Properties

Label 1984.2.a.bb.1.6
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,-2,0,2,0,10,0,10,0,-10,0,8,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.66862976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 20x^{2} - 16x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.71608\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.07118 q^{3} -1.24104 q^{5} +3.86022 q^{7} +6.43216 q^{9} +2.58173 q^{11} +1.07118 q^{13} -3.81147 q^{15} +5.81147 q^{17} -2.07362 q^{19} +11.8554 q^{21} -8.53343 q^{23} -3.45981 q^{25} +10.5408 q^{27} -2.25084 q^{29} +1.00000 q^{31} +7.92897 q^{33} -4.79070 q^{35} -5.65814 q^{37} +3.28980 q^{39} +3.02765 q^{41} -12.0941 q^{43} -7.98259 q^{45} +3.19229 q^{47} +7.90132 q^{49} +17.8481 q^{51} -0.183308 q^{53} -3.20404 q^{55} -6.36845 q^{57} +2.64834 q^{59} +1.39471 q^{61} +24.8296 q^{63} -1.32938 q^{65} -8.38223 q^{67} -26.2077 q^{69} +11.0525 q^{71} -15.5084 q^{73} -10.6257 q^{75} +9.96606 q^{77} +16.1937 q^{79} +13.0762 q^{81} -11.7666 q^{83} -7.21229 q^{85} -6.91274 q^{87} -1.84881 q^{89} +4.13500 q^{91} +3.07118 q^{93} +2.57345 q^{95} +19.5571 q^{97} +16.6061 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 10 q^{9} + 10 q^{11} - 10 q^{13} + 8 q^{15} + 4 q^{17} + 2 q^{19} - 4 q^{21} + 4 q^{23} + 20 q^{25} + 8 q^{27} - 10 q^{29} + 6 q^{31} + 8 q^{33} + 14 q^{35} - 26 q^{37}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.07118 1.77315 0.886574 0.462587i \(-0.153079\pi\)
0.886574 + 0.462587i \(0.153079\pi\)
\(4\) 0 0
\(5\) −1.24104 −0.555012 −0.277506 0.960724i \(-0.589508\pi\)
−0.277506 + 0.960724i \(0.589508\pi\)
\(6\) 0 0
\(7\) 3.86022 1.45903 0.729514 0.683966i \(-0.239747\pi\)
0.729514 + 0.683966i \(0.239747\pi\)
\(8\) 0 0
\(9\) 6.43216 2.14405
\(10\) 0 0
\(11\) 2.58173 0.778422 0.389211 0.921149i \(-0.372748\pi\)
0.389211 + 0.921149i \(0.372748\pi\)
\(12\) 0 0
\(13\) 1.07118 0.297092 0.148546 0.988905i \(-0.452541\pi\)
0.148546 + 0.988905i \(0.452541\pi\)
\(14\) 0 0
\(15\) −3.81147 −0.984118
\(16\) 0 0
\(17\) 5.81147 1.40949 0.704744 0.709461i \(-0.251062\pi\)
0.704744 + 0.709461i \(0.251062\pi\)
\(18\) 0 0
\(19\) −2.07362 −0.475720 −0.237860 0.971299i \(-0.576446\pi\)
−0.237860 + 0.971299i \(0.576446\pi\)
\(20\) 0 0
\(21\) 11.8554 2.58707
\(22\) 0 0
\(23\) −8.53343 −1.77934 −0.889671 0.456602i \(-0.849066\pi\)
−0.889671 + 0.456602i \(0.849066\pi\)
\(24\) 0 0
\(25\) −3.45981 −0.691962
\(26\) 0 0
\(27\) 10.5408 2.02858
\(28\) 0 0
\(29\) −2.25084 −0.417970 −0.208985 0.977919i \(-0.567016\pi\)
−0.208985 + 0.977919i \(0.567016\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 7.92897 1.38026
\(34\) 0 0
\(35\) −4.79070 −0.809777
\(36\) 0 0
\(37\) −5.65814 −0.930192 −0.465096 0.885260i \(-0.653980\pi\)
−0.465096 + 0.885260i \(0.653980\pi\)
\(38\) 0 0
\(39\) 3.28980 0.526789
\(40\) 0 0
\(41\) 3.02765 0.472840 0.236420 0.971651i \(-0.424026\pi\)
0.236420 + 0.971651i \(0.424026\pi\)
\(42\) 0 0
\(43\) −12.0941 −1.84433 −0.922163 0.386801i \(-0.873580\pi\)
−0.922163 + 0.386801i \(0.873580\pi\)
\(44\) 0 0
\(45\) −7.98259 −1.18997
\(46\) 0 0
\(47\) 3.19229 0.465644 0.232822 0.972519i \(-0.425204\pi\)
0.232822 + 0.972519i \(0.425204\pi\)
\(48\) 0 0
\(49\) 7.90132 1.12876
\(50\) 0 0
\(51\) 17.8481 2.49923
\(52\) 0 0
\(53\) −0.183308 −0.0251793 −0.0125897 0.999921i \(-0.504008\pi\)
−0.0125897 + 0.999921i \(0.504008\pi\)
\(54\) 0 0
\(55\) −3.20404 −0.432033
\(56\) 0 0
\(57\) −6.36845 −0.843522
\(58\) 0 0
\(59\) 2.64834 0.344785 0.172392 0.985028i \(-0.444850\pi\)
0.172392 + 0.985028i \(0.444850\pi\)
\(60\) 0 0
\(61\) 1.39471 0.178575 0.0892874 0.996006i \(-0.471541\pi\)
0.0892874 + 0.996006i \(0.471541\pi\)
\(62\) 0 0
\(63\) 24.8296 3.12823
\(64\) 0 0
\(65\) −1.32938 −0.164890
\(66\) 0 0
\(67\) −8.38223 −1.02405 −0.512026 0.858970i \(-0.671105\pi\)
−0.512026 + 0.858970i \(0.671105\pi\)
\(68\) 0 0
\(69\) −26.2077 −3.15504
\(70\) 0 0
\(71\) 11.0525 1.31169 0.655846 0.754895i \(-0.272312\pi\)
0.655846 + 0.754895i \(0.272312\pi\)
\(72\) 0 0
\(73\) −15.5084 −1.81512 −0.907558 0.419926i \(-0.862056\pi\)
−0.907558 + 0.419926i \(0.862056\pi\)
\(74\) 0 0
\(75\) −10.6257 −1.22695
