Defining parameters
Level: | \( N \) | \(=\) | \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1950.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 47 \) | ||
Sturm bound: | \(1680\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1950))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1284 | 114 | 1170 |
Cusp forms | 1236 | 114 | 1122 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(8\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(9\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(9\) |
Plus space | \(+\) | \(62\) | |||
Minus space | \(-\) | \(52\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1950))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1950))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1950)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(975))\)\(^{\oplus 2}\)