Properties

Label 1984.2.a.bb.1.5
Level $1984$
Weight $2$
Character 1984.1
Self dual yes
Analytic conductor $15.842$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1984,2,Mod(1,1984)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1984.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1984, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1984.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,2,0,-2,0,2,0,10,0,10,0,-10,0,8,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.8423197610\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.66862976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 20x^{2} - 16x - 15 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 992)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.35608\) of defining polynomial
Character \(\chi\) \(=\) 1984.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.59078 q^{3} +2.33595 q^{5} -4.18539 q^{7} +3.71216 q^{9} +3.60845 q^{11} +0.590783 q^{13} +6.05193 q^{15} -4.05193 q^{17} +8.35254 q^{19} -10.8434 q^{21} +5.80918 q^{23} +0.456644 q^{25} +1.84504 q^{27} +5.62504 q^{29} +1.00000 q^{31} +9.34871 q^{33} -9.77685 q^{35} -7.30619 q^{37} +1.53059 q^{39} +1.83120 q^{41} +4.23607 q^{43} +8.67140 q^{45} -2.20248 q^{47} +10.5175 q^{49} -10.4977 q^{51} -8.94498 q^{53} +8.42915 q^{55} +21.6396 q^{57} +8.59529 q^{59} +4.17005 q^{61} -15.5368 q^{63} +1.38004 q^{65} -10.0962 q^{67} +15.0503 q^{69} -2.38787 q^{71} +6.64421 q^{73} +1.18306 q^{75} -15.1028 q^{77} +8.04428 q^{79} -6.35637 q^{81} +12.6150 q^{83} -9.46509 q^{85} +14.5733 q^{87} -17.9054 q^{89} -2.47266 q^{91} +2.59078 q^{93} +19.5111 q^{95} -0.777674 q^{97} +13.3951 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 10 q^{9} + 10 q^{11} - 10 q^{13} + 8 q^{15} + 4 q^{17} + 2 q^{19} - 4 q^{21} + 4 q^{23} + 20 q^{25} + 8 q^{27} - 10 q^{29} + 6 q^{31} + 8 q^{33} + 14 q^{35} - 26 q^{37}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.59078 1.49579 0.747895 0.663817i \(-0.231065\pi\)
0.747895 + 0.663817i \(0.231065\pi\)
\(4\) 0 0
\(5\) 2.33595 1.04467 0.522333 0.852741i \(-0.325062\pi\)
0.522333 + 0.852741i \(0.325062\pi\)
\(6\) 0 0
\(7\) −4.18539 −1.58193 −0.790965 0.611862i \(-0.790421\pi\)
−0.790965 + 0.611862i \(0.790421\pi\)
\(8\) 0 0
\(9\) 3.71216 1.23739
\(10\) 0 0
\(11\) 3.60845 1.08799 0.543994 0.839089i \(-0.316911\pi\)
0.543994 + 0.839089i \(0.316911\pi\)
\(12\) 0 0
\(13\) 0.590783 0.163854 0.0819268 0.996638i \(-0.473893\pi\)
0.0819268 + 0.996638i \(0.473893\pi\)
\(14\) 0 0
\(15\) 6.05193 1.56260
\(16\) 0 0
\(17\) −4.05193 −0.982737 −0.491369 0.870952i \(-0.663503\pi\)
−0.491369 + 0.870952i \(0.663503\pi\)
\(18\) 0 0
\(19\) 8.35254 1.91620 0.958102 0.286427i \(-0.0924677\pi\)
0.958102 + 0.286427i \(0.0924677\pi\)
\(20\) 0 0
\(21\) −10.8434 −2.36623
\(22\) 0 0
\(23\) 5.80918 1.21130 0.605649 0.795732i \(-0.292914\pi\)
0.605649 + 0.795732i \(0.292914\pi\)
\(24\) 0 0
\(25\) 0.456644 0.0913287
\(26\) 0 0
\(27\) 1.84504 0.355078
\(28\) 0 0
\(29\) 5.62504 1.04454 0.522272 0.852779i \(-0.325084\pi\)
0.522272 + 0.852779i \(0.325084\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 9.34871 1.62740
\(34\) 0 0
\(35\) −9.77685 −1.65259
\(36\) 0 0
\(37\) −7.30619 −1.20113 −0.600565 0.799576i \(-0.705058\pi\)
−0.600565 + 0.799576i \(0.705058\pi\)
\(38\) 0 0
\(39\) 1.53059 0.245091
\(40\) 0 0
\(41\) 1.83120 0.285985 0.142993 0.989724i \(-0.454327\pi\)
0.142993 + 0.989724i \(0.454327\pi\)
\(42\) 0 0
\(43\) 4.23607 0.645994 0.322997 0.946400i \(-0.395310\pi\)
0.322997 + 0.946400i \(0.395310\pi\)
\(44\) 0 0
\(45\) 8.67140 1.29266
\(46\) 0 0
\(47\) −2.20248 −0.321265 −0.160633 0.987014i \(-0.551353\pi\)
−0.160633 + 0.987014i \(0.551353\pi\)
\(48\) 0 0
\(49\) 10.5175 1.50250
\(50\) 0 0
\(51\) −10.4977 −1.46997
\(52\) 0 0
\(53\) −8.94498 −1.22869 −0.614343 0.789039i \(-0.710579\pi\)
−0.614343 + 0.789039i \(0.710579\pi\)
\(54\) 0 0
\(55\) 8.42915 1.13659
\(56\) 0 0
\(57\) 21.6396 2.86624
\(58\) 0 0
\(59\) 8.59529 1.11901 0.559505 0.828827i \(-0.310991\pi\)
0.559505 + 0.828827i \(0.310991\pi\)
\(60\) 0 0
\(61\) 4.17005 0.533921 0.266960 0.963708i \(-0.413981\pi\)
0.266960 + 0.963708i \(0.413981\pi\)
\(62\) 0 0
\(63\) −15.5368 −1.95746
