Properties

Label 1950.4
Level 1950
Weight 4
Dimension 68848
Nonzero newspaces 40
Sturm bound 806400
Trace bound 18

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(806400\)
Trace bound: \(18\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1950))\).

Total New Old
Modular forms 305088 68848 236240
Cusp forms 299712 68848 230864
Eisenstein series 5376 0 5376

Trace form

\( 68848 q - 12 q^{2} + 38 q^{3} + 24 q^{4} + 20 q^{5} + 20 q^{6} - 80 q^{7} - 96 q^{8} + 54 q^{9} - 104 q^{10} + 440 q^{11} - 56 q^{12} + 386 q^{13} + 176 q^{14} - 512 q^{15} - 416 q^{16} + 1042 q^{17} + 80 q^{18}+ \cdots - 1440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1950))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1950.4.a \(\chi_{1950}(1, \cdot)\) 1950.4.a.a 1 1
1950.4.a.b 1
1950.4.a.c 1
1950.4.a.d 1
1950.4.a.e 1
1950.4.a.f 1
1950.4.a.g 1
1950.4.a.h 1
1950.4.a.i 1
1950.4.a.j 1
1950.4.a.k 1
1950.4.a.l 1
1950.4.a.m 1
1950.4.a.n 1
1950.4.a.o 1
1950.4.a.p 1
1950.4.a.q 1
1950.4.a.r 2
1950.4.a.s 2
1950.4.a.t 2
1950.4.a.u 2
1950.4.a.v 2
1950.4.a.w 2
1950.4.a.x 2
1950.4.a.y 2
1950.4.a.z 2
1950.4.a.ba 3
1950.4.a.bb 3
1950.4.a.bc 3
1950.4.a.bd 3
1950.4.a.be 3
1950.4.a.bf 3
1950.4.a.bg 3
1950.4.a.bh 3
1950.4.a.bi 3
1950.4.a.bj 4
1950.4.a.bk 4
1950.4.a.bl 4
1950.4.a.bm 4
1950.4.a.bn 4
1950.4.a.bo 4
1950.4.a.bp 4
1950.4.a.bq 4
1950.4.a.br 5
1950.4.a.bs 5
1950.4.a.bt 5
1950.4.a.bu 5
1950.4.b \(\chi_{1950}(1351, \cdot)\) n/a 134 1
1950.4.e \(\chi_{1950}(1249, \cdot)\) n/a 108 1
1950.4.f \(\chi_{1950}(649, \cdot)\) n/a 124 1
1950.4.i \(\chi_{1950}(451, \cdot)\) n/a 264 2
1950.4.j \(\chi_{1950}(1243, \cdot)\) n/a 252 2
1950.4.l \(\chi_{1950}(443, \cdot)\) n/a 432 2
1950.4.n \(\chi_{1950}(749, \cdot)\) n/a 504 2
1950.4.p \(\chi_{1950}(551, \cdot)\) n/a 532 2
1950.4.s \(\chi_{1950}(857, \cdot)\) n/a 504 2
1950.4.t \(\chi_{1950}(307, \cdot)\) n/a 252 2
1950.4.v \(\chi_{1950}(391, \cdot)\) n/a 720 4
1950.4.y \(\chi_{1950}(49, \cdot)\) n/a 248 2
1950.4.z \(\chi_{1950}(1699, \cdot)\) n/a 256 2
1950.4.bc \(\chi_{1950}(751, \cdot)\) n/a 268 2
1950.4.bd \(\chi_{1950}(79, \cdot)\) n/a 720 4
1950.4.bg \(\chi_{1950}(181, \cdot)\) n/a 832 4
1950.4.bj \(\chi_{1950}(259, \cdot)\) n/a 848 4
1950.4.bl \(\chi_{1950}(7, \cdot)\) n/a 504 4
1950.4.bm \(\chi_{1950}(257, \cdot)\) n/a 1008 4
1950.4.bp \(\chi_{1950}(401, \cdot)\) n/a 1064 4
1950.4.br \(\chi_{1950}(149, \cdot)\) n/a 1008 4
1950.4.bt \(\chi_{1950}(107, \cdot)\) n/a 1008 4
1950.4.bv \(\chi_{1950}(193, \cdot)\) n/a 504 4
1950.4.bw \(\chi_{1950}(61, \cdot)\) n/a 1696 8
1950.4.by \(\chi_{1950}(73, \cdot)\) n/a 1680 8
1950.4.bz \(\chi_{1950}(77, \cdot)\) n/a 3360 8
1950.4.cc \(\chi_{1950}(161, \cdot)\) n/a 3360 8
1950.4.ce \(\chi_{1950}(239, \cdot)\) n/a 3360 8
1950.4.cg \(\chi_{1950}(53, \cdot)\) n/a 2880 8
1950.4.ci \(\chi_{1950}(697, \cdot)\) n/a 1680 8
1950.4.cj \(\chi_{1950}(439, \cdot)\) n/a 1696 8
1950.4.cm \(\chi_{1950}(121, \cdot)\) n/a 1664 8
1950.4.cp \(\chi_{1950}(139, \cdot)\) n/a 1664 8
1950.4.cq \(\chi_{1950}(37, \cdot)\) n/a 3360 16
1950.4.cs \(\chi_{1950}(113, \cdot)\) n/a 6720 16
1950.4.cu \(\chi_{1950}(59, \cdot)\) n/a 6720 16
1950.4.cw \(\chi_{1950}(11, \cdot)\) n/a 6720 16
1950.4.cz \(\chi_{1950}(17, \cdot)\) n/a 6720 16
1950.4.da \(\chi_{1950}(67, \cdot)\) n/a 3360 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1950))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1950)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(130))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(195))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(325))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(390))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(650))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(975))\)\(^{\oplus 2}\)