Properties

Label 195.3.d.a.131.2
Level $195$
Weight $3$
Character 195.131
Analytic conductor $5.313$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,3,Mod(131,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.131"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.2
Character \(\chi\) \(=\) 195.131
Dual form 195.3.d.a.131.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.82682i q^{2} +(0.963256 + 2.84115i) q^{3} -10.6446 q^{4} +2.23607i q^{5} +(10.8726 - 3.68621i) q^{6} -0.765398 q^{7} +25.4276i q^{8} +(-7.14428 + 5.47351i) q^{9} +8.55704 q^{10} +17.7633i q^{11} +(-10.2535 - 30.2429i) q^{12} -3.60555 q^{13} +2.92904i q^{14} +(-6.35301 + 2.15391i) q^{15} +54.7288 q^{16} +6.19210i q^{17} +(20.9462 + 27.3399i) q^{18} +19.3140 q^{19} -23.8020i q^{20} +(-0.737274 - 2.17461i) q^{21} +67.9769 q^{22} -11.6007i q^{23} +(-72.2438 + 24.4933i) q^{24} -5.00000 q^{25} +13.7978i q^{26} +(-22.4328 - 15.0256i) q^{27} +8.14734 q^{28} +32.5043i q^{29} +(8.24262 + 24.3118i) q^{30} -54.9784 q^{31} -107.727i q^{32} +(-50.4681 + 17.1106i) q^{33} +23.6961 q^{34} -1.71148i q^{35} +(76.0478 - 58.2632i) q^{36} -11.6930 q^{37} -73.9112i q^{38} +(-3.47307 - 10.2439i) q^{39} -56.8579 q^{40} -26.8521i q^{41} +(-8.32186 + 2.82142i) q^{42} +76.6216 q^{43} -189.082i q^{44} +(-12.2391 - 15.9751i) q^{45} -44.3939 q^{46} +62.1944i q^{47} +(52.7178 + 155.493i) q^{48} -48.4142 q^{49} +19.1341i q^{50} +(-17.5927 + 5.96458i) q^{51} +38.3796 q^{52} +54.9052i q^{53} +(-57.5002 + 85.8465i) q^{54} -39.7199 q^{55} -19.4623i q^{56} +(18.6043 + 54.8739i) q^{57} +124.388 q^{58} -67.9132i q^{59} +(67.6251 - 22.9274i) q^{60} +33.2098 q^{61} +210.393i q^{62} +(5.46822 - 4.18942i) q^{63} -193.337 q^{64} -8.06226i q^{65} +(65.4791 + 193.133i) q^{66} -9.24458 q^{67} -65.9124i q^{68} +(32.9594 - 11.1745i) q^{69} -6.54954 q^{70} +9.17544i q^{71} +(-139.179 - 181.662i) q^{72} +56.3779 q^{73} +44.7472i q^{74} +(-4.81628 - 14.2058i) q^{75} -205.589 q^{76} -13.5960i q^{77} +(-39.2017 + 13.2908i) q^{78} +3.07402 q^{79} +122.377i q^{80} +(21.0813 - 78.2085i) q^{81} -102.758 q^{82} -5.35700i q^{83} +(7.84798 + 23.1478i) q^{84} -13.8460 q^{85} -293.217i q^{86} +(-92.3496 + 31.3100i) q^{87} -451.678 q^{88} -73.2637i q^{89} +(-61.1338 + 46.8370i) q^{90} +2.75968 q^{91} +123.485i q^{92} +(-52.9582 - 156.202i) q^{93} +238.007 q^{94} +43.1874i q^{95} +(306.068 - 103.769i) q^{96} +168.185 q^{97} +185.272i q^{98} +(-97.2274 - 126.906i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 60 q^{4} - 8 q^{6} + 8 q^{9} - 20 q^{10} - 68 q^{12} + 172 q^{16} + 132 q^{18} - 16 q^{19} + 44 q^{21} - 64 q^{22} - 92 q^{24} - 160 q^{25} + 20 q^{27} + 224 q^{28} - 40 q^{30} - 56 q^{31}+ \cdots + 236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.82682i 1.91341i −0.291056 0.956706i \(-0.594007\pi\)