\(76\) 0 0
\(77\) 9.96606 1.13574
\(78\) 0 0
\(79\) 16.1937 1.82193 0.910967 0.412479i \(-0.135337\pi\)
0.910967 + 0.412479i \(0.135337\pi\)
\(80\) 0 0
\(81\) 13.0762 1.45291
\(82\) 0 0
\(83\) −11.7666 −1.29155 −0.645774 0.763529i \(-0.723465\pi\)
−0.645774 + 0.763529i \(0.723465\pi\)
\(84\) 0 0
\(85\) −7.21229 −0.782282
\(86\) 0 0
\(87\) −6.91274 −0.741123
\(88\) 0 0
\(89\) −1.84881 −0.195973 −0.0979866 0.995188i \(-0.531240\pi\)
−0.0979866 + 0.995188i \(0.531240\pi\)
\(90\) 0 0
\(91\) 4.13500 0.433466
\(92\) 0 0
\(93\) 3.07118 0.318467
\(94\) 0 0
\(95\) 2.57345 0.264030
\(96\) 0 0
\(97\) 19.5571 1.98572 0.992862 0.119268i \(-0.0380548\pi\)
0.992862 + 0.119268i \(0.0380548\pi\)
\(98\) 0 0
\(99\) 16.6061 1.66898
\(100\) 0 0
\(101\) 10.6997 1.06466 0.532329 0.846538i \(-0.321317\pi\)
0.532329 + 0.846538i \(0.321317\pi\)
\(102\) 0 0
\(103\) 11.7143 1.15424 0.577122 0.816658i \(-0.304176\pi\)
0.577122 + 0.816658i \(0.304176\pi\)
\(104\) 0 0
\(105\) −14.7131 −1.43585
\(106\) 0 0
\(107\) 6.14851 0.594399 0.297199 0.954815i \(-0.403947\pi\)
0.297199 + 0.954815i \(0.403947\pi\)
\(108\) 0 0
\(109\) −2.81912 −0.270023 −0.135012 0.990844i \(-0.543107\pi\)
−0.135012 + 0.990844i \(0.543107\pi\)
\(110\) 0 0
\(111\) −17.3772 −1.64937
\(112\) 0 0
\(113\) 7.17488 0.674956 0.337478 0.941333i \(-0.390426\pi\)
0.337478 + 0.941333i \(0.390426\pi\)
\(114\) 0 0
\(115\) 10.5904 0.987556
\(116\) 0 0
\(117\) 6.89002 0.636982
\(118\) 0 0
\(119\) 22.4336 2.05648
\(120\) 0 0
\(121\) −4.33466 −0.394060
\(122\) 0 0
\(123\) 9.29847 0.838415
\(124\) 0 0
\(125\) 10.4990 0.939059
\(126\) 0 0
\(127\) −17.1042 −1.51775 −0.758876 0.651236i \(-0.774251\pi\)
−0.758876 + 0.651236i \(0.774251\pi\)
\(128\) 0 0
\(129\) −37.1431 −3.27026
\(130\) 0 0
\(131\) 19.1814 1.67589 0.837945 0.545755i \(-0.183757\pi\)
0.837945 + 0.545755i \(0.183757\pi\)
\(132\) 0 0
\(133\) −8.00462 −0.694088
\(134\) 0 0
\(135\) −13.0816 −1.12588
\(136\) 0 0
\(137\) −11.8789 −1.01489 −0.507443 0.861685i \(-0.669409\pi\)
−0.507443 + 0.861685i \(0.669409\pi\)
\(138\) 0 0
\(139\) −6.47848 −0.549497 −0.274749 0.961516i \(-0.588595\pi\)
−0.274749 + 0.961516i \(0.588595\pi\)
\(140\) 0 0
\(141\) 9.80411 0.825655
\(142\) 0 0
\(143\) 2.76551 0.231263
\(144\) 0 0
\(145\) 2.79339 0.231978
\(146\) 0 0
\(147\) 24.2664 2.00146
\(148\) 0 0
\(149\) −19.3889 −1.58840 −0.794201 0.607655i \(-0.792110\pi\)
−0.794201 + 0.607655i \(0.792110\pi\)
\(150\) 0 0
\(151\) 3.46747 0.282178 0.141089 0.989997i \(-0.454940\pi\)
0.141089 + 0.989997i \(0.454940\pi\)
\(152\) 0 0
\(153\) 37.3803 3.02202
\(154\) 0 0
\(155\) −1.24104 −0.0996830
\(156\) 0 0
\(157\) −14.0275 −1.11951 −0.559756 0.828657i \(-0.689105\pi\)
−0.559756 + 0.828657i \(0.689105\pi\)
\(158\) 0 0
\(159\) −0.562973 −0.0446467
\(160\) 0 0
\(161\) −32.9409 −2.59611
\(162\) 0 0
\(163\) −6.97762 −0.546529 −0.273265 0.961939i \(-0.588104\pi\)
−0.273265 + 0.961939i \(0.588104\pi\)
\(164\) 0 0
\(165\) −9.84020 −0.766058
\(166\) 0 0
\(167\) 11.6082 0.898271 0.449135 0.893464i \(-0.351732\pi\)
0.449135 + 0.893464i \(0.351732\pi\)
\(168\) 0 0
\(169\) −11.8526 −0.911736
\(170\) 0 0
\(171\) −13.3378 −1.01997
\(172\) 0 0
\(173\) −7.78792 −0.592104 −0.296052 0.955172i \(-0.595670\pi\)
−0.296052 + 0.955172i \(0.595670\pi\)
\(174\) 0 0
\(175\) −13.3556 −1.00959
\(176\) 0 0
\(177\) 8.13354 0.611354
\(178\) 0 0
\(179\) 20.3201 1.51879 0.759397 0.650627i \(-0.225494\pi\)
0.759397 + 0.650627i \(0.225494\pi\)
\(180\) 0 0
\(181\) 4.70457 0.349688 0.174844 0.984596i \(-0.444058\pi\)
0.174844 + 0.984596i \(0.444058\pi\)
\(182\) 0 0
\(183\) 4.28342 0.316639
\(184\) 0 0
\(185\) 7.02199 0.516267
\(186\) 0 0
\(187\) 15.0037 1.09718
\(188\) 0 0
\(189\) 40.6898 2.95975
\(190\) 0 0
\(191\) −13.1091 −0.948543 −0.474272 0.880379i \(-0.657288\pi\)
−0.474272 + 0.880379i \(0.657288\pi\)
\(192\) 0 0
\(193\) 5.75745 0.414430 0.207215 0.978295i \(-0.433560\pi\)
0.207215 + 0.978295i \(0.433560\pi\)
\(194\) 0 0
\(195\) −4.08278 −0.292374
\(196\) 0 0
\(197\) −23.8658 −1.70037 −0.850185 0.526483i \(-0.823510\pi\)
−0.850185 + 0.526483i \(0.823510\pi\)
\(198\) 0 0
\(199\) −5.56764 −0.394680 −0.197340 0.980335i \(-0.563230\pi\)
