19} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{3} - 3 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$7$ \( T^{3} + 5 T^{2} + \cdots - 44 \) Copy content Toggle raw display
$11$ \( T^{3} - 8 T^{2} + \cdots + 44 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$19$ \( T^{3} - 5 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 20 T^{2} + \cdots - 244 \) Copy content Toggle raw display
$31$ \( (T + 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + 4 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$41$ \( T^{3} + 5 T^{2} + \cdots - 88 \) Copy content Toggle raw display
$43$ \( T^{3} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$47$ \( T^{3} - 28T + 16 \) Copy content Toggle raw display
$53$ \( T^{3} - 2 T^{2} + \cdots - 184 \) Copy content Toggle raw display
$59$ \( T^{3} + 5 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 688 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 256 \) Copy content Toggle raw display
$71$ \( T^{3} + 7 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$73$ \( T^{3} - 6 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} + \cdots - 268 \) Copy content Toggle raw display
$89$ \( T^{3} - 6 T^{2} + \cdots + 344 \) Copy content Toggle raw display
$97$ \( T^{3} - 21 T^{2} + \cdots + 152 \) Copy content Toggle raw display
show more
show less