0.291056 0.956706i \(-0.405993\pi\)
\(3\) 0.963256 + 2.84115i 0.321085 + 0.947050i
\(4\) −10.6446 −2.66115
\(5\) 2.23607i 0.447214i
\(6\) 10.8726 3.68621i 1.81210 0.614369i
\(7\) −0.765398 −0.109343 −0.0546713 0.998504i \(-0.517411\pi\)
−0.0546713 + 0.998504i \(0.517411\pi\)
\(8\) 25.4276i 3.17846i
\(9\) −7.14428 + 5.47351i −0.793808 + 0.608168i
\(10\) 8.55704 0.855704
\(11\) 17.7633i 1.61484i 0.589976 + 0.807421i \(0.299137\pi\)
−0.589976 + 0.807421i \(0.700863\pi\)
\(12\) −10.2535 30.2429i −0.854455 2.52024i
\(13\) −3.60555 −0.277350
\(14\) 2.92904i 0.209217i
\(15\) −6.35301 + 2.15391i −0.423534 + 0.143594i
\(16\) 54.7288 3.42055
\(17\) 6.19210i 0.364241i 0.983276 + 0.182121i \(0.0582962\pi\)
−0.983276 + 0.182121i \(0.941704\pi\)
\(18\) 20.9462 + 27.3399i 1.16368 + 1.51888i
\(19\) 19.3140 1.01652 0.508262 0.861202i \(-0.330288\pi\)
0.508262 + 0.861202i \(0.330288\pi\)
\(20\) 23.8020i 1.19010i
\(21\) −0.737274 2.17461i −0.0351083 0.103553i
\(22\) 67.9769 3.08986
\(23\) 11.6007i 0.504379i −0.967678 0.252189i \(-0.918849\pi\)
0.967678 0.252189i \(-0.0811506\pi\)
\(24\) −72.2438 + 24.4933i −3.01016 + 1.02056i
\(25\) −5.00000 −0.200000
\(26\) 13.7978i 0.530685i
\(27\) −22.4328 15.0256i −0.830846 0.556503i
\(28\) 8.14734 0.290977
\(29\) 32.5043i 1.12084i 0.828209 + 0.560419i \(0.189360\pi\)
−0.828209 + 0.560419i \(0.810640\pi\)
\(30\) 8.24262 + 24.3118i 0.274754 + 0.810395i
\(31\) −54.9784 −1.77350 −0.886748 0.462254i \(-0.847041\pi\)
−0.886748 + 0.462254i \(0.847041\pi\)
\(32\) 107.727i 3.36647i
\(33\) −50.4681 + 17.1106i −1.52934 + 0.518502i
\(34\) 23.6961 0.696944
\(35\) 1.71148i 0.0488995i
\(36\) 76.0478 58.2632i 2.11244 1.61842i
\(37\) −11.6930 −0.316028 −0.158014 0.987437i \(-0.550509\pi\)
−0.158014 + 0.987437i \(0.550509\pi\)
\(38\) 73.9112i 1.94503i
\(39\) −3.47307 10.2439i −0.0890531 0.262664i
\(40\) −56.8579 −1.42145
\(41\) 26.8521i 0.654929i −0.944864 0.327464i \(-0.893806\pi\)
0.944864 0.327464i \(-0.106194\pi\)
\(42\) −8.32186 + 2.82142i −0.198139 + 0.0671767i
\(43\) 76.6216 1.78190 0.890949 0.454103i \(-0.150040\pi\)
0.890949 + 0.454103i \(0.150040\pi\)
\(44\) 189.082i 4.29733i
\(45\) −12.2391 15.9751i −0.271981 0.355002i
\(46\) −44.3939 −0.965084