−0.197340 + 0.980335i \(0.563230\pi\)
\(200\) 0 0
\(201\) −25.7434 −1.81580
\(202\) 0 0
\(203\) −8.68874 −0.609830
\(204\) 0 0
\(205\) −3.75745 −0.262431
\(206\) 0 0
\(207\) −54.8884 −3.81501
\(208\) 0 0
\(209\) −5.35352 −0.370311
\(210\) 0 0
\(211\) −18.2617 −1.25719 −0.628595 0.777733i \(-0.716370\pi\)
−0.628595 + 0.777733i \(0.716370\pi\)
\(212\) 0 0
\(213\) 33.9443 2.32582
\(214\) 0 0
\(215\) 15.0093 1.02362
\(216\) 0 0
\(217\) 3.86022 0.262049
\(218\) 0 0
\(219\) −47.6290 −3.21847
\(220\) 0 0
\(221\) 6.22514 0.418748
\(222\) 0 0
\(223\) −16.0602 −1.07547 −0.537734 0.843114i \(-0.680720\pi\)
−0.537734 + 0.843114i \(0.680720\pi\)
\(224\) 0 0
\(225\) −22.2541 −1.48360
\(226\) 0 0
\(227\) −15.9034 −1.05554 −0.527772 0.849386i \(-0.676973\pi\)
−0.527772 + 0.849386i \(0.676973\pi\)
\(228\) 0 0
\(229\) 6.62659 0.437898 0.218949 0.975736i \(-0.429737\pi\)
0.218949 + 0.975736i \(0.429737\pi\)
\(230\) 0 0
\(231\) 30.6076 2.01383
\(232\) 0 0
\(233\) −17.6970 −1.15937 −0.579683 0.814842i \(-0.696824\pi\)
−0.579683 + 0.814842i \(0.696824\pi\)
\(234\) 0 0
\(235\) −3.96177 −0.258438
\(236\) 0 0
\(237\) 49.7338 3.23056
\(238\) 0 0
\(239\) 6.72034 0.434703 0.217351 0.976093i \(-0.430258\pi\)
0.217351 + 0.976093i \(0.430258\pi\)
\(240\) 0 0
\(241\) −8.12764 −0.523547 −0.261774 0.965129i \(-0.584307\pi\)
−0.261774 + 0.965129i \(0.584307\pi\)
\(242\) 0 0
\(243\) 8.53703 0.547651
\(244\) 0 0
\(245\) −9.80588 −0.626475
\(246\) 0 0
\(247\) −2.22122 −0.141333
\(248\) 0 0
\(249\) −36.1373 −2.29011
\(250\) 0 0
\(251\) 17.2575 1.08929 0.544643 0.838668i \(-0.316665\pi\)
0.544643 + 0.838668i \(0.316665\pi\)
\(252\) 0 0
\(253\) −22.0310 −1.38508
\(254\) 0 0
\(255\) −22.1503 −1.38710
\(256\) 0 0
\(257\) 16.4120 1.02375 0.511877 0.859059i \(-0.328950\pi\)
0.511877 + 0.859059i \(0.328950\pi\)
\(258\) 0 0
\(259\) −21.8417 −1.35718
\(260\) 0 0
\(261\) −14.4778 −0.896151
\(262\) 0 0
\(263\) 8.23826 0.507993 0.253996 0.967205i \(-0.418255\pi\)
0.253996 + 0.967205i \(0.418255\pi\)
\(264\) 0 0
\(265\) 0.227494 0.0139748
\(266\) 0 0
\(267\) −5.67802 −0.347489
\(268\) 0 0
\(269\) 23.5850 1.43800 0.719002 0.695008i \(-0.244599\pi\)
0.719002 + 0.695008i \(0.244599\pi\)
\(270\) 0 0
\(271\) 11.0580 0.671727 0.335864 0.941911i \(-0.390972\pi\)
0.335864 + 0.941911i \(0.390972\pi\)
\(272\) 0 0
\(273\) 12.6993 0.768599
\(274\) 0 0
\(275\) −8.93231 −0.538638
\(276\) 0 0
\(277\) −27.1690 −1.63243 −0.816213 0.577751i \(-0.803931\pi\)
−0.816213 + 0.577751i \(0.803931\pi\)
\(278\) 0 0
\(279\) 6.43216 0.385083
\(280\) 0 0
\(281\) 18.8512 1.12457 0.562284 0.826944i \(-0.309923\pi\)
0.562284 + 0.826944i \(0.309923\pi\)
\(282\) 0 0
\(283\) −1.78703 −0.106228 −0.0531138 0.998588i \(-0.516915\pi\)
−0.0531138 + 0.998588i \(0.516915\pi\)
\(284\) 0 0
\(285\) 7.90352 0.468164
\(286\) 0 0
\(287\) 11.6874 0.689886
\(288\) 0 0
\(289\) 16.7732 0.986658
\(290\) 0 0
\(291\) 60.0635 3.52098
\(292\) 0 0
\(293\) 20.0579 1.17180 0.585898 0.810385i \(-0.300742\pi\)
0.585898 + 0.810385i \(0.300742\pi\)
\(294\) 0 0
\(295\) −3.28671 −0.191359
\(296\) 0 0
\(297\) 27.2135 1.57909
\(298\) 0 0
\(299\) −9.14085 −0.528629
\(300\) 0 0
\(301\) −46.6858 −2.69092
\(302\) 0 0
\(303\) 32.8607 1.88780
\(304\) 0 0
\(305\) −1.73090 −0.0991111
\(306\) 0 0
\(307\) 15.8389 0.903975 0.451987 0.892024i \(-0.350715\pi\)
0.451987 + 0.892024i \(0.350715\pi\)
\(308\) 0 0
\(309\) 35.9768 2.04665
\(310\) 0 0
\(311\) −6.87046 −0.389588 −0.194794 0.980844i \(-0.562404\pi\)
−0.194794 + 0.980844i \(0.562404\pi\)
\(312\) 0 0
\(313\) −4.93525 −0.278957 −0.139478 0.990225i \(-0.544543\pi\)
−0.139478 + 0.990225i \(0.544543\pi\)
\(314\) 0 0
\(315\) −30.8146 −1.73620
\(316\) 0 0
\(317\) −0.841152 −0.0472438 −0.0236219 0.999721i \(-0.507520\pi\)
−0.0236219 + 0.999721i \(0.507520\pi\)
\(318\) 0 0
\(319\) −5.81107 −0.325357
\(320\) 0 0
\(321\) 18.8832 1.05396
\(322\) 0 0
\(323\) −12.0508 −0.670522
\(324\) 0 0
\(325\) −3.70609 −0.205577
\(326\) 0 0
\(327\) −8.65805 −0.478791
\(328\) 0 0
\(329\) 12.3230 0.679387
\(330\) 0 0
\(331\) −2.51766 −0.138383 −0.0691916 0.997603i \(-0.522042\pi\)
−0.0691916 + 0.997603i \(0.522042\pi\)
