Properties

Label 1950.2.b.e.1351.1
Level $1950$
Weight $2$
Character 1950.1351
Analytic conductor $15.571$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(1351,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,-2,0,0,0,0,2,0,0,-2,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1351.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1950.1351
Dual form 1950.2.b.e.1351.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{3} -1.00000 q^{4} -1.00000i q^{6} +1.00000i q^{8} +1.00000 q^{9} +6.00000i q^{11} -1.00000 q^{12} +(-2.00000 - 3.00000i) q^{13} +1.00000 q^{16} +6.00000 q^{17} -1.00000i q^{18} +6.00000i q^{19} +6.00000 q^{22} -6.00000 q^{23} +1.00000i q^{24} +(-3.00000 + 2.00000i) q^{26} +1.00000 q^{27} -6.00000 q^{29} -1.00000i q^{32} +6.00000i q^{33} -6.00000i q^{34} -1.00000 q^{36} +6.00000i q^{37} +6.00000 q^{38} +(-2.00000 - 3.00000i) q^{39} +12.0000i q^{41} -8.00000 q^{43} -6.00000i q^{44} +6.00000i q^{46} +1.00000 q^{48} +7.00000 q^{49} +6.00000 q^{51} +(2.00000 + 3.00000i) q^{52} +12.0000 q^{53} -1.00000i q^{54} +6.00000i q^{57} +6.00000i q^{58} +6.00000i q^{59} +10.0000 q^{61} -1.00000 q^{64} +6.00000 q^{66} -6.00000 q^{68} -6.00000 q^{69} -12.0000i q^{71} +1.00000i q^{72} +6.00000i q^{73} +6.00000 q^{74} -6.00000i q^{76} +(-3.00000 + 2.00000i) q^{78} -8.00000 q^{79} +1.00000 q^{81} +12.0000 q^{82} +8.00000i q^{86} -6.00000 q^{87} -6.00000 q^{88} +6.00000 q^{92} -1.00000i q^{96} +6.00000i q^{97} -7.00000i q^{98} +6.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{4} + 2 q^{9} - 2 q^{12} - 4 q^{13} + 2 q^{16} + 12 q^{17} + 12 q^{22} - 12 q^{23} - 6 q^{26} + 2 q^{27} - 12 q^{29} - 2 q^{36} + 12 q^{38} - 4 q^{39} - 16 q^{43} + 2 q^{48} + 14 q^{49}+ \cdots + 12 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000 0.577350
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000i 0.408248i
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000i 1.80907i 0.426401 + 0.904534i \(0.359781\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 6.00000i 1.37649i 0.725476 + 0.688247i \(0.241620\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 6.00000 1.27920
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 0 0
\(26\) −3.00000 + 2.00000i −0.588348 + 0.392232i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 6.00000i 1.04447i
\(34\) 6.00000i 1.02899i
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 6.00000 0.973329
\(39\) −2.00000 3.00000i −0.320256 0.480384i
\(40\) 0 0
\(41\) 12.0000i 1.87409i 0.349215 + 0.937043i \(0.386448\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 6.00000i 0.904534i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.00000 0.144338
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 2.00000 + 3.00000i 0.277350 + 0.416025i
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000i 0.794719i
\(58\) 6.00000i 0.787839i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 6.00000 0.738549
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −6.00000 −0.727607
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 12.0000i 1.42414i −0.702109 0.712069i \(-0.747758\pi\)
0.702109 0.712069i \(-0.252242\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 6.00000i 0.688247i
\(77\) 0 0
\(78\) −3.00000 + 2.00000i −0.339683 + 0.226455i
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 12.0000 1.32518
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000i 0.862662i
\(87\) −6.00000 −0.643268
\(88\) −6.00000 −0.639602
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 1.00000i 0.102062i
\(97\) 6.00000i 0.609208i 0.952479 + 0.304604i \(0.0985241\pi\)
−0.952479 + 0.304604i \(0.901476\pi\)
\(98\) 7.00000i 0.707107i
\(99\) 6.00000i 0.603023i
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 6.00000i 0.594089i
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 3.00000 2.00000i 0.294174 0.196116i
\(105\) 0 0