\(47\) 62.1944i 1.32328i 0.749820 + 0.661642i \(0.230140\pi\)
−0.749820 + 0.661642i \(0.769860\pi\)
\(48\) 52.7178 + 155.493i 1.09829 + 3.23943i
\(49\) −48.4142 −0.988044
\(50\) 19.1341i 0.382682i
\(51\) −17.5927 + 5.96458i −0.344955 + 0.116953i
\(52\) 38.3796 0.738069
\(53\) 54.9052i 1.03595i 0.855397 + 0.517973i \(0.173313\pi\)
−0.855397 + 0.517973i \(0.826687\pi\)
\(54\) −57.5002 + 85.8465i −1.06482 + 1.58975i
\(55\) −39.7199 −0.722179
\(56\) 19.4623i 0.347541i
\(57\) 18.6043 + 54.8739i 0.326391 + 0.962700i
\(58\) 124.388 2.14463
\(59\) 67.9132i 1.15107i −0.817777 0.575536i \(-0.804794\pi\)
0.817777 0.575536i \(-0.195206\pi\)
\(60\) 67.6251 22.9274i 1.12708 0.382124i
\(61\) 33.2098 0.544424 0.272212 0.962237i \(-0.412245\pi\)
0.272212 + 0.962237i \(0.412245\pi\)
\(62\) 210.393i 3.39343i
\(63\) 5.46822 4.18942i 0.0867971 0.0664987i
\(64\) −193.337 −3.02089
\(65\) 8.06226i 0.124035i
\(66\) 65.4791 + 193.133i 0.992108 + 2.92625i
\(67\) −9.24458 −0.137979 −0.0689894 0.997617i \(-0.521977\pi\)
−0.0689894 + 0.997617i \(0.521977\pi\)
\(68\) 65.9124i 0.969299i
\(69\) 32.9594 11.1745i 0.477672 0.161949i
\(70\) −6.54954 −0.0935649
\(71\) 9.17544i 0.129232i 0.997910 + 0.0646158i \(0.0205822\pi\)
−0.997910 + 0.0646158i \(0.979418\pi\)
\(72\) −139.179 181.662i −1.93303 2.52308i
\(73\) 56.3779 0.772300 0.386150 0.922436i \(-0.373805\pi\)
0.386150 + 0.922436i \(0.373805\pi\)
\(74\) 44.7472i 0.604692i
\(75\) −4.81628 14.2058i −0.0642171 0.189410i
\(76\) −205.589 −2.70512
\(77\) 13.5960i 0.176571i
\(78\) −39.2017 + 13.2908i −0.502585 + 0.170395i
\(79\) 3.07402 0.0389116 0.0194558 0.999811i \(-0.493807\pi\)
0.0194558 + 0.999811i \(0.493807\pi\)
\(80\) 122.377i 1.52972i
\(81\) 21.0813 78.2085i 0.260264 0.965538i
\(82\) −102.758 −1.25315
\(83\) 5.35700i 0.0645422i −0.999479 0.0322711i \(-0.989726\pi\)
0.999479 0.0322711i \(-0.0102740\pi\)
\(84\) 7.84798 + 23.1478i 0.0934283 + 0.275569i
\(85\) −13.8460 −0.162894
\(86\) 293.217i 3.40950i
\(87\) −92.3496 + 31.3100i −1.06149 + 0.359885i
\(88\) −451.678 −5.13270
\(89\) 73.2637i 0.823187i −0.911367 0.411594i \(-0.864972\pi\)
0.911367 0.411594i \(-0.135028\pi\)
\(90\) −61.1338 + 46.8370i −0.679265 + 0.520412i
\(91\) 2.75968 0.0303262
\(92\) 123.485i 1.34223i
\(93\) −52.9582 156.202i −0.569443 1.67959i
\(94\) 238.007 2.53199
\(95\) 43.1874i 0.454604i
\(96\) 306.068 103.769i 3.18821 1.08092i
\(97\) 168.185 1.73386 0.866931 0.498428i \(-0.166089\pi\)
0.866931 + 0.498428i \(0.166089\pi\)
\(98\) 185.272i 1.89054i