\(332\) 0 0
\(333\) −36.3940 −1.99438
\(334\) 0 0
\(335\) 10.4027 0.568361
\(336\) 0 0
\(337\) 6.56825 0.357795 0.178898 0.983868i \(-0.442747\pi\)
0.178898 + 0.983868i \(0.442747\pi\)
\(338\) 0 0
\(339\) 22.0354 1.19680
\(340\) 0 0
\(341\) 2.58173 0.139809
\(342\) 0 0
\(343\) 3.47930 0.187865
\(344\) 0 0
\(345\) 32.5249 1.75108
\(346\) 0 0
\(347\) 3.25323 0.174643 0.0873213 0.996180i \(-0.472169\pi\)
0.0873213 + 0.996180i \(0.472169\pi\)
\(348\) 0 0
\(349\) 32.1973 1.72348 0.861740 0.507350i \(-0.169375\pi\)
0.861740 + 0.507350i \(0.169375\pi\)
\(350\) 0 0
\(351\) 11.2911 0.602675
\(352\) 0 0
\(353\) −24.8313 −1.32163 −0.660817 0.750547i \(-0.729790\pi\)
−0.660817 + 0.750547i \(0.729790\pi\)
\(354\) 0 0
\(355\) −13.7167 −0.728004
\(356\) 0 0
\(357\) 68.8976 3.64645
\(358\) 0 0
\(359\) −5.90760 −0.311791 −0.155896 0.987774i \(-0.549826\pi\)
−0.155896 + 0.987774i \(0.549826\pi\)
\(360\) 0 0
\(361\) −14.7001 −0.773690
\(362\) 0 0
\(363\) −13.3125 −0.698726
\(364\) 0 0
\(365\) 19.2466 1.00741
\(366\) 0 0
\(367\) −7.39653 −0.386096 −0.193048 0.981189i \(-0.561837\pi\)
−0.193048 + 0.981189i \(0.561837\pi\)
\(368\) 0 0
\(369\) 19.4743 1.01379
\(370\) 0 0
\(371\) −0.707611 −0.0367373
\(372\) 0 0
\(373\) 3.33886 0.172879 0.0864397 0.996257i \(-0.472451\pi\)
0.0864397 + 0.996257i \(0.472451\pi\)
\(374\) 0 0
\(375\) 32.2443 1.66509
\(376\) 0 0
\(377\) −2.41106 −0.124176
\(378\) 0 0
\(379\) 17.0888 0.877792 0.438896 0.898538i \(-0.355370\pi\)
0.438896 + 0.898538i \(0.355370\pi\)
\(380\) 0 0
\(381\) −52.5301 −2.69120
\(382\) 0 0
\(383\) 2.40719 0.123002 0.0615009 0.998107i \(-0.480411\pi\)
0.0615009 + 0.998107i \(0.480411\pi\)
\(384\) 0 0
\(385\) −12.3683 −0.630348
\(386\) 0 0
\(387\) −77.7909 −3.95433
\(388\) 0 0
\(389\) 0.301128 0.0152678 0.00763391 0.999971i \(-0.497570\pi\)
0.00763391 + 0.999971i \(0.497570\pi\)
\(390\) 0 0
\(391\) −49.5918 −2.50796
\(392\) 0 0
\(393\) 58.9097 2.97160
\(394\) 0 0
\(395\) −20.0971 −1.01119
\(396\) 0 0
\(397\) 4.12009 0.206781 0.103391 0.994641i \(-0.467031\pi\)
0.103391 + 0.994641i \(0.467031\pi\)
\(398\) 0 0
\(399\) −24.5836 −1.23072
\(400\) 0 0
\(401\) −19.5132 −0.974444 −0.487222 0.873278i \(-0.661990\pi\)
−0.487222 + 0.873278i \(0.661990\pi\)
\(402\) 0 0
\(403\) 1.07118 0.0533594
\(404\) 0 0
\(405\) −16.2281 −0.806383
\(406\) 0 0
\(407\) −14.6078 −0.724082
\(408\) 0 0
\(409\) 9.50502 0.469993 0.234997 0.971996i \(-0.424492\pi\)
0.234997 + 0.971996i \(0.424492\pi\)
\(410\) 0 0
\(411\) −36.4824 −1.79954
\(412\) 0 0
\(413\) 10.2232 0.503050
\(414\) 0 0
\(415\) 14.6028 0.716824
\(416\) 0 0
\(417\) −19.8966 −0.974340
\(418\) 0 0
\(419\) 27.1448 1.32611 0.663054 0.748572i \(-0.269260\pi\)
0.663054 + 0.748572i \(0.269260\pi\)
\(420\) 0 0
\(421\) −6.07271 −0.295966 −0.147983 0.988990i \(-0.547278\pi\)
−0.147983 + 0.988990i \(0.547278\pi\)
\(422\) 0 0
\(423\) 20.5333 0.998365
\(424\) 0 0
\(425\) −20.1066 −0.975313
\(426\) 0 0
\(427\) 5.38390 0.260545
\(428\) 0 0
\(429\) 8.49337 0.410064
\(430\) 0 0
\(431\) 16.9549 0.816691 0.408345 0.912828i \(-0.366106\pi\)
0.408345 + 0.912828i \(0.366106\pi\)
\(432\) 0 0
\(433\) 8.45034 0.406097 0.203049 0.979169i \(-0.434915\pi\)
0.203049 + 0.979169i \(0.434915\pi\)
\(434\) 0 0
\(435\) 8.57901 0.411332
\(436\) 0 0
\(437\) 17.6950 0.846469
\(438\) 0 0
\(439\) 2.77165 0.132284 0.0661418 0.997810i \(-0.478931\pi\)
0.0661418 + 0.997810i \(0.478931\pi\)
\(440\) 0 0
\(441\) 50.8226 2.42012
\(442\) 0 0
\(443\) 3.11764 0.148123 0.0740617 0.997254i \(-0.476404\pi\)
0.0740617 + 0.997254i \(0.476404\pi\)
\(444\) 0 0
\(445\) 2.29445 0.108767
\(446\) 0 0
\(447\) −59.5469 −2.81647
\(448\) 0 0
\(449\) −30.7717 −1.45221 −0.726103 0.687586i \(-0.758670\pi\)
−0.726103 + 0.687586i \(0.758670\pi\)
\(450\) 0 0
\(451\) 7.81659 0.368069
\(452\) 0 0
\(453\) 10.6492 0.500344
\(454\) 0 0
\(455\) −5.13172 −0.240579
\(456\) 0 0
\(457\) 35.4681 1.65913 0.829564 0.558412i \(-0.188589\pi\)
0.829564 + 0.558412i \(0.188589\pi\)
\(458\) 0 0
\(459\) 61.2575 2.85925
\(460\) 0 0
\(461\) −32.3513 −1.50675 −0.753376 0.657590i \(-0.771576\pi\)
−0.753376 + 0.657590i \(0.771576\pi\)
\(462\) 0 0