\(106\) 12.0000i 1.16554i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 6.00000i 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 6.00000 0.561951
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −2.00000 3.00000i −0.184900 0.277350i
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) −25.0000 −2.27273
\(122\) 10.0000i 0.905357i
\(123\) 12.0000i 1.08200i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 6.00000i 0.514496i
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 18.0000 12.0000i 1.50524 1.00349i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) 7.00000 0.577350
\(148\) 6.00000i 0.493197i
\(149\) 18.0000i 1.47462i −0.675556 0.737309i \(-0.736096\pi\)
0.675556 0.737309i \(-0.263904\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i 0.872691 + 0.488273i \(0.162373\pi\)
−0.872691 + 0.488273i \(0.837627\pi\)
\(152\) −6.00000 −0.486664
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 + 3.00000i 0.160128 + 0.240192i
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 8.00000i 0.636446i
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 12.0000i 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 12.0000i 0.937043i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 0 0
\(171\) 6.00000i 0.458831i
\(172\) 8.00000 0.609994
\(173\) −12.0000 −0.912343 −0.456172 0.889892i \(-0.650780\pi\)
−0.456172 + 0.889892i \(0.650780\pi\)
\(174\) 6.00000i 0.454859i
\(175\) 0 0
\(176\) 6.00000i 0.452267i
\(177\) 6.00000i 0.450988i
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 6.00000i 0.442326i
\(185\) 0 0
\(186\) 0 0
\(187\) 36.0000i 2.63258i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 6.00000i 0.431889i −0.976406 0.215945i \(-0.930717\pi\)
0.976406 0.215945i \(-0.0692831\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 6.00000 0.426401
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 18.0000i 1.26648i
\(203\) 0 0
\(204\) −6.00000 −0.420084
\(205\) 0 0
\(206\) 14.0000i 0.975426i
\(207\) −6.00000 −0.417029
\(208\) −2.00000 3.00000i −0.138675 0.208013i
\(209\) −36.0000 −2.49017
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −12.0000 −0.824163
\(213\) 12.0000i 0.822226i
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000i 0.0680414i
\(217\) 0 0
\(218\) −6.00000 −0.406371
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) −12.0000 18.0000i −0.807207 1.21081i
\(222\) 6.00000 0.402694
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 18.0000i 1.19734i
\(227\) 24.0000i 1.59294i −0.604681 0.796468i \(-0.706699\pi\)
0.604681 0.796468i \(-0.293301\pi\)
\(228\) 6.00000i 0.397360i
\(229\) 18.0000i 1.18947i 0.803921 + 0.594737i \(0.202744\pi\)
−0.803921 + 0.594737i \(0.797256\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000i 0.393919i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −3.00000 + 2.00000i −0.196116 + 0.130744i
\(235\) 0 0
\(236\) 6.00000i 0.390567i
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 24.0000i 1.54598i −0.634421 0.772988i \(-0.718761\pi\)
0.634421 0.772988i \(-0.281239\pi\)
\(242\) 25.0000i 1.60706i
\(243\) 1.00000 0.0641500
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 12.0000 0.765092
\(247\) 18.0000 12.0000i 1.14531 0.763542i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 36.0000i 2.26330i
\(254\) 2.00000i 0.125491i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 8.00000i 0.498058i
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 12.0000i 0.741362i
\(263\) −6.00000 −0.369976 −0.184988 0.982741i \(-0.559225\pi\)
−0.184988 + 0.982741i \(0.559225\pi\)
\(264\) −6.00000 −0.369274
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i 0.931214 + 0.364474i \(0.118751\pi\)
−0.931214 + 0.364474i \(0.881249\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 12.0000i 0.712069i
\(285\) 0 0
\(286\) −12.0000 18.0000i −0.709575 1.06436i
\(287\) 0 0