\(99\) −97.2274 126.906i −0.982095 1.28188i
\(100\) 53.2229 0.532229
\(101\) 158.775i 1.57203i 0.618205 + 0.786017i \(0.287860\pi\)
−0.618205 + 0.786017i \(0.712140\pi\)
\(102\) 22.8254 + 67.3242i 0.223778 + 0.660041i
\(103\) −3.57477 −0.0347065 −0.0173532 0.999849i \(-0.505524\pi\)
−0.0173532 + 0.999849i \(0.505524\pi\)
\(104\) 91.6807i 0.881545i
\(105\) 4.86258 1.64860i 0.0463103 0.0157009i
\(106\) 210.112 1.98219
\(107\) 64.4315i 0.602164i −0.953598 0.301082i \(-0.902652\pi\)
0.953598 0.301082i \(-0.0973477\pi\)
\(108\) 238.788 + 159.941i 2.21100 + 1.48093i
\(109\) −10.4148 −0.0955490 −0.0477745 0.998858i \(-0.515213\pi\)
−0.0477745 + 0.998858i \(0.515213\pi\)
\(110\) 152.001i 1.38183i
\(111\) −11.2634 33.2217i −0.101472 0.299294i
\(112\) −41.8893 −0.374012
\(113\) 39.1592i 0.346542i 0.984874 + 0.173271i \(0.0554336\pi\)
−0.984874 + 0.173271i \(0.944566\pi\)
\(114\) 209.993 71.1954i 1.84204 0.624521i
\(115\) 25.9400 0.225565
\(116\) 345.995i 2.98271i
\(117\) 25.7591 19.7350i 0.220163 0.168675i
\(118\) −259.892 −2.20247
\(119\) 4.73942i 0.0398271i
\(120\) −54.7688 161.542i −0.456406 1.34618i
\(121\) −194.533 −1.60771
\(122\) 127.088i 1.04171i
\(123\) 76.2908 25.8654i 0.620250 0.210288i
\(124\) 585.222 4.71953
\(125\) 11.1803i 0.0894427i
\(126\) −16.0322 20.9259i −0.127239 0.166079i
\(127\) 171.074 1.34704 0.673521 0.739168i \(-0.264781\pi\)
0.673521 + 0.739168i \(0.264781\pi\)
\(128\) 308.958i 2.41373i
\(129\) 73.8062 + 217.694i 0.572141 + 1.68755i
\(130\) −30.8528 −0.237330
\(131\) 141.606i 1.08096i −0.841357 0.540480i \(-0.818242\pi\)
0.841357 0.540480i \(-0.181758\pi\)
\(132\) 537.212 182.135i 4.06979 1.37981i
\(133\) −14.7829 −0.111149
\(134\) 35.3774i 0.264010i
\(135\) 33.5982 50.1614i 0.248876 0.371566i
\(136\) −157.451 −1.15773
\(137\) 122.452i 0.893808i −0.894582 0.446904i \(-0.852527\pi\)
0.894582 0.446904i \(-0.147473\pi\)
\(138\) −42.7627 126.130i −0.309874 0.913983i
\(139\) 83.8739 0.603410 0.301705 0.953401i \(-0.402444\pi\)
0.301705 + 0.953401i \(0.402444\pi\)
\(140\) 18.2180i 0.130129i
\(141\) −176.704 + 59.9091i −1.25322 + 0.424887i
\(142\) 35.1128 0.247273
\(143\) 64.0463i 0.447877i
\(144\) −390.998 + 299.559i −2.71526 + 2.08027i
\(145\) −72.6818 −0.501254
\(146\) 215.748i 1.47773i
\(147\) −46.6352 137.552i −0.317247 0.935728i
\(148\) 124.467 0.840996
\(149\) 37.6863i 0.252928i 0.991971 + 0.126464i \(0.0403628\pi\)
−0.991971 + 0.126464i \(0.959637\pi\)
\(150\) −54.3629 + 18.4311i −0.362419 + 0.122874i
\(151\) −263.787 −1.74693 −0.873465 0.486887i \(-0.838133\pi\)