\(463\) 11.9407 0.554932 0.277466 0.960735i \(-0.410505\pi\)
0.277466 + 0.960735i \(0.410505\pi\)
\(464\) 0 0
\(465\) −3.81147 −0.176753
\(466\) 0 0
\(467\) 25.5918 1.18425 0.592124 0.805847i \(-0.298289\pi\)
0.592124 + 0.805847i \(0.298289\pi\)
\(468\) 0 0
\(469\) −32.3573 −1.49412
\(470\) 0 0
\(471\) −43.0809 −1.98506
\(472\) 0 0
\(473\) −31.2236 −1.43566
\(474\) 0 0
\(475\) 7.17432 0.329180
\(476\) 0 0
\(477\) −1.17907 −0.0539858
\(478\) 0 0
\(479\) −20.5861 −0.940605 −0.470303 0.882505i \(-0.655855\pi\)
−0.470303 + 0.882505i \(0.655855\pi\)
\(480\) 0 0
\(481\) −6.06089 −0.276353
\(482\) 0 0
\(483\) −101.168 −4.60328
\(484\) 0 0
\(485\) −24.2712 −1.10210
\(486\) 0 0
\(487\) 14.7317 0.667556 0.333778 0.942652i \(-0.391676\pi\)
0.333778 + 0.942652i \(0.391676\pi\)
\(488\) 0 0
\(489\) −21.4295 −0.969078
\(490\) 0 0
\(491\) 37.3846 1.68715 0.843573 0.537015i \(-0.180448\pi\)
0.843573 + 0.537015i \(0.180448\pi\)
\(492\) 0 0
\(493\) −13.0807 −0.589124
\(494\) 0 0
\(495\) −20.6089 −0.926302
\(496\) 0 0
\(497\) 42.6652 1.91379
\(498\) 0 0
\(499\) 6.25178 0.279868 0.139934 0.990161i \(-0.455311\pi\)
0.139934 + 0.990161i \(0.455311\pi\)
\(500\) 0 0
\(501\) 35.6509 1.59277
\(502\) 0 0
\(503\) −27.3844 −1.22101 −0.610504 0.792013i \(-0.709033\pi\)
−0.610504 + 0.792013i \(0.709033\pi\)
\(504\) 0 0
\(505\) −13.2788 −0.590897
\(506\) 0 0
\(507\) −36.4014 −1.61664
\(508\) 0 0
\(509\) 15.8700 0.703424 0.351712 0.936108i \(-0.385600\pi\)
0.351712 + 0.936108i \(0.385600\pi\)
\(510\) 0 0
\(511\) −59.8657 −2.64830
\(512\) 0 0
\(513\) −21.8575 −0.965034
\(514\) 0 0
\(515\) −14.5380 −0.640619
\(516\) 0 0
\(517\) 8.24164 0.362467
\(518\) 0 0
\(519\) −23.9181 −1.04989
\(520\) 0 0
\(521\) −18.6914 −0.818886 −0.409443 0.912336i \(-0.634277\pi\)
−0.409443 + 0.912336i \(0.634277\pi\)
\(522\) 0 0
\(523\) −2.95749 −0.129322 −0.0646609 0.997907i \(-0.520597\pi\)
−0.0646609 + 0.997907i \(0.520597\pi\)
\(524\) 0 0
\(525\) −41.0176 −1.79016
\(526\) 0 0
\(527\) 5.81147 0.253152
\(528\) 0 0
\(529\) 49.8194 2.16606
\(530\) 0 0
\(531\) 17.0345 0.739236
\(532\) 0 0
\(533\) 3.24317 0.140477
\(534\) 0 0
\(535\) −7.63057 −0.329898
\(536\) 0 0
\(537\) 62.4067 2.69305
\(538\) 0 0
\(539\) 20.3991 0.878651
\(540\) 0 0
\(541\) −7.39296 −0.317848 −0.158924 0.987291i \(-0.550802\pi\)
−0.158924 + 0.987291i \(0.550802\pi\)
\(542\) 0 0
\(543\) 14.4486 0.620048
\(544\) 0 0
\(545\) 3.49866 0.149866
\(546\) 0 0
\(547\) −7.65413 −0.327267 −0.163634 0.986521i \(-0.552321\pi\)
−0.163634 + 0.986521i \(0.552321\pi\)
\(548\) 0 0
\(549\) 8.97102 0.382874
\(550\) 0 0
\(551\) 4.66737 0.198837
\(552\) 0 0
\(553\) 62.5113 2.65825
\(554\) 0 0
\(555\) 21.5658 0.915418
\(556\) 0 0
\(557\) −8.17941 −0.346573 −0.173286 0.984871i \(-0.555439\pi\)
−0.173286 + 0.984871i \(0.555439\pi\)
\(558\) 0 0
\(559\) −12.9549 −0.547936
\(560\) 0 0
\(561\) 46.0790 1.94546
\(562\) 0 0
\(563\) 21.3577 0.900121 0.450060 0.892998i \(-0.351402\pi\)
0.450060 + 0.892998i \(0.351402\pi\)
\(564\) 0 0
\(565\) −8.90434 −0.374608
\(566\) 0 0
\(567\) 50.4771 2.11984
\(568\) 0 0
\(569\) −16.2546 −0.681428 −0.340714 0.940167i \(-0.610669\pi\)
−0.340714 + 0.940167i \(0.610669\pi\)
\(570\) 0 0
\(571\) −39.6822 −1.66065 −0.830324 0.557281i \(-0.811845\pi\)
−0.830324 + 0.557281i \(0.811845\pi\)
\(572\) 0 0
\(573\) −40.2605 −1.68191
\(574\) 0 0
\(575\) 29.5240 1.23124
\(576\) 0 0
\(577\) −46.7231 −1.94511 −0.972553 0.232680i \(-0.925251\pi\)
−0.972553 + 0.232680i \(0.925251\pi\)
\(578\) 0 0
\(579\) 17.6822 0.734846
\(580\) 0 0
\(581\) −45.4216 −1.88440
\(582\) 0 0
\(583\) −0.473253 −0.0196001
\(584\) 0 0
\(585\) −8.55081 −0.353532
\(586\) 0 0
\(587\) 18.0103 0.743366 0.371683 0.928360i \(-0.378781\pi\)
0.371683 + 0.928360i \(0.378781\pi\)
\(588\) 0 0
\(589\) −2.07362 −0.0854418
\(590\) 0 0
\(591\) −73.2964 −3.01501
\(592\) 0 0
\(593\) −4.51074 −0.185234 −0.0926170 0.995702i \(-0.529523\pi\)
−0.0926170 + 0.995702i \(0.529523\pi\)
\(594\) 0 0
\(595\) −27.8410 −1.14137
\(596\) 0 0
\(597\) −17.0992 −0.699825
\(598\) 0 0
\(599\) −37.1770 −1.51901 −0.759505 0.650501i \(-0.774559\pi\)
−0.759505 + 0.650501i \(0.774559\pi\)
\(600\) 0 0