\(64\) 0 0
\(65\) 1.38004 0.171173
\(66\) 0 0
\(67\) −10.0962 −1.23345 −0.616724 0.787180i \(-0.711540\pi\)
−0.616724 + 0.787180i \(0.711540\pi\)
\(68\) 0 0
\(69\) 15.0503 1.81185
\(70\) 0 0
\(71\) −2.38787 −0.283389 −0.141694 0.989910i \(-0.545255\pi\)
−0.141694 + 0.989910i \(0.545255\pi\)
\(72\) 0 0
\(73\) 6.64421 0.777646 0.388823 0.921312i \(-0.372882\pi\)
0.388823 + 0.921312i \(0.372882\pi\)
\(74\) 0 0
\(75\) 1.18306 0.136608
\(76\) 0 0
\(77\) −15.1028 −1.72112
\(78\) 0 0
\(79\) 8.04428 0.905052 0.452526 0.891751i \(-0.350523\pi\)
0.452526 + 0.891751i \(0.350523\pi\)
\(80\) 0 0
\(81\) −6.35637 −0.706263
\(82\) 0 0
\(83\) 12.6150 1.38468 0.692340 0.721572i \(-0.256580\pi\)
0.692340 + 0.721572i \(0.256580\pi\)
\(84\) 0 0
\(85\) −9.46509 −1.02663
\(86\) 0 0
\(87\) 14.5733 1.56242
\(88\) 0 0
\(89\) −17.9054 −1.89797 −0.948984 0.315325i \(-0.897886\pi\)
−0.948984 + 0.315325i \(0.897886\pi\)
\(90\) 0 0
\(91\) −2.47266 −0.259205
\(92\) 0 0
\(93\) 2.59078 0.268652
\(94\) 0 0
\(95\) 19.5111 2.00179
\(96\) 0 0
\(97\) −0.777674 −0.0789608 −0.0394804 0.999220i \(-0.512570\pi\)
−0.0394804 + 0.999220i \(0.512570\pi\)
\(98\) 0 0
\(99\) 13.3951 1.34626
\(100\) 0 0
\(101\) 9.45799 0.941106 0.470553 0.882372i \(-0.344055\pi\)
0.470553 + 0.882372i \(0.344055\pi\)
\(102\) 0 0
\(103\) 16.0791 1.58432 0.792161 0.610312i \(-0.208956\pi\)
0.792161 + 0.610312i \(0.208956\pi\)
\(104\) 0 0
\(105\) −25.3297 −2.47193
\(106\) 0 0
\(107\) −15.2683 −1.47605 −0.738023 0.674776i \(-0.764240\pi\)
−0.738023 + 0.674776i \(0.764240\pi\)
\(108\) 0 0
\(109\) 15.8883 1.52182 0.760911 0.648856i \(-0.224752\pi\)
0.760911 + 0.648856i \(0.224752\pi\)
\(110\) 0 0
\(111\) −18.9287 −1.79664
\(112\) 0 0
\(113\) −14.8739 −1.39922 −0.699608 0.714527i \(-0.746642\pi\)
−0.699608 + 0.714527i \(0.746642\pi\)
\(114\) 0 0
\(115\) 13.5699 1.26540
\(116\) 0 0
\(117\) 2.19308 0.202750
\(118\) 0 0
\(119\) 16.9589 1.55462
\(120\) 0 0
\(121\) 2.02092 0.183720
\(122\) 0 0
\(123\) 4.74424 0.427774
\(124\) 0 0
\(125\) −10.6130 −0.949259
\(126\) 0 0
\(127\) −14.3389 −1.27238 −0.636188 0.771534i \(-0.719490\pi\)
−0.636188 + 0.771534i \(0.719490\pi\)
\(128\) 0 0
\(129\) 10.9747 0.966271
\(130\) 0 0
\(131\) −7.07801 −0.618409 −0.309204 0.950996i \(-0.600063\pi\)
−0.309204 + 0.950996i \(0.600063\pi\)
\(132\) 0 0
\(133\) −34.9587 −3.03130
\(134\) 0 0
\(135\) 4.30992 0.370939
\(136\) 0 0
\(137\) −12.0454 −1.02911 −0.514555 0.857457i \(-0.672043\pi\)
−0.514555 + 0.857457i \(0.672043\pi\)
\(138\) 0 0
\(139\) −15.5220 −1.31656 −0.658280 0.752773i \(-0.728716\pi\)
−0.658280 + 0.752773i \(0.728716\pi\)
\(140\) 0 0
\(141\) −5.70615 −0.480545
\(142\) 0 0
\(143\) 2.13181 0.178271
\(144\) 0 0
\(145\) 13.1398 1.09120
\(146\) 0 0
\(147\) 27.2486 2.24743
\(148\) 0 0
\(149\) −14.7021 −1.20444 −0.602221 0.798330i \(-0.705717\pi\)
−0.602221 + 0.798330i \(0.705717\pi\)
\(150\) 0 0
\(151\) −9.29301 −0.756255 −0.378127 0.925754i \(-0.623432\pi\)
−0.378127 + 0.925754i \(0.623432\pi\)
\(152\) 0 0
\(153\) −15.0414 −1.21602
\(154\) 0 0
\(155\) 2.33595 0.187628
\(156\) 0 0
\(157\) 7.22290 0.576450 0.288225 0.957563i \(-0.406935\pi\)
0.288225 + 0.957563i \(0.406935\pi\)
\(158\) 0 0
\(159\) −23.1745 −1.83786
\(160\) 0 0
\(161\) −24.3137 −1.91619
\(162\) 0 0
\(163\) −4.52792 −0.354654 −0.177327 0.984152i \(-0.556745\pi\)
−0.177327 + 0.984152i \(0.556745\pi\)
\(164\) 0 0
\(165\) 21.8381 1.70009
\(166\) 0 0
\(167\) −19.4123 −1.50217 −0.751085 0.660206i \(-0.770469\pi\)
−0.751085 + 0.660206i \(0.770469\pi\)
\(168\) 0 0
\(169\) −12.6510 −0.973152
\(170\) 0 0
\(171\) 31.0059 2.37108
\(172\) 0 0
\(173\) −1.72658 −0.131269 −0.0656345 0.997844i \(-0.520907\pi\)
−0.0656345 + 0.997844i \(0.520907\pi\)
\(174\) 0 0
\(175\) −1.91123 −0.144476
\(176\) 0 0
\(177\) 22.2685 1.67380
\(178\) 0 0
\(179\) 3.61013 0.269834 0.134917 0.990857i \(-0.456923\pi\)
0.134917 + 0.990857i \(0.456923\pi\)
\(180\) 0 0
\(181\) −13.2992 −0.988519 −0.494260 0.869314i \(-0.664561\pi\)
−0.494260 + 0.869314i \(0.664561\pi\)
\(182\) 0 0
\(183\) 10.8037 0.798633
\(184\) 0 0
\(185\) −17.0669 −1.25478
\(186\) 0 0
\(187\) −14.6212 −1.06921
\(188\) 0 0
\(189\) −7.72222 −0.561709
\(190\) 0 0