\(288\) 1.00000i 0.0589256i
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 6.00000i 0.351726i
\(292\) 6.00000i 0.351123i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 7.00000i 0.408248i
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 6.00000i 0.348155i
\(298\) −18.0000 −1.04271
\(299\) 12.0000 + 18.0000i 0.693978 + 1.04097i
\(300\) 0 0
\(301\) 0 0
\(302\) 12.0000 0.690522
\(303\) 18.0000 1.03407
\(304\) 6.00000i 0.344124i
\(305\) 0 0
\(306\) 6.00000i 0.342997i
\(307\) 12.0000i 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 0 0
\(309\) −14.0000 −0.796432
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 3.00000 2.00000i 0.169842 0.113228i
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 4.00000i 0.225733i
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 12.0000i 0.672927i
\(319\) 36.0000i 2.01561i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 36.0000i 2.00309i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 6.00000i 0.331801i
\(328\) −12.0000 −0.662589
\(329\) 0 0
\(330\) 0 0
\(331\) 18.0000i 0.989369i −0.869072 0.494685i \(-0.835284\pi\)
0.869072 0.494685i \(-0.164716\pi\)
\(332\) 0 0
\(333\) 6.00000i 0.328798i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 12.0000 + 5.00000i 0.652714 + 0.271964i
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) 0 0
\(344\) 8.00000i 0.431331i
\(345\) 0 0
\(346\) 12.0000i 0.645124i
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 6.00000 0.321634
\(349\) 6.00000i 0.321173i 0.987022 + 0.160586i \(0.0513385\pi\)
−0.987022 + 0.160586i \(0.948662\pi\)
\(350\) 0 0
\(351\) −2.00000 3.00000i −0.106752 0.160128i
\(352\) 6.00000 0.319801
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 6.00000 0.318896
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 2.00000i 0.105118i
\(363\) −25.0000 −1.31216
\(364\) 0 0
\(365\) 0 0
\(366\) 10.0000i 0.522708i
\(367\) −26.0000 −1.35719 −0.678594 0.734513i \(-0.737411\pi\)
−0.678594 + 0.734513i \(0.737411\pi\)
\(368\) −6.00000 −0.312772
\(369\) 12.0000i 0.624695i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 36.0000 1.86152
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 + 18.0000i 0.618031 + 0.927047i
\(378\) 0 0
\(379\) 6.00000i 0.308199i 0.988055 + 0.154100i \(0.0492477\pi\)
−0.988055 + 0.154100i \(0.950752\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 12.0000i 0.613973i
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) −8.00000 −0.406663
\(388\) 6.00000i 0.304604i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 7.00000i 0.353553i
\(393\) 12.0000 0.605320
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 6.00000i 0.301511i
\(397\) 18.0000i 0.903394i 0.892171 + 0.451697i \(0.149181\pi\)
−0.892171 + 0.451697i \(0.850819\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0000i 1.19850i −0.800561 0.599251i \(-0.795465\pi\)
0.800561 0.599251i \(-0.204535\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 0 0
\(407\) −36.0000 −1.78445
\(408\) 6.00000i 0.297044i
\(409\) 12.0000i 0.593362i −0.954977 0.296681i \(-0.904120\pi\)
0.954977 0.296681i \(-0.0958798\pi\)
\(410\) 0 0
\(411\) 18.0000i 0.887875i
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) 6.00000i 0.294884i
\(415\) 0 0
\(416\) −3.00000 + 2.00000i −0.147087 + 0.0980581i
\(417\) −4.00000 −0.195881
\(418\) 36.0000i 1.76082i
\(419\) −36.0000 −1.75872 −0.879358 0.476162i \(-0.842028\pi\)
−0.879358 + 0.476162i \(0.842028\pi\)
\(420\) 0 0
\(421\) 6.00000i 0.292422i −0.989253 0.146211i \(-0.953292\pi\)
0.989253 0.146211i \(-0.0467079\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 0 0
\(424\) 12.0000i 0.582772i
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) 0 0
\(428\) 0 0
\(429\) 18.0000 12.0000i 0.869048 0.579365i
\(430\) 0 0
\(431\) 12.0000i 0.578020i 0.957326 + 0.289010i \(0.0933260\pi\)
−0.957326 + 0.289010i \(0.906674\pi\)