\(601\) −41.4176 −1.68946 −0.844731 0.535192i \(-0.820239\pi\)
−0.844731 + 0.535192i \(0.820239\pi\)
\(602\) 0 0
\(603\) −53.9159 −2.19562
\(604\) 0 0
\(605\) 5.37950 0.218708
\(606\) 0 0
\(607\) 32.2230 1.30789 0.653946 0.756541i \(-0.273112\pi\)
0.653946 + 0.756541i \(0.273112\pi\)
\(608\) 0 0
\(609\) −26.6847 −1.08132
\(610\) 0 0
\(611\) 3.41953 0.138339
\(612\) 0 0
\(613\) −46.1486 −1.86393 −0.931963 0.362553i \(-0.881905\pi\)
−0.931963 + 0.362553i \(0.881905\pi\)
\(614\) 0 0
\(615\) −11.5398 −0.465330
\(616\) 0 0
\(617\) −5.70572 −0.229704 −0.114852 0.993383i \(-0.536639\pi\)
−0.114852 + 0.993383i \(0.536639\pi\)
\(618\) 0 0
\(619\) −11.2110 −0.450610 −0.225305 0.974288i \(-0.572338\pi\)
−0.225305 + 0.974288i \(0.572338\pi\)
\(620\) 0 0
\(621\) −89.9490 −3.60953
\(622\) 0 0
\(623\) −7.13681 −0.285930
\(624\) 0 0
\(625\) 4.26935 0.170774
\(626\) 0 0
\(627\) −16.4416 −0.656616
\(628\) 0 0
\(629\) −32.8821 −1.31109
\(630\) 0 0
\(631\) 39.2823 1.56380 0.781901 0.623402i \(-0.214250\pi\)
0.781901 + 0.623402i \(0.214250\pi\)
\(632\) 0 0
\(633\) −56.0851 −2.22918
\(634\) 0 0
\(635\) 21.2270 0.842369
\(636\) 0 0
\(637\) 8.46375 0.335346
\(638\) 0 0
\(639\) 71.0915 2.81234
\(640\) 0 0
\(641\) −30.7592 −1.21492 −0.607458 0.794352i \(-0.707811\pi\)
−0.607458 + 0.794352i \(0.707811\pi\)
\(642\) 0 0
\(643\) 38.4960 1.51814 0.759068 0.651011i \(-0.225655\pi\)
0.759068 + 0.651011i \(0.225655\pi\)
\(644\) 0 0
\(645\) 46.0961 1.81503
\(646\) 0 0
\(647\) −33.7906 −1.32844 −0.664222 0.747535i \(-0.731237\pi\)
−0.664222 + 0.747535i \(0.731237\pi\)
\(648\) 0 0
\(649\) 6.83731 0.268388
\(650\) 0 0
\(651\) 11.8554 0.464652
\(652\) 0 0
\(653\) −9.15608 −0.358305 −0.179153 0.983821i \(-0.557336\pi\)
−0.179153 + 0.983821i \(0.557336\pi\)
\(654\) 0 0
\(655\) −23.8050 −0.930138
\(656\) 0 0
\(657\) −99.7523 −3.89171
\(658\) 0 0
\(659\) 8.36148 0.325717 0.162859 0.986649i \(-0.447929\pi\)
0.162859 + 0.986649i \(0.447929\pi\)
\(660\) 0 0
\(661\) 6.57195 0.255619 0.127810 0.991799i \(-0.459205\pi\)
0.127810 + 0.991799i \(0.459205\pi\)
\(662\) 0 0
\(663\) 19.1186 0.742503
\(664\) 0 0
\(665\) 9.93408 0.385227
\(666\) 0 0
\(667\) 19.2074 0.743712
\(668\) 0 0
\(669\) −49.3237 −1.90696
\(670\) 0 0
\(671\) 3.60078 0.139006
\(672\) 0 0
\(673\) 17.1798 0.662233 0.331116 0.943590i \(-0.392575\pi\)
0.331116 + 0.943590i \(0.392575\pi\)
\(674\) 0 0
\(675\) −36.4691 −1.40370
\(676\) 0 0
\(677\) 23.2374 0.893085 0.446542 0.894763i \(-0.352655\pi\)
0.446542 + 0.894763i \(0.352655\pi\)
\(678\) 0 0
\(679\) 75.4948 2.89723
\(680\) 0 0
\(681\) −48.8422 −1.87164
\(682\) 0 0
\(683\) 26.4209 1.01097 0.505485 0.862836i \(-0.331314\pi\)
0.505485 + 0.862836i \(0.331314\pi\)
\(684\) 0 0
\(685\) 14.7423 0.563274
\(686\) 0 0
\(687\) 20.3515 0.776457
\(688\) 0 0
\(689\) −0.196357 −0.00748059
\(690\) 0 0
\(691\) 26.6015 1.01197 0.505984 0.862543i \(-0.331130\pi\)
0.505984 + 0.862543i \(0.331130\pi\)
\(692\) 0 0
\(693\) 64.1033 2.43508
\(694\) 0 0
\(695\) 8.04007 0.304977
\(696\) 0 0
\(697\) 17.5951 0.666462
\(698\) 0 0
\(699\) −54.3506 −2.05573
\(700\) 0 0
\(701\) −17.0983 −0.645793 −0.322897 0.946434i \(-0.604657\pi\)
−0.322897 + 0.946434i \(0.604657\pi\)
\(702\) 0 0
\(703\) 11.7328 0.442511
\(704\) 0 0
\(705\) −12.1673 −0.458248
\(706\) 0 0
\(707\) 41.3031 1.55336
\(708\) 0 0
\(709\) 33.6632 1.26425 0.632123 0.774868i \(-0.282184\pi\)
0.632123 + 0.774868i \(0.282184\pi\)
\(710\) 0 0
\(711\) 104.160 3.90632
\(712\) 0 0
\(713\) −8.53343 −0.319579
\(714\) 0 0
\(715\) −3.43211 −0.128354
\(716\) 0 0
\(717\) 20.6394 0.770792
\(718\) 0 0
\(719\) 37.2607 1.38959 0.694794 0.719209i \(-0.255496\pi\)
0.694794 + 0.719209i \(0.255496\pi\)
\(720\) 0 0
\(721\) 45.2198 1.68407
\(722\) 0 0
\(723\) −24.9615 −0.928327
\(724\) 0 0
\(725\) 7.78748 0.289220
\(726\) 0 0
\(727\) −27.2456 −1.01048 −0.505241 0.862978i \(-0.668597\pi\)
−0.505241 + 0.862978i \(0.668597\pi\)
\(728\) 0 0
\(729\) −13.0098 −0.481845
\(730\) 0 0
\(731\) −70.2843 −2.59956
\(732\) 0 0
\(733\) 25.7964 0.952813 0.476407 0.879225i \(-0.341939\pi\)
0.476407 + 0.879225i \(0.341939\pi\)
\(734\) 0 0
\(735\) −30.1157 −1.11083
\(736\) 0 0
\(737\) −21.6407 −0.797145