\(191\) 11.1660 0.807947 0.403973 0.914771i \(-0.367629\pi\)
0.403973 + 0.914771i \(0.367629\pi\)
\(192\) 0 0
\(193\) −2.27759 −0.163944 −0.0819721 0.996635i \(-0.526122\pi\)
−0.0819721 + 0.996635i \(0.526122\pi\)
\(194\) 0 0
\(195\) 3.57538 0.256038
\(196\) 0 0
\(197\) 15.7441 1.12172 0.560862 0.827909i \(-0.310470\pi\)
0.560862 + 0.827909i \(0.310470\pi\)
\(198\) 0 0
\(199\) 11.7663 0.834088 0.417044 0.908886i \(-0.363066\pi\)
0.417044 + 0.908886i \(0.363066\pi\)
\(200\) 0 0
\(201\) −26.1571 −1.84498
\(202\) 0 0
\(203\) −23.5430 −1.65240
\(204\) 0 0
\(205\) 4.27759 0.298760
\(206\) 0 0
\(207\) 21.5646 1.49884
\(208\) 0 0
\(209\) 30.1397 2.08481
\(210\) 0 0
\(211\) 24.8247 1.70900 0.854501 0.519451i \(-0.173863\pi\)
0.854501 + 0.519451i \(0.173863\pi\)
\(212\) 0 0
\(213\) −6.18647 −0.423890
\(214\) 0 0
\(215\) 9.89522 0.674849
\(216\) 0 0
\(217\) −4.18539 −0.284123
\(218\) 0 0
\(219\) 17.2137 1.16319
\(220\) 0 0
\(221\) −2.39381 −0.161025
\(222\) 0 0
\(223\) 6.22424 0.416806 0.208403 0.978043i \(-0.433173\pi\)
0.208403 + 0.978043i \(0.433173\pi\)
\(224\) 0 0
\(225\) 1.69513 0.113009
\(226\) 0 0
\(227\) 14.8353 0.984651 0.492326 0.870411i \(-0.336147\pi\)
0.492326 + 0.870411i \(0.336147\pi\)
\(228\) 0 0
\(229\) 3.05694 0.202009 0.101004 0.994886i \(-0.467794\pi\)
0.101004 + 0.994886i \(0.467794\pi\)
\(230\) 0 0
\(231\) −39.1280 −2.57444
\(232\) 0 0
\(233\) −3.78937 −0.248250 −0.124125 0.992267i \(-0.539612\pi\)
−0.124125 + 0.992267i \(0.539612\pi\)
\(234\) 0 0
\(235\) −5.14488 −0.335615
\(236\) 0 0
\(237\) 20.8410 1.35377
\(238\) 0 0
\(239\) −15.0581 −0.974028 −0.487014 0.873394i \(-0.661914\pi\)
−0.487014 + 0.873394i \(0.661914\pi\)
\(240\) 0 0
\(241\) 4.12688 0.265836 0.132918 0.991127i \(-0.457565\pi\)
0.132918 + 0.991127i \(0.457565\pi\)
\(242\) 0 0
\(243\) −22.0031 −1.41150
\(244\) 0 0
\(245\) 24.5683 1.56961
\(246\) 0 0
\(247\) 4.93454 0.313977
\(248\) 0 0
\(249\) 32.6828 2.07119
\(250\) 0 0
\(251\) 2.98083 0.188149 0.0940743 0.995565i \(-0.470011\pi\)
0.0940743 + 0.995565i \(0.470011\pi\)
\(252\) 0 0
\(253\) 20.9621 1.31788
\(254\) 0 0
\(255\) −24.5220 −1.53563
\(256\) 0 0
\(257\) −15.6279 −0.974840 −0.487420 0.873168i \(-0.662062\pi\)
−0.487420 + 0.873168i \(0.662062\pi\)
\(258\) 0 0
\(259\) 30.5793 1.90010
\(260\) 0 0
\(261\) 20.8810 1.29250
\(262\) 0 0
\(263\) −6.38622 −0.393791 −0.196896 0.980424i \(-0.563086\pi\)
−0.196896 + 0.980424i \(0.563086\pi\)
\(264\) 0 0
\(265\) −20.8950 −1.28357
\(266\) 0 0
\(267\) −46.3890 −2.83896
\(268\) 0 0
\(269\) 17.3598 1.05845 0.529223 0.848483i \(-0.322484\pi\)
0.529223 + 0.848483i \(0.322484\pi\)
\(270\) 0 0
\(271\) −2.53141 −0.153772 −0.0768862 0.997040i \(-0.524498\pi\)
−0.0768862 + 0.997040i \(0.524498\pi\)
\(272\) 0 0
\(273\) −6.40612 −0.387716
\(274\) 0 0
\(275\) 1.64778 0.0993646
\(276\) 0 0
\(277\) −32.2028 −1.93488 −0.967441 0.253098i \(-0.918551\pi\)
−0.967441 + 0.253098i \(0.918551\pi\)
\(278\) 0 0
\(279\) 3.71216 0.222241
\(280\) 0 0
\(281\) 5.84746 0.348830 0.174415 0.984672i \(-0.444197\pi\)
0.174415 + 0.984672i \(0.444197\pi\)
\(282\) 0 0
\(283\) −22.8288 −1.35703 −0.678515 0.734587i \(-0.737376\pi\)
−0.678515 + 0.734587i \(0.737376\pi\)
\(284\) 0 0
\(285\) 50.5490 2.99426
\(286\) 0 0
\(287\) −7.66429 −0.452409
\(288\) 0 0
\(289\) −0.581873 −0.0342278
\(290\) 0 0
\(291\) −2.01478 −0.118109
\(292\) 0 0
\(293\) 0.781259 0.0456416 0.0228208 0.999740i \(-0.492735\pi\)
0.0228208 + 0.999740i \(0.492735\pi\)
\(294\) 0 0
\(295\) 20.0781 1.16899
\(296\) 0 0
\(297\) 6.65774 0.386321
\(298\) 0 0
\(299\) 3.43197 0.198476
\(300\) 0 0
\(301\) −17.7296 −1.02192
\(302\) 0 0
\(303\) 24.5036 1.40770
\(304\) 0 0
\(305\) 9.74102 0.557769
\(306\) 0 0
\(307\) −15.2748 −0.871781 −0.435890 0.900000i \(-0.643566\pi\)
−0.435890 + 0.900000i \(0.643566\pi\)
\(308\) 0 0
\(309\) 41.6575 2.36981
\(310\) 0 0
\(311\) 19.0256 1.07884 0.539421 0.842036i \(-0.318643\pi\)
0.539421 + 0.842036i \(0.318643\pi\)
\(312\) 0 0
\(313\) 16.2912 0.920832 0.460416 0.887703i \(-0.347700\pi\)
0.460416 + 0.887703i \(0.347700\pi\)
\(314\) 0 0
\(315\) −36.2932 −2.04489
\(316\) 0 0
\(317\) −25.7418 −1.44580 −0.722900 0.690952i \(-0.757192\pi\)
−0.722900 + 0.690952i \(0.757192\pi\)
\(318\) 0 0