\(432\) 1.00000 0.0481125
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000i 0.287348i
\(437\) 36.0000i 1.72211i
\(438\) 6.00000 0.286691
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) −18.0000 + 12.0000i −0.856173 + 0.570782i
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 6.00000i 0.284747i
\(445\) 0 0
\(446\) 0 0
\(447\) 18.0000i 0.851371i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) −72.0000 −3.39035
\(452\) −18.0000 −0.846649
\(453\) 12.0000i 0.563809i
\(454\) −24.0000 −1.12638
\(455\) 0 0
\(456\) −6.00000 −0.280976
\(457\) 6.00000i 0.280668i 0.990104 + 0.140334i \(0.0448177\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(458\) 18.0000 0.841085
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 6.00000i 0.279448i −0.990190 0.139724i \(-0.955378\pi\)
0.990190 0.139724i \(-0.0446215\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 6.00000i 0.277945i
\(467\) 24.0000 1.11059 0.555294 0.831654i \(-0.312606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(468\) 2.00000 + 3.00000i 0.0924500 + 0.138675i
\(469\) 0 0
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) −6.00000 −0.276172
\(473\) 48.0000i 2.20704i
\(474\) 8.00000i 0.367452i
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) 24.0000i 1.09659i 0.836286 + 0.548294i \(0.184723\pi\)
−0.836286 + 0.548294i \(0.815277\pi\)
\(480\) 0 0
\(481\) 18.0000 12.0000i 0.820729 0.547153i
\(482\) −24.0000 −1.09317
\(483\) 0 0
\(484\) 25.0000 1.13636
\(485\) 0 0
\(486\) 1.00000i 0.0453609i
\(487\) 24.0000i 1.08754i −0.839233 0.543772i \(-0.816996\pi\)
0.839233 0.543772i \(-0.183004\pi\)
\(488\) 10.0000i 0.452679i
\(489\) 12.0000i 0.542659i
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 12.0000i 0.541002i
\(493\) −36.0000 −1.62136
\(494\) −12.0000 18.0000i −0.539906 0.809858i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000i 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 12.0000i 0.535586i
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −36.0000 −1.60040
\(507\) −5.00000 + 12.0000i −0.222058 + 0.532939i
\(508\) −2.00000 −0.0887357
\(509\) 6.00000i 0.265945i 0.991120 + 0.132973i \(0.0424523\pi\)
−0.991120 + 0.132973i \(0.957548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 6.00000i 0.264906i
\(514\) 18.0000i 0.793946i
\(515\) 0 0
\(516\) 8.00000 0.352180
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 6.00000i 0.262613i
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 6.00000i 0.261612i
\(527\) 0 0
\(528\) 6.00000i 0.261116i
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 6.00000i 0.260378i
\(532\) 0 0
\(533\) 36.0000 24.0000i 1.55933 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 30.0000i 1.29339i
\(539\) 42.0000i 1.80907i
\(540\) 0 0
\(541\) 18.0000i 0.773880i 0.922105 + 0.386940i \(0.126468\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(542\) 12.0000 0.515444
\(543\) 2.00000 0.0858282
\(544\) 6.00000i 0.257248i
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 36.0000i 1.53365i
\(552\) 6.00000i 0.255377i
\(553\) 0 0
\(554\) 8.00000i 0.339887i
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 30.0000i 1.27114i −0.772043 0.635570i \(-0.780765\pi\)
0.772043 0.635570i \(-0.219235\pi\)
\(558\) 0 0
\(559\) 16.0000 + 24.0000i 0.676728 + 1.01509i
\(560\) 0 0
\(561\) 36.0000i 1.51992i
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000i 0.168133i
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) −18.0000 + 12.0000i −0.752618 + 0.501745i
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −0.0416667
\(577\) 30.0000i 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(578\) 19.0000i 0.790296i
\(579\) 6.00000i 0.249351i
\(580\) 0 0
\(581\) 0 0
\(582\) 6.00000 0.248708
\(583\) 72.0000i 2.98194i
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 36.0000i 1.48588i −0.669359 0.742940i \(-0.733431\pi\)