\(738\) 0 0
\(739\) 26.4631 0.973462 0.486731 0.873552i \(-0.338189\pi\)
0.486731 + 0.873552i \(0.338189\pi\)
\(740\) 0 0
\(741\) −6.82177 −0.250604
\(742\) 0 0
\(743\) 16.4932 0.605075 0.302538 0.953137i \(-0.402166\pi\)
0.302538 + 0.953137i \(0.402166\pi\)
\(744\) 0 0
\(745\) 24.0625 0.881581
\(746\) 0 0
\(747\) −75.6844 −2.76915
\(748\) 0 0
\(749\) 23.7346 0.867244
\(750\) 0 0
\(751\) −2.59903 −0.0948400 −0.0474200 0.998875i \(-0.515100\pi\)
−0.0474200 + 0.998875i \(0.515100\pi\)
\(752\) 0 0
\(753\) 53.0010 1.93146
\(754\) 0 0
\(755\) −4.30328 −0.156612
\(756\) 0 0
\(757\) −31.4161 −1.14184 −0.570919 0.821007i \(-0.693413\pi\)
−0.570919 + 0.821007i \(0.693413\pi\)
\(758\) 0 0
\(759\) −67.6613 −2.45595
\(760\) 0 0
\(761\) 45.4939 1.64915 0.824577 0.565750i \(-0.191413\pi\)
0.824577 + 0.565750i \(0.191413\pi\)
\(762\) 0 0
\(763\) −10.8825 −0.393971
\(764\) 0 0
\(765\) −46.3906 −1.67726
\(766\) 0 0
\(767\) 2.83685 0.102433
\(768\) 0 0
\(769\) 9.91887 0.357683 0.178842 0.983878i \(-0.442765\pi\)
0.178842 + 0.983878i \(0.442765\pi\)
\(770\) 0 0
\(771\) 50.4043 1.81527
\(772\) 0 0
\(773\) −14.1257 −0.508068 −0.254034 0.967195i \(-0.581757\pi\)
−0.254034 + 0.967195i \(0.581757\pi\)
\(774\) 0 0
\(775\) −3.45981 −0.124280
\(776\) 0 0
\(777\) −67.0797 −2.40647
\(778\) 0 0
\(779\) −6.27818 −0.224939
\(780\) 0 0
\(781\) 28.5346 1.02105
\(782\) 0 0
\(783\) −23.7256 −0.847885
\(784\) 0 0
\(785\) 17.4087 0.621342
\(786\) 0 0
\(787\) 34.9135 1.24453 0.622266 0.782806i \(-0.286212\pi\)
0.622266 + 0.782806i \(0.286212\pi\)
\(788\) 0 0
\(789\) 25.3012 0.900746
\(790\) 0 0
\(791\) 27.6966 0.984779
\(792\) 0 0
\(793\) 1.49399 0.0530532
\(794\) 0 0
\(795\) 0.698674 0.0247794
\(796\) 0 0
\(797\) −8.39550 −0.297384 −0.148692 0.988884i \(-0.547506\pi\)
−0.148692 + 0.988884i \(0.547506\pi\)
\(798\) 0 0
\(799\) 18.5519 0.656319
\(800\) 0 0
\(801\) −11.8918 −0.420177
\(802\) 0 0
\(803\) −40.0384 −1.41293
\(804\) 0 0
\(805\) 40.8811 1.44087
\(806\) 0 0
\(807\) 72.4339 2.54979
\(808\) 0 0
\(809\) −3.64857 −0.128277 −0.0641385 0.997941i \(-0.520430\pi\)
−0.0641385 + 0.997941i \(0.520430\pi\)
\(810\) 0 0
\(811\) −37.2315 −1.30737 −0.653687 0.756765i \(-0.726779\pi\)
−0.653687 + 0.756765i \(0.726779\pi\)
\(812\) 0 0
\(813\) 33.9612 1.19107
\(814\) 0 0
\(815\) 8.65953 0.303330
\(816\) 0 0
\(817\) 25.0784 0.877383
\(818\) 0 0
\(819\) 26.5970 0.929374
\(820\) 0 0
\(821\) −23.0624 −0.804884 −0.402442 0.915446i \(-0.631838\pi\)
−0.402442 + 0.915446i \(0.631838\pi\)
\(822\) 0 0
\(823\) −36.9878 −1.28931 −0.644657 0.764472i \(-0.723000\pi\)
−0.644657 + 0.764472i \(0.723000\pi\)
\(824\) 0 0
\(825\) −27.4327 −0.955086
\(826\) 0 0
\(827\) −19.1291 −0.665184 −0.332592 0.943071i \(-0.607923\pi\)
−0.332592 + 0.943071i \(0.607923\pi\)
\(828\) 0 0
\(829\) −39.9822 −1.38864 −0.694320 0.719667i \(-0.744295\pi\)
−0.694320 + 0.719667i \(0.744295\pi\)
\(830\) 0 0
\(831\) −83.4409 −2.89453
\(832\) 0 0
\(833\) 45.9183 1.59097
\(834\) 0 0
\(835\) −14.4063 −0.498551
\(836\) 0 0
\(837\) 10.5408 0.364343
\(838\) 0 0
\(839\) −7.02485 −0.242525 −0.121262 0.992620i \(-0.538694\pi\)
−0.121262 + 0.992620i \(0.538694\pi\)
\(840\) 0 0
\(841\) −23.9337 −0.825301
\(842\) 0 0
\(843\) 57.8954 1.99403
\(844\) 0 0
\(845\) 14.7096 0.506024
\(846\) 0 0
\(847\) −16.7327 −0.574944
\(848\) 0 0
\(849\) −5.48828 −0.188357
\(850\) 0 0
\(851\) 48.2833 1.65513
\(852\) 0 0
\(853\) 25.3929 0.869436 0.434718 0.900567i \(-0.356848\pi\)
0.434718 + 0.900567i \(0.356848\pi\)
\(854\) 0 0
\(855\) 16.5528 0.566095
\(856\) 0 0
\(857\) 17.5775 0.600435 0.300217 0.953871i \(-0.402941\pi\)
0.300217 + 0.953871i \(0.402941\pi\)
\(858\) 0 0
\(859\) 1.88009 0.0641479 0.0320740 0.999485i \(-0.489789\pi\)
0.0320740 + 0.999485i \(0.489789\pi\)
\(860\) 0 0
\(861\) 35.8942 1.22327
\(862\) 0 0
\(863\) 28.4117 0.967145 0.483573 0.875304i \(-0.339339\pi\)
0.483573 + 0.875304i \(0.339339\pi\)
\(864\) 0 0
\(865\) 9.66514 0.328625
\(866\) 0 0
\(867\) 51.5135 1.74949
\(868\) 0 0
\(869\) 41.8078 1.41823
\(870\) 0 0
\(871\) −8.97890 −0.304238
\(872\) 0 0
\(873\) 125.794 4.25750
\(874\) 0 0
\(875\) 40.5285 1.37011
\(876\) 0 0