−0.873465 + 0.486887i \(0.838133\pi\)
\(152\) 491.109i 3.23098i
\(153\) −33.8926 44.2381i −0.221520 0.289138i
\(154\) −52.0294 −0.337853
\(155\) 122.935i 0.793131i
\(156\) 36.9694 + 109.042i 0.236983 + 0.698988i
\(157\) 273.013 1.73893 0.869467 0.493991i \(-0.164462\pi\)
0.869467 + 0.493991i \(0.164462\pi\)
\(158\) 11.7637i 0.0744539i
\(159\) −155.994 + 52.8877i −0.981093 + 0.332627i
\(160\) 240.885 1.50553
\(161\) 8.87916i 0.0551501i
\(162\) −299.290 80.6746i −1.84747 0.497991i
\(163\) 0.545700 0.00334785 0.00167393 0.999999i \(-0.499467\pi\)
0.00167393 + 0.999999i \(0.499467\pi\)
\(164\) 285.829i 1.74286i
\(165\) −38.2604 112.850i −0.231881 0.683940i
\(166\) −20.5003 −0.123496
\(167\) 16.1321i 0.0965996i 0.998833 + 0.0482998i \(0.0153803\pi\)
−0.998833 + 0.0482998i \(0.984620\pi\)
\(168\) 55.2953 18.7472i 0.329138 0.111590i
\(169\) 13.0000 0.0769231
\(170\) 52.9861i 0.311683i
\(171\) −137.984 + 105.715i −0.806926 + 0.618218i
\(172\) −815.605 −4.74189
\(173\) 210.494i 1.21673i 0.793659 + 0.608363i \(0.208174\pi\)
−0.793659 + 0.608363i \(0.791826\pi\)
\(174\) 119.818 + 353.406i 0.688608 + 2.03107i
\(175\) 3.82699 0.0218685
\(176\) 972.162i 5.52365i
\(177\) 192.952 65.4178i 1.09012 0.369592i
\(178\) −280.367 −1.57510
\(179\) 71.0064i 0.396684i 0.980133 + 0.198342i \(0.0635557\pi\)
−0.980133 + 0.198342i \(0.936444\pi\)
\(180\) 130.281 + 170.048i 0.723781 + 0.944712i
\(181\) 205.491 1.13531 0.567655 0.823267i \(-0.307851\pi\)
0.567655 + 0.823267i \(0.307851\pi\)
\(182\) 10.5608i 0.0580265i
\(183\) 31.9896 + 94.3542i 0.174806 + 0.515596i
\(184\) 294.979 1.60315
\(185\) 26.1464i 0.141332i
\(186\) −597.757 + 202.662i −3.21375 + 1.08958i
\(187\) −109.992 −0.588192
\(188\) 662.033i 3.52145i
\(189\) 17.1701 + 11.5005i 0.0908468 + 0.0608494i
\(190\) 165.270 0.869844
\(191\) 304.175i 1.59254i −0.604942 0.796270i \(-0.706804\pi\)
0.604942 0.796270i \(-0.293196\pi\)
\(192\) −186.233 549.299i −0.969962 2.86093i
\(193\) 116.871 0.605548 0.302774 0.953062i \(-0.402087\pi\)
0.302774 + 0.953062i \(0.402087\pi\)
\(194\) 643.613i 3.31759i
\(195\) 22.9061 7.76602i 0.117467 0.0398257i
\(196\) 515.349 2.62933
\(197\) 105.775i 0.536931i 0.963289 + 0.268466i \(0.0865166\pi\)
−0.963289 + 0.268466i \(0.913483\pi\)
\(198\) −485.646 + 372.072i −2.45276 + 1.87915i
\(199\) −31.9034 −0.160319 −0.0801594 0.996782i \(-0.525543\pi\)
−0.0801594 + 0.996782i \(0.525543\pi\)
\(200\) 127.138i 0.635691i
\(201\) −8.90490 26.2653i −0.0443030 0.130673i
\(202\) 607.606 3.00795