0.669359 0.742940i \(-0.266569\pi\)
\(588\) −7.00000 −0.288675
\(589\) 0 0
\(590\) 0 0
\(591\) 6.00000i 0.246807i
\(592\) 6.00000i 0.246598i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 6.00000 0.246183
\(595\) 0 0
\(596\) 18.0000i 0.737309i
\(597\) −20.0000 −0.818546
\(598\) 18.0000 12.0000i 0.736075 0.490716i
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.0000i 0.488273i
\(605\) 0 0
\(606\) 18.0000i 0.731200i
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 6.00000 0.243332
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −6.00000 −0.242536
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000i 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 14.0000i 0.563163i
\(619\) 30.0000i 1.20580i −0.797816 0.602901i \(-0.794011\pi\)
0.797816 0.602901i \(-0.205989\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 12.0000i 0.481156i
\(623\) 0 0
\(624\) −2.00000 3.00000i −0.0800641 0.120096i
\(625\) 0 0
\(626\) 10.0000i 0.399680i
\(627\) −36.0000 −1.43770
\(628\) −4.00000 −0.159617
\(629\) 36.0000i 1.43541i
\(630\) 0 0
\(631\) 12.0000i 0.477712i −0.971055 0.238856i \(-0.923228\pi\)
0.971055 0.238856i \(-0.0767725\pi\)
\(632\) 8.00000i 0.318223i
\(633\) 4.00000 0.158986
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) −12.0000 −0.475831
\(637\) −14.0000 21.0000i −0.554700 0.832050i
\(638\) −36.0000 −1.42525
\(639\) 12.0000i 0.474713i
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 36.0000 1.41640
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 12.0000i 0.469956i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) −6.00000 −0.234619
\(655\) 0 0
\(656\) 12.0000i 0.468521i
\(657\) 6.00000i 0.234082i
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 42.0000i 1.63361i 0.576913 + 0.816805i \(0.304257\pi\)
−0.576913 + 0.816805i \(0.695743\pi\)
\(662\) −18.0000 −0.699590
\(663\) −12.0000 18.0000i −0.466041 0.699062i
\(664\) 0 0
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 60.0000i 2.31627i
\(672\) 0 0
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 22.0000i 0.847408i
\(675\) 0 0
\(676\) 5.00000 12.0000i 0.192308 0.461538i
\(677\) −24.0000 −0.922395 −0.461197 0.887298i \(-0.652580\pi\)
−0.461197 + 0.887298i \(0.652580\pi\)
\(678\) 18.0000i 0.691286i
\(679\) 0 0
\(680\) 0 0
\(681\) 24.0000i 0.919682i
\(682\) 0 0
\(683\) 24.0000i 0.918334i 0.888350 + 0.459167i \(0.151852\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) 6.00000i 0.229416i
\(685\) 0 0
\(686\) 0 0
\(687\) 18.0000i 0.686743i
\(688\) −8.00000 −0.304997
\(689\) −24.0000 36.0000i −0.914327 1.37149i
\(690\) 0 0
\(691\) 42.0000i 1.59776i −0.601494 0.798878i \(-0.705427\pi\)
0.601494 0.798878i \(-0.294573\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 6.00000i 0.227429i
\(697\) 72.0000i 2.72719i
\(698\) 6.00000 0.227103
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) −3.00000 + 2.00000i −0.113228 + 0.0754851i
\(703\) −36.0000 −1.35777
\(704\) 6.00000i 0.226134i
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) 6.00000i 0.225494i
\(709\) 30.0000i 1.12667i −0.826227 0.563337i \(-0.809517\pi\)
0.826227 0.563337i \(-0.190483\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 17.0000i 0.632674i
\(723\) 24.0000i 0.892570i
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) 25.0000i 0.927837i
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −48.0000 −1.77534
\(732\) −10.0000 −0.369611
\(733\) 30.0000i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 26.0000i 0.959678i
\(735\) 0 0
\(736\) 6.00000i 0.221163i
\(737\) 0 0
\(738\) 12.0000 0.441726
\(739\) 42.0000i 1.54499i −0.635018 0.772497i \(-0.719007\pi\)
0.635018 0.772497i \(-0.280993\pi\)
\(740\) 0 0
\(741\) 18.0000 12.0000i 0.661247 0.440831i
\(742\) 0 0
\(743\) 48.0000i 1.76095i 0.474093 + 0.880475i \(0.342776\pi\)
−0.474093 + 0.880475i \(0.657224\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 4.00000i 0.146450i