\(319\) 20.2977 1.13645
\(320\) 0 0
\(321\) −39.5569 −2.20785
\(322\) 0 0
\(323\) −33.8439 −1.88312
\(324\) 0 0
\(325\) 0.269777 0.0149645
\(326\) 0 0
\(327\) 41.1631 2.27633
\(328\) 0 0
\(329\) 9.21825 0.508219
\(330\) 0 0
\(331\) 5.63438 0.309693 0.154847 0.987939i \(-0.450512\pi\)
0.154847 + 0.987939i \(0.450512\pi\)
\(332\) 0 0
\(333\) −27.1217 −1.48626
\(334\) 0 0
\(335\) −23.5842 −1.28854
\(336\) 0 0
\(337\) 25.5336 1.39090 0.695452 0.718572i \(-0.255204\pi\)
0.695452 + 0.718572i \(0.255204\pi\)
\(338\) 0 0
\(339\) −38.5350 −2.09293
\(340\) 0 0
\(341\) 3.60845 0.195409
\(342\) 0 0
\(343\) −14.7222 −0.794922
\(344\) 0 0
\(345\) 35.1568 1.89278
\(346\) 0 0
\(347\) 15.2285 0.817508 0.408754 0.912644i \(-0.365963\pi\)
0.408754 + 0.912644i \(0.365963\pi\)
\(348\) 0 0
\(349\) −11.2642 −0.602961 −0.301480 0.953472i \(-0.597481\pi\)
−0.301480 + 0.953472i \(0.597481\pi\)
\(350\) 0 0
\(351\) 1.09002 0.0581809
\(352\) 0 0
\(353\) −2.56154 −0.136337 −0.0681684 0.997674i \(-0.521716\pi\)
−0.0681684 + 0.997674i \(0.521716\pi\)
\(354\) 0 0
\(355\) −5.57795 −0.296047
\(356\) 0 0
\(357\) 43.9369 2.32539
\(358\) 0 0
\(359\) 14.1224 0.745350 0.372675 0.927962i \(-0.378441\pi\)
0.372675 + 0.927962i \(0.378441\pi\)
\(360\) 0 0
\(361\) 50.7649 2.67184
\(362\) 0 0
\(363\) 5.23576 0.274806
\(364\) 0 0
\(365\) 15.5205 0.812381
\(366\) 0 0
\(367\) −10.4225 −0.544049 −0.272024 0.962290i \(-0.587693\pi\)
−0.272024 + 0.962290i \(0.587693\pi\)
\(368\) 0 0
\(369\) 6.79770 0.353874
\(370\) 0 0
\(371\) 37.4382 1.94370
\(372\) 0 0
\(373\) 5.27612 0.273187 0.136593 0.990627i \(-0.456385\pi\)
0.136593 + 0.990627i \(0.456385\pi\)
\(374\) 0 0
\(375\) −27.4961 −1.41989
\(376\) 0 0
\(377\) 3.32318 0.171152
\(378\) 0 0
\(379\) −32.6977 −1.67957 −0.839785 0.542919i \(-0.817319\pi\)
−0.839785 + 0.542919i \(0.817319\pi\)
\(380\) 0 0
\(381\) −37.1491 −1.90321
\(382\) 0 0
\(383\) 6.24390 0.319049 0.159524 0.987194i \(-0.449004\pi\)
0.159524 + 0.987194i \(0.449004\pi\)
\(384\) 0 0
\(385\) −35.2793 −1.79800
\(386\) 0 0
\(387\) 15.7249 0.799344
\(388\) 0 0
\(389\) −28.1180 −1.42564 −0.712820 0.701347i \(-0.752583\pi\)
−0.712820 + 0.701347i \(0.752583\pi\)
\(390\) 0 0
\(391\) −23.5384 −1.19039
\(392\) 0 0
\(393\) −18.3376 −0.925009
\(394\) 0 0
\(395\) 18.7910 0.945477
\(396\) 0 0
\(397\) 6.39681 0.321047 0.160523 0.987032i \(-0.448682\pi\)
0.160523 + 0.987032i \(0.448682\pi\)
\(398\) 0 0
\(399\) −90.5703 −4.53419
\(400\) 0 0
\(401\) 24.9467 1.24578 0.622890 0.782310i \(-0.285959\pi\)
0.622890 + 0.782310i \(0.285959\pi\)
\(402\) 0 0
\(403\) 0.590783 0.0294290
\(404\) 0 0
\(405\) −14.8481 −0.737809
\(406\) 0 0
\(407\) −26.3640 −1.30682
\(408\) 0 0
\(409\) −40.1661 −1.98609 −0.993043 0.117748i \(-0.962432\pi\)
−0.993043 + 0.117748i \(0.962432\pi\)
\(410\) 0 0
\(411\) −31.2071 −1.53933
\(412\) 0 0
\(413\) −35.9746 −1.77020
\(414\) 0 0
\(415\) 29.4680 1.44653
\(416\) 0 0
\(417\) −40.2142 −1.96930
\(418\) 0 0
\(419\) −2.87636 −0.140520 −0.0702598 0.997529i \(-0.522383\pi\)
−0.0702598 + 0.997529i \(0.522383\pi\)
\(420\) 0 0
\(421\) −20.3338 −0.991009 −0.495504 0.868605i \(-0.665017\pi\)
−0.495504 + 0.868605i \(0.665017\pi\)
\(422\) 0 0
\(423\) −8.17596 −0.397529
\(424\) 0 0
\(425\) −1.85029 −0.0897521
\(426\) 0 0
\(427\) −17.4533 −0.844625
\(428\) 0 0
\(429\) 5.52306 0.266656
\(430\) 0 0
\(431\) 1.49740 0.0721274 0.0360637 0.999349i \(-0.488518\pi\)
0.0360637 + 0.999349i \(0.488518\pi\)
\(432\) 0 0
\(433\) −0.112797 −0.00542068 −0.00271034 0.999996i \(-0.500863\pi\)
−0.00271034 + 0.999996i \(0.500863\pi\)
\(434\) 0 0
\(435\) 34.0424 1.63221
\(436\) 0 0
\(437\) 48.5214 2.32109
\(438\) 0 0
\(439\) −18.3181 −0.874275 −0.437137 0.899395i \(-0.644008\pi\)
−0.437137 + 0.899395i \(0.644008\pi\)
\(440\) 0 0
\(441\) 39.0426 1.85917
\(442\) 0 0
\(443\) 12.2107 0.580146 0.290073 0.957005i \(-0.406320\pi\)
0.290073 + 0.957005i \(0.406320\pi\)
\(444\) 0 0
\(445\) −41.8260 −1.98274
\(446\) 0 0
\(447\) −38.0899 −1.80159
\(448\) 0 0
\(449\) −1.80460 −0.0851641 −0.0425821 0.999093i \(-0.513558\pi\)
−0.0425821 + 0.999093i \(0.513558\pi\)
\(450\) 0 0
\(451\) 6.60780 0.311149
\(452\) 0 0
\(453\) −24.0762 −1.13120
\(454\) 0 0
\(455\) −5.77600 −0.270783
\(456\) 0 0