\(203\) 24.8787i 0.122555i
\(204\) 187.267 63.4905i 0.917975 0.311228i
\(205\) 60.0431 0.292893
\(206\) 13.6800i 0.0664078i
\(207\) 63.4966 + 82.8787i 0.306747 + 0.400380i
\(208\) −197.327 −0.948690
\(209\) 343.079i 1.64153i
\(210\) −6.30889 18.6082i −0.0300423 0.0886106i
\(211\) 142.077 0.673349 0.336674 0.941621i \(-0.390698\pi\)
0.336674 + 0.941621i \(0.390698\pi\)
\(212\) 584.442i 2.75680i
\(213\) −26.0688 + 8.83830i −0.122389 + 0.0414944i
\(214\) −246.568 −1.15219
\(215\) 171.331i 0.796889i
\(216\) 382.065 570.414i 1.76882 2.64081i
\(217\) 42.0803 0.193919
\(218\) 39.8557i 0.182825i
\(219\) 54.3064 + 160.178i 0.247974 + 0.731407i
\(220\) 422.801 1.92182
\(221\) 22.3259i 0.101022i
\(222\) −127.133 + 43.1030i −0.572673 + 0.194158i
\(223\) −118.080 −0.529506 −0.264753 0.964316i \(-0.585290\pi\)
−0.264753 + 0.964316i \(0.585290\pi\)
\(224\) 82.4540i 0.368098i
\(225\) 35.7214 27.3676i 0.158762 0.121634i
\(226\) 149.855 0.663077
\(227\) 345.242i 1.52089i −0.649403 0.760444i \(-0.724981\pi\)
0.649403 0.760444i \(-0.275019\pi\)
\(228\) −198.035 584.110i −0.868575 2.56189i
\(229\) −30.4509 −0.132973 −0.0664866 0.997787i \(-0.521179\pi\)
−0.0664866 + 0.997787i \(0.521179\pi\)
\(230\) 99.2677i 0.431599i
\(231\) 38.6282 13.0964i 0.167222 0.0566944i
\(232\) −826.508 −3.56253
\(233\) 413.657i 1.77535i 0.460470 + 0.887675i \(0.347681\pi\)
−0.460470 + 0.887675i \(0.652319\pi\)
\(234\) −75.5225 98.5754i −0.322746 0.421262i
\(235\) −139.071 −0.591791
\(236\) 722.908i 3.06317i
\(237\) 2.96107 + 8.73375i 0.0124939 + 0.0368512i
\(238\) −18.1369 −0.0762057
\(239\) 338.502i 1.41633i 0.706048 + 0.708164i \(0.250476\pi\)
−0.706048 + 0.708164i \(0.749524\pi\)
\(240\) −347.692 + 117.881i −1.44872 + 0.491170i
\(241\) 91.5757 0.379982 0.189991 0.981786i \(-0.439154\pi\)
0.189991 + 0.981786i \(0.439154\pi\)
\(242\) 744.445i 3.07622i
\(243\) 242.509 15.4396i 0.997979 0.0635373i
\(244\) −353.505 −1.44879
\(245\) 108.257i 0.441867i
\(246\) −98.9824 291.951i −0.402368 1.18679i
\(247\) −69.6375 −0.281933
\(248\) 1397.97i 5.63698i
\(249\) 15.2200 5.16016i 0.0611247 0.0207235i
\(250\) −42.7852 −0.171141
\(251\) 343.765i 1.36958i 0.728739 + 0.684791i \(0.240107\pi\)
−0.728739 + 0.684791i \(0.759893\pi\)
\(252\) −58.2069 + 44.5946i −0.230980 + 0.176963i
\(253\) 206.066 0.814492
\(254\) 654.672i 2.57745i
\(255\) −13.3372 39.3385i −0.0523028 0.154269i
\(256\) 408.980 1.59758
\(257\) 346.896i 1.34979i 0.737913 + 0.674896i \(0.235811\pi\)
−0.737913 + 0.674896i \(0.764189\pi\)