\(877\) 49.0719 1.65704 0.828520 0.559959i \(-0.189183\pi\)
0.828520 + 0.559959i \(0.189183\pi\)
\(878\) 0 0
\(879\) 61.6015 2.07777
\(880\) 0 0
\(881\) −28.1295 −0.947706 −0.473853 0.880604i \(-0.657137\pi\)
−0.473853 + 0.880604i \(0.657137\pi\)
\(882\) 0 0
\(883\) −32.5579 −1.09566 −0.547831 0.836589i \(-0.684546\pi\)
−0.547831 + 0.836589i \(0.684546\pi\)
\(884\) 0 0
\(885\) −10.0941 −0.339308
\(886\) 0 0
\(887\) 27.5919 0.926445 0.463222 0.886242i \(-0.346693\pi\)
0.463222 + 0.886242i \(0.346693\pi\)
\(888\) 0 0
\(889\) −66.0260 −2.21444
\(890\) 0 0
\(891\) 33.7593 1.13098
\(892\) 0 0
\(893\) −6.61958 −0.221516
\(894\) 0 0
\(895\) −25.2181 −0.842948
\(896\) 0 0
\(897\) −28.0732 −0.937338
\(898\) 0 0
\(899\) −2.25084 −0.0750697
\(900\) 0 0
\(901\) −1.06529 −0.0354900
\(902\) 0 0
\(903\) −143.380 −4.77140
\(904\) 0 0
\(905\) −5.83857 −0.194081
\(906\) 0 0
\(907\) −0.0313108 −0.00103966 −0.000519829 1.00000i \(-0.500165\pi\)
−0.000519829 1.00000i \(0.500165\pi\)
\(908\) 0 0
\(909\) 68.8221 2.28268
\(910\) 0 0
\(911\) 44.7801 1.48363 0.741816 0.670604i \(-0.233965\pi\)
0.741816 + 0.670604i \(0.233965\pi\)
\(912\) 0 0
\(913\) −30.3781 −1.00537
\(914\) 0 0
\(915\) −5.31591 −0.175739
\(916\) 0 0
\(917\) 74.0446 2.44517
\(918\) 0 0
\(919\) −33.6755 −1.11085 −0.555426 0.831566i \(-0.687445\pi\)
−0.555426 + 0.831566i \(0.687445\pi\)
\(920\) 0 0
\(921\) 48.6442 1.60288
\(922\) 0 0
\(923\) 11.8393 0.389694
\(924\) 0 0
\(925\) 19.5761 0.643658
\(926\) 0 0
\(927\) 75.3483 2.47476
\(928\) 0 0
\(929\) −5.13585 −0.168502 −0.0842508 0.996445i \(-0.526850\pi\)
−0.0842508 + 0.996445i \(0.526850\pi\)
\(930\) 0 0
\(931\) −16.3843 −0.536974
\(932\) 0 0
\(933\) −21.1004 −0.690798
\(934\) 0 0
\(935\) −18.6202 −0.608946
\(936\) 0 0
\(937\) 11.1367 0.363819 0.181910 0.983315i \(-0.441772\pi\)
0.181910 + 0.983315i \(0.441772\pi\)
\(938\) 0 0
\(939\) −15.1571 −0.494632
\(940\) 0 0
\(941\) −43.6608 −1.42330 −0.711651 0.702533i \(-0.752052\pi\)
−0.711651 + 0.702533i \(0.752052\pi\)
\(942\) 0 0
\(943\) −25.8362 −0.841344
\(944\) 0 0
\(945\) −50.4978 −1.64269
\(946\) 0 0
\(947\) 37.8252 1.22915 0.614576 0.788857i \(-0.289327\pi\)
0.614576 + 0.788857i \(0.289327\pi\)
\(948\) 0 0
\(949\) −16.6123 −0.539257
\(950\) 0 0
\(951\) −2.58333 −0.0837703
\(952\) 0 0
\(953\) 31.4722 1.01949 0.509743 0.860327i \(-0.329741\pi\)
0.509743 + 0.860327i \(0.329741\pi\)
\(954\) 0 0
\(955\) 16.2690 0.526452
\(956\) 0 0
\(957\) −17.8468 −0.576906
\(958\) 0 0
\(959\) −45.8554 −1.48075
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 39.5482 1.27442
\(964\) 0 0
\(965\) −7.14524 −0.230013
\(966\) 0 0
\(967\) 34.6404 1.11396 0.556980 0.830526i \(-0.311960\pi\)
0.556980 + 0.830526i \(0.311960\pi\)
\(968\) 0 0
\(969\) −37.0101 −1.18893
\(970\) 0 0
\(971\) 51.9007 1.66557 0.832786 0.553595i \(-0.186744\pi\)
0.832786 + 0.553595i \(0.186744\pi\)
\(972\) 0 0
\(973\) −25.0084 −0.801732
\(974\) 0 0
\(975\) −11.3821 −0.364518
\(976\) 0 0
\(977\) 5.90194 0.188820 0.0944099 0.995533i \(-0.469904\pi\)
0.0944099 + 0.995533i \(0.469904\pi\)
\(978\) 0 0
\(979\) −4.77312 −0.152550
\(980\) 0 0
\(981\) −18.1331 −0.578944
\(982\) 0 0
\(983\) 37.6032 1.19935 0.599677 0.800242i \(-0.295296\pi\)
0.599677 + 0.800242i \(0.295296\pi\)
\(984\) 0 0
\(985\) 29.6186 0.943725
\(986\) 0 0
\(987\) 37.8460 1.20465
\(988\) 0 0
\(989\) 103.204 3.28169
\(990\) 0 0
\(991\) −11.3304 −0.359921 −0.179960 0.983674i \(-0.557597\pi\)
−0.179960 + 0.983674i \(0.557597\pi\)
\(992\) 0 0
\(993\) −7.73220 −0.245374
\(994\) 0 0
\(995\) 6.90968 0.219052
\(996\) 0 0
\(997\) 9.18624 0.290931 0.145466 0.989363i \(-0.453532\pi\)
0.145466 + 0.989363i \(0.453532\pi\)
\(998\) 0 0
\(999\) −59.6412 −1.88696
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.bb.1.6 6
4.3 odd 2 1984.2.a.ba.1.1 6
8.3 odd 2 992.2.a.h.1.6 yes 6
8.5 even 2 992.2.a.g.1.1 6
24.5 odd 2 8928.2.a.br.1.3 6
24.11 even 2 8928.2.a.bq.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
992.2.a.g.1.1 6 8.5 even 2
992.2.a.h.1.6 yes 6 8.3 odd 2
1984.2.a.ba.1.1 6 4.3 odd 2
1984.2.a.bb.1.6 6 1.1 even 1 trivial
8928.2.a.bq.1.3 6 24.11 even 2
8928.2.a.br.1.3 6 24.5 odd 2