\(457\) 28.8808 1.35099 0.675494 0.737365i \(-0.263930\pi\)
0.675494 + 0.737365i \(0.263930\pi\)
\(458\) 0 0
\(459\) −7.47598 −0.348949
\(460\) 0 0
\(461\) 13.5615 0.631622 0.315811 0.948822i \(-0.397723\pi\)
0.315811 + 0.948822i \(0.397723\pi\)
\(462\) 0 0
\(463\) 7.12205 0.330990 0.165495 0.986211i \(-0.447078\pi\)
0.165495 + 0.986211i \(0.447078\pi\)
\(464\) 0 0
\(465\) 6.05193 0.280651
\(466\) 0 0
\(467\) 24.1983 1.11977 0.559883 0.828572i \(-0.310846\pi\)
0.559883 + 0.828572i \(0.310846\pi\)
\(468\) 0 0
\(469\) 42.2566 1.95123
\(470\) 0 0
\(471\) 18.7130 0.862248
\(472\) 0 0
\(473\) 15.2856 0.702835
\(474\) 0 0
\(475\) 3.81413 0.175004
\(476\) 0 0
\(477\) −33.2051 −1.52036
\(478\) 0 0
\(479\) 11.0054 0.502849 0.251425 0.967877i \(-0.419101\pi\)
0.251425 + 0.967877i \(0.419101\pi\)
\(480\) 0 0
\(481\) −4.31637 −0.196810
\(482\) 0 0
\(483\) −62.9915 −2.86621
\(484\) 0 0
\(485\) −1.81660 −0.0824878
\(486\) 0 0
\(487\) −31.9464 −1.44763 −0.723815 0.689994i \(-0.757613\pi\)
−0.723815 + 0.689994i \(0.757613\pi\)
\(488\) 0 0
\(489\) −11.7309 −0.530488
\(490\) 0 0
\(491\) 13.1678 0.594253 0.297126 0.954838i \(-0.403972\pi\)
0.297126 + 0.954838i \(0.403972\pi\)
\(492\) 0 0
\(493\) −22.7923 −1.02651
\(494\) 0 0
\(495\) 31.2903 1.40639
\(496\) 0 0
\(497\) 9.99419 0.448301
\(498\) 0 0
\(499\) −20.0524 −0.897669 −0.448835 0.893615i \(-0.648161\pi\)
−0.448835 + 0.893615i \(0.648161\pi\)
\(500\) 0 0
\(501\) −50.2931 −2.24693
\(502\) 0 0
\(503\) −4.41825 −0.197000 −0.0985000 0.995137i \(-0.531404\pi\)
−0.0985000 + 0.995137i \(0.531404\pi\)
\(504\) 0 0
\(505\) 22.0934 0.983142
\(506\) 0 0
\(507\) −32.7759 −1.45563
\(508\) 0 0
\(509\) 21.5134 0.953567 0.476783 0.879021i \(-0.341803\pi\)
0.476783 + 0.879021i \(0.341803\pi\)
\(510\) 0 0
\(511\) −27.8086 −1.23018
\(512\) 0 0
\(513\) 15.4108 0.680403
\(514\) 0 0
\(515\) 37.5599 1.65509
\(516\) 0 0
\(517\) −7.94755 −0.349533
\(518\) 0 0
\(519\) −4.47318 −0.196351
\(520\) 0 0
\(521\) 10.0055 0.438349 0.219175 0.975686i \(-0.429664\pi\)
0.219175 + 0.975686i \(0.429664\pi\)
\(522\) 0 0
\(523\) −8.29044 −0.362516 −0.181258 0.983436i \(-0.558017\pi\)
−0.181258 + 0.983436i \(0.558017\pi\)
\(524\) 0 0
\(525\) −4.95159 −0.216105
\(526\) 0 0
\(527\) −4.05193 −0.176505
\(528\) 0 0
\(529\) 10.7466 0.467244
\(530\) 0 0
\(531\) 31.9070 1.38465
\(532\) 0 0
\(533\) 1.08184 0.0468598
\(534\) 0 0
\(535\) −35.6660 −1.54198
\(536\) 0 0
\(537\) 9.35306 0.403615
\(538\) 0 0
\(539\) 37.9519 1.63471
\(540\) 0 0
\(541\) −32.1617 −1.38274 −0.691370 0.722501i \(-0.742993\pi\)
−0.691370 + 0.722501i \(0.742993\pi\)
\(542\) 0 0
\(543\) −34.4553 −1.47862
\(544\) 0 0
\(545\) 37.1142 1.58980
\(546\) 0 0
\(547\) −34.3034 −1.46671 −0.733353 0.679848i \(-0.762046\pi\)
−0.733353 + 0.679848i \(0.762046\pi\)
\(548\) 0 0
\(549\) 15.4799 0.660666
\(550\) 0 0
\(551\) 46.9834 2.00156
\(552\) 0 0
\(553\) −33.6684 −1.43173
\(554\) 0 0
\(555\) −44.2165 −1.87689
\(556\) 0 0
\(557\) 14.5221 0.615321 0.307660 0.951496i \(-0.400454\pi\)
0.307660 + 0.951496i \(0.400454\pi\)
\(558\) 0 0
\(559\) 2.50260 0.105849
\(560\) 0 0
\(561\) −37.8803 −1.59931
\(562\) 0 0
\(563\) −29.7051 −1.25192 −0.625961 0.779854i \(-0.715293\pi\)
−0.625961 + 0.779854i \(0.715293\pi\)
\(564\) 0 0
\(565\) −34.7446 −1.46172
\(566\) 0 0
\(567\) 26.6039 1.11726
\(568\) 0 0
\(569\) −30.2231 −1.26702 −0.633509 0.773735i \(-0.718386\pi\)
−0.633509 + 0.773735i \(0.718386\pi\)
\(570\) 0 0
\(571\) 29.6827 1.24218 0.621092 0.783738i \(-0.286690\pi\)
0.621092 + 0.783738i \(0.286690\pi\)
\(572\) 0 0
\(573\) 28.9288 1.20852
\(574\) 0 0
\(575\) 2.65273 0.110626
\(576\) 0 0
\(577\) −5.06863 −0.211010 −0.105505 0.994419i \(-0.533646\pi\)
−0.105505 + 0.994419i \(0.533646\pi\)
\(578\) 0 0
\(579\) −5.90073 −0.245226
\(580\) 0 0
\(581\) −52.7989 −2.19047
\(582\) 0 0
\(583\) −32.2775 −1.33680
\(584\) 0 0
\(585\) 5.12291 0.211806
\(586\) 0 0
\(587\) 27.7667 1.14605 0.573027 0.819537i \(-0.305769\pi\)
0.573027 + 0.819537i \(0.305769\pi\)
\(588\) 0 0
\(589\) 8.35254 0.344160
\(590\) 0 0
\(591\) 40.7897 1.67786
\(592\) 0 0
\(593\) 22.8397 0.937914 0.468957 0.883221i \(-0.344630\pi\)
0.468957 + 0.883221i \(0.344630\pi\)
\(594\) 0 0
\(595\) 39.6151 1.62406