\(747\) 0 0
\(748\) 36.0000i 1.31629i
\(749\) 0 0
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 18.0000 12.0000i 0.655521 0.437014i
\(755\) 0 0
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) 6.00000 0.217930
\(759\) 36.0000i 1.30672i
\(760\) 0 0
\(761\) 48.0000i 1.74000i −0.493053 0.869999i \(-0.664119\pi\)
0.493053 0.869999i \(-0.335881\pi\)
\(762\) 2.00000i 0.0724524i
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 18.0000 12.0000i 0.649942 0.433295i
\(768\) 1.00000 0.0360844
\(769\) 24.0000i 0.865462i 0.901523 + 0.432731i \(0.142450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 6.00000i 0.215945i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 8.00000i 0.287554i
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 30.0000i 1.07555i
\(779\) −72.0000 −2.57967
\(780\) 0 0
\(781\) 72.0000 2.57636
\(782\) 36.0000i 1.28736i
\(783\) −6.00000 −0.214423
\(784\) 7.00000 0.250000
\(785\) 0 0
\(786\) 12.0000i 0.428026i
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 6.00000i 0.213741i
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) 0 0
\(792\) −6.00000 −0.213201
\(793\) −20.0000 30.0000i −0.710221 1.06533i
\(794\) 18.0000 0.638796
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) −12.0000 −0.425062 −0.212531 0.977154i \(-0.568171\pi\)
−0.212531 + 0.977154i \(0.568171\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −24.0000 −0.847469
\(803\) −36.0000 −1.27041
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 30.0000 1.05605
\(808\) 18.0000i 0.633238i
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 18.0000i 0.632065i 0.948748 + 0.316033i \(0.102351\pi\)
−0.948748 + 0.316033i \(0.897649\pi\)
\(812\) 0 0
\(813\) 12.0000i 0.420858i
\(814\) 36.0000i 1.26180i
\(815\) 0 0
\(816\) 6.00000 0.210042
\(817\) 48.0000i 1.67931i
\(818\) −12.0000 −0.419570
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000i 0.209401i −0.994504 0.104701i \(-0.966612\pi\)
0.994504 0.104701i \(-0.0333885\pi\)
\(822\) 18.0000 0.627822
\(823\) 22.0000 0.766872 0.383436 0.923567i \(-0.374741\pi\)
0.383436 + 0.923567i \(0.374741\pi\)
\(824\) 14.0000i 0.487713i
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000i 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 6.00000 0.208514
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) 2.00000 + 3.00000i 0.0693375 + 0.104006i
\(833\) 42.0000 1.45521
\(834\) 4.00000i 0.138509i
\(835\) 0 0
\(836\) 36.0000 1.24509
\(837\) 0 0
\(838\) 36.0000i 1.24360i
\(839\) 12.0000i 0.414286i −0.978311 0.207143i \(-0.933583\pi\)
0.978311 0.207143i \(-0.0664165\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −6.00000 −0.206774
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 12.0000 0.412082
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 36.0000i 1.23406i
\(852\) 12.0000i 0.411113i
\(853\) 54.0000i 1.84892i 0.381273 + 0.924462i \(0.375486\pi\)
−0.381273 + 0.924462i \(0.624514\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) −12.0000 18.0000i −0.409673 0.614510i
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) 48.0000i 1.63394i −0.576681 0.816970i \(-0.695652\pi\)
0.576681 0.816970i \(-0.304348\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 0 0
\(866\) 2.00000i 0.0679628i
\(867\) 19.0000 0.645274
\(868\) 0 0
\(869\) 48.0000i 1.62829i
\(870\) 0 0
\(871\) 0 0
\(872\) 6.00000 0.203186
\(873\) 6.00000i 0.203069i
\(874\) −36.0000 −1.21772
\(875\) 0 0
\(876\) 6.00000i 0.202721i
\(877\) 18.0000i 0.607817i 0.952701 + 0.303908i \(0.0982917\pi\)
−0.952701 + 0.303908i \(0.901708\pi\)
\(878\) 8.00000i 0.269987i
\(879\) 6.00000i 0.202375i
\(880\) 0 0
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 7.00000i 0.235702i
\(883\) 56.0000 1.88455 0.942275 0.334840i \(-0.108682\pi\)
0.942275 + 0.334840i \(0.108682\pi\)
\(884\) 12.0000 + 18.0000i 0.403604 + 0.605406i