\(258\) 833.075 282.443i 3.22897 1.09474i
\(259\) 8.94983 0.0345553
\(260\) 85.8194i 0.330074i
\(261\) −177.913 232.220i −0.681658 0.889731i
\(262\) −541.901 −2.06832
\(263\) 216.012i 0.821339i 0.911784 + 0.410670i \(0.134705\pi\)
−0.911784 + 0.410670i \(0.865295\pi\)
\(264\) −435.081 1283.29i −1.64804 4.86093i
\(265\) −122.772 −0.463289
\(266\) 56.5715i 0.212675i
\(267\) 208.153 70.5717i 0.779600 0.264313i
\(268\) 98.4047 0.367182
\(269\) 31.1404i 0.115764i −0.998323 0.0578818i \(-0.981565\pi\)
0.998323 0.0578818i \(-0.0184347\pi\)
\(270\) −191.959 128.574i −0.710958 0.476201i
\(271\) −152.262 −0.561854 −0.280927 0.959729i \(-0.590642\pi\)
−0.280927 + 0.959729i \(0.590642\pi\)
\(272\) 338.886i 1.24591i
\(273\) 2.65828 + 7.84067i 0.00973729 + 0.0287204i
\(274\) −468.601 −1.71022
\(275\) 88.8163i 0.322968i
\(276\) −350.839 + 118.947i −1.27115 + 0.430969i
\(277\) 445.171 1.60711 0.803557 0.595227i \(-0.202938\pi\)
0.803557 + 0.595227i \(0.202938\pi\)
\(278\) 320.971i 1.15457i
\(279\) 392.781 300.925i 1.40782 1.07858i
\(280\) 43.5190 0.155425
\(281\) 140.762i 0.500934i −0.968125 0.250467i \(-0.919416\pi\)
0.968125 0.250467i \(-0.0805842\pi\)
\(282\) 229.262 + 676.213i 0.812984 + 2.39792i
\(283\) −288.863 −1.02072 −0.510359 0.859962i \(-0.670487\pi\)
−0.510359 + 0.859962i \(0.670487\pi\)
\(284\) 97.6687i 0.343904i
\(285\) −122.702 + 41.6005i −0.430533 + 0.145967i
\(286\) −245.094 −0.856972
\(287\) 20.5525i 0.0716116i
\(288\) 589.644 + 769.631i 2.04738 + 2.67233i
\(289\) 250.658 0.867328
\(290\) 278.141i 0.959106i
\(291\) 162.005 + 477.838i 0.556718 + 1.64205i
\(292\) −600.119 −2.05520
\(293\) 214.754i 0.732950i 0.930428 + 0.366475i \(0.119435\pi\)
−0.930428 + 0.366475i \(0.880565\pi\)
\(294\) −526.387 + 178.465i −1.79043 + 0.607023i
\(295\) 151.859 0.514775
\(296\) 297.326i 1.00448i
\(297\) 266.903 398.480i 0.898664 1.34168i
\(298\) 144.219 0.483955
\(299\) 41.8270i 0.139889i
\(300\) 51.2673 + 151.214i 0.170891 + 0.504048i
\(301\) −58.6460 −0.194837
\(302\) 1009.46i 3.34260i
\(303\) −451.105 + 152.941i −1.48880 + 0.504757i
\(304\) 1057.03 3.47707
\(305\) 74.2595i 0.243474i
\(306\) −169.291 + 129.701i −0.553240 + 0.423859i
\(307\) −180.482 −0.587888 −0.293944 0.955823i \(-0.594968\pi\)
−0.293944 + 0.955823i \(0.594968\pi\)
\(308\) 144.723i 0.469881i
\(309\) −3.44342 10.1565i −0.0111437 0.0328688i
\(310\) −470.452 −1.51759
\(311\) 338.091i 1.08711i 0.839374 + 0.543555i \(0.182922\pi\)
−0.839374 + 0.543555i \(0.817078\pi\)
\(312\) 260.479 88.3120i 0.834867 0.283051i