\(596\) 0 0
\(597\) 30.4838 1.24762
\(598\) 0 0
\(599\) 34.7834 1.42121 0.710606 0.703590i \(-0.248421\pi\)
0.710606 + 0.703590i \(0.248421\pi\)
\(600\) 0 0
\(601\) −14.9159 −0.608433 −0.304217 0.952603i \(-0.598395\pi\)
−0.304217 + 0.952603i \(0.598395\pi\)
\(602\) 0 0
\(603\) −37.4787 −1.52625
\(604\) 0 0
\(605\) 4.72075 0.191926
\(606\) 0 0
\(607\) −26.7231 −1.08466 −0.542328 0.840167i \(-0.682457\pi\)
−0.542328 + 0.840167i \(0.682457\pi\)
\(608\) 0 0
\(609\) −60.9948 −2.47164
\(610\) 0 0
\(611\) −1.30119 −0.0526405
\(612\) 0 0
\(613\) 16.9767 0.685683 0.342842 0.939393i \(-0.388611\pi\)
0.342842 + 0.939393i \(0.388611\pi\)
\(614\) 0 0
\(615\) 11.0823 0.446881
\(616\) 0 0
\(617\) 21.6792 0.872773 0.436387 0.899759i \(-0.356258\pi\)
0.436387 + 0.899759i \(0.356258\pi\)
\(618\) 0 0
\(619\) 18.1844 0.730892 0.365446 0.930833i \(-0.380917\pi\)
0.365446 + 0.930833i \(0.380917\pi\)
\(620\) 0 0
\(621\) 10.7182 0.430106
\(622\) 0 0
\(623\) 74.9411 3.00245
\(624\) 0 0
\(625\) −27.0747 −1.08299
\(626\) 0 0
\(627\) 78.0855 3.11843
\(628\) 0 0
\(629\) 29.6042 1.18039
\(630\) 0 0
\(631\) 41.7611 1.66248 0.831242 0.555911i \(-0.187630\pi\)
0.831242 + 0.555911i \(0.187630\pi\)
\(632\) 0 0
\(633\) 64.3153 2.55631
\(634\) 0 0
\(635\) −33.4950 −1.32921
\(636\) 0 0
\(637\) 6.21357 0.246190
\(638\) 0 0
\(639\) −8.86416 −0.350661
\(640\) 0 0
\(641\) −13.9708 −0.551815 −0.275908 0.961184i \(-0.588978\pi\)
−0.275908 + 0.961184i \(0.588978\pi\)
\(642\) 0 0
\(643\) −20.8811 −0.823470 −0.411735 0.911304i \(-0.635077\pi\)
−0.411735 + 0.911304i \(0.635077\pi\)
\(644\) 0 0
\(645\) 25.6364 1.00943
\(646\) 0 0
\(647\) −17.1044 −0.672443 −0.336222 0.941783i \(-0.609149\pi\)
−0.336222 + 0.941783i \(0.609149\pi\)
\(648\) 0 0
\(649\) 31.0157 1.21747
\(650\) 0 0
\(651\) −10.8434 −0.424988
\(652\) 0 0
\(653\) −38.4890 −1.50619 −0.753096 0.657911i \(-0.771440\pi\)
−0.753096 + 0.657911i \(0.771440\pi\)
\(654\) 0 0
\(655\) −16.5339 −0.646031
\(656\) 0 0
\(657\) 24.6643 0.962248
\(658\) 0 0
\(659\) −34.0971 −1.32823 −0.664117 0.747628i \(-0.731192\pi\)
−0.664117 + 0.747628i \(0.731192\pi\)
\(660\) 0 0
\(661\) −47.1245 −1.83293 −0.916466 0.400112i \(-0.868971\pi\)
−0.916466 + 0.400112i \(0.868971\pi\)
\(662\) 0 0
\(663\) −6.20184 −0.240860
\(664\) 0 0
\(665\) −81.6615 −3.16670
\(666\) 0 0
\(667\) 32.6769 1.26525
\(668\) 0 0
\(669\) 16.1257 0.623454
\(670\) 0 0
\(671\) 15.0474 0.580900
\(672\) 0 0
\(673\) 47.8262 1.84356 0.921782 0.387708i \(-0.126733\pi\)
0.921782 + 0.387708i \(0.126733\pi\)
\(674\) 0 0
\(675\) 0.842526 0.0324288
\(676\) 0 0
\(677\) 13.6139 0.523224 0.261612 0.965173i \(-0.415746\pi\)
0.261612 + 0.965173i \(0.415746\pi\)
\(678\) 0 0
\(679\) 3.25487 0.124910
\(680\) 0 0
\(681\) 38.4350 1.47283
\(682\) 0 0
\(683\) 43.9946 1.68341 0.841703 0.539940i \(-0.181553\pi\)
0.841703 + 0.539940i \(0.181553\pi\)
\(684\) 0 0
\(685\) −28.1375 −1.07508
\(686\) 0 0
\(687\) 7.91988 0.302162
\(688\) 0 0
\(689\) −5.28454 −0.201325
\(690\) 0 0
\(691\) −22.6781 −0.862717 −0.431358 0.902181i \(-0.641966\pi\)
−0.431358 + 0.902181i \(0.641966\pi\)
\(692\) 0 0
\(693\) −56.0639 −2.12969
\(694\) 0 0
\(695\) −36.2586 −1.37537
\(696\) 0 0
\(697\) −7.41989 −0.281049
\(698\) 0 0
\(699\) −9.81743 −0.371329
\(700\) 0 0
\(701\) 25.6257 0.967870 0.483935 0.875104i \(-0.339207\pi\)
0.483935 + 0.875104i \(0.339207\pi\)
\(702\) 0 0
\(703\) −61.0252 −2.30161
\(704\) 0 0
\(705\) −13.3293 −0.502009
\(706\) 0 0
\(707\) −39.5854 −1.48876
\(708\) 0 0
\(709\) −23.1594 −0.869768 −0.434884 0.900486i \(-0.643211\pi\)
−0.434884 + 0.900486i \(0.643211\pi\)
\(710\) 0 0
\(711\) 29.8616 1.11990
\(712\) 0 0
\(713\) 5.80918 0.217556
\(714\) 0 0
\(715\) 4.97980 0.186234
\(716\) 0 0
\(717\) −39.0123 −1.45694
\(718\) 0 0
\(719\) −9.06976 −0.338245 −0.169122 0.985595i \(-0.554093\pi\)
−0.169122 + 0.985595i \(0.554093\pi\)
\(720\) 0 0
\(721\) −67.2974 −2.50629
\(722\) 0 0
\(723\) 10.6919 0.397634
\(724\) 0 0
\(725\) 2.56864 0.0953969
\(726\) 0 0
\(727\) −25.9628 −0.962906 −0.481453 0.876472i \(-0.659891\pi\)
−0.481453 + 0.876472i \(0.659891\pi\)
\(728\) 0 0
\(729\) −37.9361 −1.40504
\(730\) 0 0
\(731\) −17.1642 −0.634843
\(732\) 0 0
