Properties

Label 1950.4.a.bd
Level $1950$
Weight $4$
Character orbit 1950.a
Self dual yes
Analytic conductor $115.054$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,4,Mod(1,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,9,12,0,-18,5,-24,27,0,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.053724511\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1718836.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 169x + 439 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 6 q^{6} + (\beta_{2} + 2) q^{7} - 8 q^{8} + 9 q^{9} + (\beta_1 + 7) q^{11} + 12 q^{12} - 13 q^{13} + ( - 2 \beta_{2} - 4) q^{14} + 16 q^{16} + ( - 2 \beta_{2} + 2 \beta_1 - 3) q^{17}+ \cdots + (9 \beta_1 + 63) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 9 q^{3} + 12 q^{4} - 18 q^{6} + 5 q^{7} - 24 q^{8} + 27 q^{9} + 21 q^{11} + 36 q^{12} - 39 q^{13} - 10 q^{14} + 48 q^{16} - 7 q^{17} - 54 q^{18} - 202 q^{19} + 15 q^{21} - 42 q^{22} + 224 q^{23}+ \cdots + 189 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 169x + 439 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 3\nu - 115 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} - \beta _1 + 114 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.66788
−13.6887
12.0209
−2.00000 3.00000 4.00000 0 −6.00000 −31.2929 −8.00000 9.00000 0
1.2 −2.00000 3.00000 4.00000 0 −6.00000 12.4384 −8.00000 9.00000 0
1.3 −2.00000 3.00000 4.00000 0 −6.00000 23.8545 −8.00000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.4.a.bd 3
5.b even 2 1 1950.4.a.bg yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.4.a.bd 3 1.a even 1 1 trivial
1950.4.a.bg yes 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1950))\):

\( T_{7}^{3} - 5T_{7}^{2} - 839T_{7} + 9285 \) Copy content Toggle raw display
\( T_{11}^{3} - 21T_{11}^{2} - 1377T_{11} + 20655 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 5 T^{2} + \cdots + 9285 \) Copy content Toggle raw display
$11$ \( T^{3} - 21 T^{2} + \cdots + 20655 \) Copy content Toggle raw display
$13$ \( (T + 13)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 7 T^{2} + \cdots + 196245 \) Copy content Toggle raw display
$19$ \( T^{3} + 202 T^{2} + \cdots + 124748 \) Copy content Toggle raw display
$23$ \( T^{3} - 224 T^{2} + \cdots + 4542876 \) Copy content Toggle raw display
$29$ \( T^{3} - 83 T^{2} + \cdots + 1794807 \) Copy content Toggle raw display
$31$ \( T^{3} + 303 T^{2} + \cdots - 8313953 \) Copy content Toggle raw display
$37$ \( T^{3} + 154 T^{2} + \cdots - 1326180 \) Copy content Toggle raw display
$41$ \( T^{3} + 628 T^{2} + \cdots + 2084076 \) Copy content Toggle raw display
$43$ \( T^{3} - 68 T^{2} + \cdots + 7198284 \) Copy content Toggle raw display
$47$ \( T^{3} + 307 T^{2} + \cdots - 23119515 \) Copy content Toggle raw display
$53$ \( T^{3} + 177 T^{2} + \cdots - 2934225 \) Copy content Toggle raw display
$59$ \( T^{3} + 11 T^{2} + \cdots + 102536325 \) Copy content Toggle raw display
$61$ \( T^{3} + 661 T^{2} + \cdots + 1777175 \) Copy content Toggle raw display
$67$ \( T^{3} - 541 T^{2} + \cdots + 161661127 \) Copy content Toggle raw display
$71$ \( T^{3} + 1566 T^{2} + \cdots - 12765924 \) Copy content Toggle raw display
$73$ \( T^{3} + 986 T^{2} + \cdots - 144829460 \) Copy content Toggle raw display
$79$ \( T^{3} + 160 T^{2} + \cdots - 5293756 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 1311314211 \) Copy content Toggle raw display
$89$ \( T^{3} - 152 T^{2} + \cdots + 128108880 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 3711254776 \) Copy content Toggle raw display
show more
show less