\(885\) 0 0
\(886\) 24.0000i 0.806296i
\(887\) 30.0000 1.00730 0.503651 0.863907i \(-0.331990\pi\)
0.503651 + 0.863907i \(0.331990\pi\)
\(888\) −6.00000 −0.201347
\(889\) 0 0
\(890\) 0 0
\(891\) 6.00000i 0.201008i
\(892\) 0 0
\(893\) 0 0
\(894\) −18.0000 −0.602010
\(895\) 0 0
\(896\) 0 0
\(897\) 12.0000 + 18.0000i 0.400668 + 0.601003i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 72.0000 2.39867
\(902\) 72.0000i 2.39734i
\(903\) 0 0
\(904\) 18.0000i 0.598671i
\(905\) 0 0
\(906\) 12.0000 0.398673
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 24.0000i 0.796468i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 6.00000i 0.198680i
\(913\) 0 0
\(914\) 6.00000 0.198462
\(915\) 0 0
\(916\) 18.0000i 0.594737i
\(917\) 0 0
\(918\) 6.00000i 0.198030i
\(919\) 52.0000 1.71532 0.857661 0.514216i \(-0.171917\pi\)
0.857661 + 0.514216i \(0.171917\pi\)
\(920\) 0 0
\(921\) 12.0000i 0.395413i
\(922\) −6.00000 −0.197599
\(923\) −36.0000 + 24.0000i −1.18495 + 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −14.0000 −0.459820
\(928\) 6.00000i 0.196960i
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 42.0000i 1.37649i
\(932\) −6.00000 −0.196537
\(933\) 12.0000 0.392862
\(934\) 24.0000i 0.785304i
\(935\) 0 0
\(936\) 3.00000 2.00000i 0.0980581 0.0653720i
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) 18.0000i 0.586783i −0.955992 0.293392i \(-0.905216\pi\)
0.955992 0.293392i \(-0.0947840\pi\)
\(942\) 4.00000i 0.130327i
\(943\) 72.0000i 2.34464i
\(944\) 6.00000i 0.195283i
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) 12.0000i 0.389948i 0.980808 + 0.194974i \(0.0624622\pi\)
−0.980808 + 0.194974i \(0.937538\pi\)
\(948\) 8.00000 0.259828
\(949\) 18.0000 12.0000i 0.584305 0.389536i
\(950\) 0 0
\(951\) 6.00000i 0.194563i
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 12.0000i 0.388514i
\(955\) 0 0
\(956\) 0 0
\(957\) 36.0000i 1.16371i
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) −12.0000 18.0000i −0.386896 0.580343i
\(963\) 0 0
\(964\) 24.0000i 0.772988i
\(965\) 0 0
\(966\) 0 0
\(967\) 48.0000i 1.54358i 0.635880 + 0.771788i \(0.280637\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(968\) 25.0000i 0.803530i
\(969\) 36.0000i 1.15649i
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 18.0000i 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) −12.0000 −0.383718
\(979\) 0 0
\(980\) 0 0
\(981\) 6.00000i 0.191565i
\(982\) 12.0000i 0.382935i
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) −12.0000 −0.382546
\(985\) 0 0
\(986\) 36.0000i 1.14647i
\(987\) 0 0
\(988\) −18.0000 + 12.0000i −0.572656 + 0.381771i
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) 18.0000i 0.571213i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 28.0000 0.886769 0.443384 0.896332i \(-0.353778\pi\)
0.443384 + 0.896332i \(0.353778\pi\)
\(998\) −6.00000 −0.189927
\(999\) 6.00000i 0.189832i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1950.2.b.e.1351.1 2
5.2 odd 4 1950.2.f.h.649.1 2
5.3 odd 4 1950.2.f.c.649.2 2
5.4 even 2 390.2.b.b.181.2 yes 2
13.12 even 2 inner 1950.2.b.e.1351.2 2
15.14 odd 2 1170.2.b.c.181.1 2
20.19 odd 2 3120.2.g.i.961.1 2
65.12 odd 4 1950.2.f.c.649.1 2
65.34 odd 4 5070.2.a.h.1.1 1
65.38 odd 4 1950.2.f.h.649.2 2
65.44 odd 4 5070.2.a.l.1.1 1
65.64 even 2 390.2.b.b.181.1 2
195.194 odd 2 1170.2.b.c.181.2 2
260.259 odd 2 3120.2.g.i.961.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.b.b.181.1 2 65.64 even 2
390.2.b.b.181.2 yes 2 5.4 even 2
1170.2.b.c.181.1 2 15.14 odd 2
1170.2.b.c.181.2 2 195.194 odd 2
1950.2.b.e.1351.1 2 1.1 even 1 trivial
1950.2.b.e.1351.2 2 13.12 even 2 inner
1950.2.f.c.649.1 2 65.12 odd 4
1950.2.f.c.649.2 2 5.3 odd 4
1950.2.f.h.649.1 2 5.2 odd 4
1950.2.f.h.649.2 2 65.38 odd 4
3120.2.g.i.961.1 2 20.19 odd 2
3120.2.g.i.961.2 2 260.259 odd 2
5070.2.a.h.1.1 1 65.34 odd 4
5070.2.a.l.1.1 1 65.44 odd 4