\(733\) 42.8101 1.58123 0.790614 0.612315i \(-0.209762\pi\)
0.790614 + 0.612315i \(0.209762\pi\)
\(734\) 0 0
\(735\) 63.6512 2.34781
\(736\) 0 0
\(737\) −36.4317 −1.34198
\(738\) 0 0
\(739\) 44.5199 1.63769 0.818846 0.574013i \(-0.194614\pi\)
0.818846 + 0.574013i \(0.194614\pi\)
\(740\) 0 0
\(741\) 12.7843 0.469644
\(742\) 0 0
\(743\) 17.7159 0.649932 0.324966 0.945726i \(-0.394647\pi\)
0.324966 + 0.945726i \(0.394647\pi\)
\(744\) 0 0
\(745\) −34.3433 −1.25824
\(746\) 0 0
\(747\) 46.8290 1.71338
\(748\) 0 0
\(749\) 63.9040 2.33500
\(750\) 0 0
\(751\) −51.6951 −1.88638 −0.943190 0.332255i \(-0.892191\pi\)
−0.943190 + 0.332255i \(0.892191\pi\)
\(752\) 0 0
\(753\) 7.72269 0.281431
\(754\) 0 0
\(755\) −21.7080 −0.790034
\(756\) 0 0
\(757\) 28.6125 1.03994 0.519970 0.854184i \(-0.325943\pi\)
0.519970 + 0.854184i \(0.325943\pi\)
\(758\) 0 0
\(759\) 54.3084 1.97127
\(760\) 0 0
\(761\) 13.9263 0.504829 0.252415 0.967619i \(-0.418775\pi\)
0.252415 + 0.967619i \(0.418775\pi\)
\(762\) 0 0
\(763\) −66.4988 −2.40742
\(764\) 0 0
\(765\) −35.1359 −1.27034
\(766\) 0 0
\(767\) 5.07795 0.183354
\(768\) 0 0
\(769\) 26.9989 0.973606 0.486803 0.873512i \(-0.338163\pi\)
0.486803 + 0.873512i \(0.338163\pi\)
\(770\) 0 0
\(771\) −40.4884 −1.45815
\(772\) 0 0
\(773\) −25.8722 −0.930559 −0.465279 0.885164i \(-0.654046\pi\)
−0.465279 + 0.885164i \(0.654046\pi\)
\(774\) 0 0
\(775\) 0.456644 0.0164031
\(776\) 0 0
\(777\) 79.2242 2.84215
\(778\) 0 0
\(779\) 15.2952 0.548006
\(780\) 0 0
\(781\) −8.61653 −0.308324
\(782\) 0 0
\(783\) 10.3784 0.370895
\(784\) 0 0
\(785\) 16.8723 0.602199
\(786\) 0 0
\(787\) 53.0820 1.89217 0.946084 0.323922i \(-0.105002\pi\)
0.946084 + 0.323922i \(0.105002\pi\)
\(788\) 0 0
\(789\) −16.5453 −0.589029
\(790\) 0 0
\(791\) 62.2530 2.21346
\(792\) 0 0
\(793\) 2.46360 0.0874849
\(794\) 0 0
\(795\) −54.1344 −1.91995
\(796\) 0 0
\(797\) 21.6195 0.765801 0.382900 0.923790i \(-0.374925\pi\)
0.382900 + 0.923790i \(0.374925\pi\)
\(798\) 0 0
\(799\) 8.92430 0.315719
\(800\) 0 0
\(801\) −66.4676 −2.34852
\(802\) 0 0
\(803\) 23.9753 0.846070
\(804\) 0 0
\(805\) −56.7955 −2.00178
\(806\) 0 0
\(807\) 44.9755 1.58321
\(808\) 0 0
\(809\) −21.7721 −0.765465 −0.382733 0.923859i \(-0.625017\pi\)
−0.382733 + 0.923859i \(0.625017\pi\)
\(810\) 0 0
\(811\) 11.6372 0.408636 0.204318 0.978905i \(-0.434502\pi\)
0.204318 + 0.978905i \(0.434502\pi\)
\(812\) 0 0
\(813\) −6.55834 −0.230011
\(814\) 0 0
\(815\) −10.5770 −0.370495
\(816\) 0 0
\(817\) 35.3819 1.23786
\(818\) 0 0
\(819\) −9.17889 −0.320736
\(820\) 0 0
\(821\) −11.0104 −0.384264 −0.192132 0.981369i \(-0.561540\pi\)
−0.192132 + 0.981369i \(0.561540\pi\)
\(822\) 0 0
\(823\) 14.2358 0.496229 0.248115 0.968731i \(-0.420189\pi\)
0.248115 + 0.968731i \(0.420189\pi\)
\(824\) 0 0
\(825\) 4.26903 0.148629
\(826\) 0 0
\(827\) 35.9702 1.25081 0.625403 0.780302i \(-0.284935\pi\)
0.625403 + 0.780302i \(0.284935\pi\)
\(828\) 0 0
\(829\) 16.0660 0.557994 0.278997 0.960292i \(-0.409998\pi\)
0.278997 + 0.960292i \(0.409998\pi\)
\(830\) 0 0
\(831\) −83.4306 −2.89417
\(832\) 0 0
\(833\) −42.6162 −1.47656
\(834\) 0 0
\(835\) −45.3461 −1.56927
\(836\) 0 0
\(837\) 1.84504 0.0637740
\(838\) 0 0
\(839\) −53.8030 −1.85749 −0.928743 0.370724i \(-0.879110\pi\)
−0.928743 + 0.370724i \(0.879110\pi\)
\(840\) 0 0
\(841\) 2.64112 0.0910731
\(842\) 0 0
\(843\) 15.1495 0.521776
\(844\) 0 0
\(845\) −29.5520 −1.01662
\(846\) 0 0
\(847\) −8.45833 −0.290632
\(848\) 0 0
\(849\) −59.1444 −2.02983
\(850\) 0 0
\(851\) −42.4430 −1.45493
\(852\) 0 0
\(853\) 27.9176 0.955882 0.477941 0.878392i \(-0.341383\pi\)
0.477941 + 0.878392i \(0.341383\pi\)
\(854\) 0 0
\(855\) 72.4282 2.47699
\(856\) 0 0
\(857\) 25.1699 0.859786 0.429893 0.902880i \(-0.358551\pi\)
0.429893 + 0.902880i \(0.358551\pi\)
\(858\) 0 0
\(859\) −33.4304 −1.14063 −0.570315 0.821426i \(-0.693179\pi\)
−0.570315 + 0.821426i \(0.693179\pi\)
\(860\) 0 0
\(861\) −19.8565 −0.676708
\(862\) 0 0
\(863\) −23.9078 −0.813832 −0.406916 0.913466i \(-0.633396\pi\)
−0.406916 + 0.913466i \(0.633396\pi\)
\(864\) 0 0
\(865\) −4.03319 −0.137132
\(866\) 0 0
\(867\) −1.50751 −0.0511976
\(868\) 0 0
\(869\) 29.0274 0.984686
\(870\) 0 0
\(871\) −5.96466 −0.202105
\(872\) 0 0
\(873\) −2.88685 −0.0977050
\(874\) 0 0
\(875\) 44.4197 1.50166
\(876\) 0 0
\(877\) −4.11548 −0.138970 −0.0694849 0.997583i \(-0.522136\pi\)
−0.0694849 + 0.997583i \(0.522136\pi\)
\(878\) 0 0
\(879\) 2.02407 0.0682702
\(880\) 0 0
\(881\) 27.2406 0.917759 0.458879 0.888499i \(-0.348251\pi\)
0.458879 + 0.888499i \(0.348251\pi\)
\(882\) 0 0
\(883\) −35.3208 −1.18864 −0.594320 0.804229i \(-0.702579\pi\)
−0.594320 + 0.804229i \(0.702579\pi\)
\(884\) 0 0
\(885\) 52.0181 1.74857
\(886\) 0 0
\(887\) 31.8903 1.07077 0.535386 0.844608i \(-0.320166\pi\)
0.535386 + 0.844608i \(0.320166\pi\)
\(888\) 0 0
\(889\) 60.0141 2.01281
\(890\) 0 0
\(891\) −22.9366 −0.768406
\(892\) 0 0
\(893\) −18.3963 −0.615609
\(894\) 0 0
\(895\) 8.43307 0.281886
\(896\) 0 0
\(897\) 8.89148 0.296878
\(898\) 0 0
\(899\) 5.62504 0.187606
\(900\) 0 0
\(901\) 36.2444 1.20748
\(902\) 0 0
\(903\) −45.9336 −1.52857
\(904\) 0 0
\(905\) −31.0661 −1.03267
\(906\) 0 0
\(907\) 6.92754 0.230025 0.115013 0.993364i \(-0.463309\pi\)
0.115013 + 0.993364i \(0.463309\pi\)
\(908\) 0 0
\(909\) 35.1096 1.16451
\(910\) 0 0
\(911\) −39.3906 −1.30507 −0.652534 0.757760i \(-0.726294\pi\)
−0.652534 + 0.757760i \(0.726294\pi\)
\(912\) 0 0
\(913\) 45.5207 1.50652
\(914\) 0 0
\(915\) 25.2369 0.834305
\(916\) 0 0
\(917\) 29.6243 0.978279
\(918\) 0 0
\(919\) 16.0485 0.529391 0.264695 0.964332i \(-0.414729\pi\)
0.264695 + 0.964332i \(0.414729\pi\)
\(920\) 0 0
\(921\) −39.5738 −1.30400
\(922\) 0 0
\(923\) −1.41072 −0.0464343
\(924\) 0 0
\(925\) −3.33632 −0.109698
\(926\) 0 0
\(927\) 59.6882 1.96042
\(928\) 0 0
\(929\) −15.6914 −0.514817 −0.257409 0.966303i \(-0.582869\pi\)
−0.257409 + 0.966303i \(0.582869\pi\)
\(930\) 0 0
\(931\) 87.8479 2.87910
\(932\) 0 0
\(933\) 49.2912 1.61372
\(934\) 0 0
\(935\) −34.1543 −1.11696
\(936\) 0 0
\(937\) −20.0222 −0.654096 −0.327048 0.945008i \(-0.606054\pi\)
−0.327048 + 0.945008i \(0.606054\pi\)
\(938\) 0 0
\(939\) 42.2069 1.37737
\(940\) 0 0
\(941\) 0.658193 0.0214565 0.0107282 0.999942i \(-0.496585\pi\)
0.0107282 + 0.999942i \(0.496585\pi\)
\(942\) 0 0
\(943\) 10.6378 0.346414
\(944\) 0 0
\(945\) −18.0387 −0.586799
\(946\) 0 0
\(947\) 29.8945 0.971439 0.485720 0.874115i \(-0.338558\pi\)
0.485720 + 0.874115i \(0.338558\pi\)
\(948\) 0 0
\(949\) 3.92529 0.127420
\(950\) 0 0
\(951\) −66.6913 −2.16261
\(952\) 0 0
\(953\) −39.4089 −1.27658 −0.638289 0.769797i \(-0.720358\pi\)
−0.638289 + 0.769797i \(0.720358\pi\)
\(954\) 0 0
\(955\) 26.0833 0.844035
\(956\) 0 0
\(957\) 52.5869 1.69989
\(958\) 0 0
\(959\) 50.4149 1.62798
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) −56.6784 −1.82644
\(964\) 0 0
\(965\) −5.32032 −0.171267
\(966\) 0 0
\(967\) 12.5949 0.405025 0.202513 0.979280i \(-0.435089\pi\)
0.202513 + 0.979280i \(0.435089\pi\)
\(968\) 0 0
\(969\) −87.6822 −2.81676
\(970\) 0 0
\(971\) −0.183339 −0.00588364 −0.00294182 0.999996i \(-0.500936\pi\)
−0.00294182 + 0.999996i \(0.500936\pi\)
\(972\) 0 0
\(973\) 64.9657 2.08271
\(974\) 0 0
\(975\) 0.698934 0.0223838
\(976\) 0 0
\(977\) 47.2332 1.51113 0.755563 0.655076i \(-0.227364\pi\)
0.755563 + 0.655076i \(0.227364\pi\)
\(978\) 0 0
\(979\) −64.6107 −2.06497
\(980\) 0 0
\(981\) 58.9798 1.88308
\(982\) 0 0
\(983\) −2.25921 −0.0720576 −0.0360288 0.999351i \(-0.511471\pi\)
−0.0360288 + 0.999351i \(0.511471\pi\)
\(984\) 0 0
\(985\) 36.7775 1.17183
\(986\) 0 0
\(987\) 23.8825 0.760188
\(988\) 0 0
\(989\) 24.6081 0.782492
\(990\) 0 0
\(991\) −46.2272 −1.46845 −0.734227 0.678904i \(-0.762455\pi\)
−0.734227 + 0.678904i \(0.762455\pi\)
\(992\) 0 0
\(993\) 14.5974 0.463236
\(994\) 0 0
\(995\) 27.4853 0.871344
\(996\) 0 0
\(997\) 38.6142 1.22292 0.611462 0.791274i \(-0.290582\pi\)
0.611462 + 0.791274i \(0.290582\pi\)
\(998\) 0 0
\(999\) −13.4802 −0.426495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1984.2.a.bb.1.5 6
4.3 odd 2 1984.2.a.ba.1.2 6
8.3 odd 2 992.2.a.h.1.5 yes 6
8.5 even 2 992.2.a.g.1.2 6
24.5 odd 2 8928.2.a.br.1.5 6
24.11 even 2 8928.2.a.bq.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
992.2.a.g.1.2 6 8.5 even 2
992.2.a.h.1.5 yes 6 8.3 odd 2
1984.2.a.ba.1.2 6 4.3 odd 2
1984.2.a.bb.1.5 6 1.1 even 1 trivial
8928.2.a.bq.1.5 6 24.11 even 2
8928.2.a.br.1.5 6 24.5 odd 2