\(313\) −39.2269 −0.125326 −0.0626628 0.998035i \(-0.519959\pi\)
−0.0626628 + 0.998035i \(0.519959\pi\)
\(314\) 1044.77i 3.32730i
\(315\) 9.36782 + 12.2273i 0.0297391 + 0.0388168i
\(316\) −32.7216 −0.103549
\(317\) 82.9715i 0.261740i −0.991400 0.130870i \(-0.958223\pi\)
0.991400 0.130870i \(-0.0417770\pi\)
\(318\) 202.392 + 596.961i 0.636453 + 1.87724i
\(319\) −577.383 −1.80998
\(320\) 432.314i 1.35098i
\(321\) 183.060 62.0640i 0.570279 0.193346i
\(322\) 33.9790 0.105525
\(323\) 119.594i 0.370260i
\(324\) −224.402 + 832.497i −0.692599 + 2.56944i
\(325\) 18.0278 0.0554700
\(326\) 2.08830i 0.00640582i
\(327\) −10.0322 29.5901i −0.0306794 0.0904897i
\(328\) 682.785 2.08166
\(329\) 47.6034i 0.144691i
\(330\) −431.858 + 146.416i −1.30866 + 0.443684i
\(331\) −486.716 −1.47044 −0.735220 0.677828i \(-0.762921\pi\)
−0.735220 + 0.677828i \(0.762921\pi\)
\(332\) 57.0230i 0.171756i
\(333\) 83.5382 64.0019i 0.250866 0.192198i
\(334\) 61.7348 0.184835
\(335\) 20.6715i 0.0617060i
\(336\) −40.3501 119.014i −0.120090 0.354208i
\(337\) 74.5562 0.221235 0.110617 0.993863i \(-0.464717\pi\)
0.110617 + 0.993863i \(0.464717\pi\)
\(338\) 49.7487i 0.147186i
\(339\) −111.257 + 37.7204i −0.328192 + 0.111269i
\(340\) 147.385 0.433484
\(341\) 976.595i 2.86391i
\(342\) 404.554 + 528.042i 1.18291 + 1.54398i
\(343\) 74.5606 0.217378
\(344\) 1948.31i 5.66368i
\(345\) 24.9868 + 73.6994i 0.0724256 + 0.213621i
\(346\) 805.522 2.32810
\(347\) 485.549i 1.39928i −0.714497 0.699638i \(-0.753344\pi\)
0.714497 0.699638i \(-0.246656\pi\)
\(348\) 983.023 333.282i 2.82478 0.957706i
\(349\) 359.820 1.03100 0.515501 0.856889i \(-0.327606\pi\)
0.515501 + 0.856889i \(0.327606\pi\)
\(350\) 14.6452i 0.0418435i
\(351\) 80.8827 + 54.1755i 0.230435 + 0.154346i
\(352\) 1913.58 5.43631
\(353\) 4.19941i 0.0118964i −0.999982 0.00594818i \(-0.998107\pi\)
0.999982 0.00594818i \(-0.00189337\pi\)
\(354\) −250.342 738.392i −0.707182 2.08585i
\(355\) −20.5169 −0.0577941
\(356\) 779.861i 2.19062i
\(357\) 13.4654 4.56528i 0.0377183 0.0127879i
\(358\) 271.729 0.759020
\(359\) 257.908i 0.718406i 0.933259 + 0.359203i \(0.116951\pi\)
−0.933259 + 0.359203i \(0.883049\pi\)
\(360\) 406.209 311.213i 1.12836 0.864479i
\(361\) 12.0295 0.0333227
\(362\) 786.378i 2.17232i
\(363\) −187.386 552.699i −0.516214 1.52259i
\(364\) −29.3757 −0.0807024
\(365\) 126.065i 0.345383i
\(366\) 361.077 122.418i 0.986548 0.334477i
\(367\) −148.301 −0.404089 −0.202045 0.979376i \(-0.564759\pi\)
−0.202045 + 0.979376i \(0.564759\pi\)
\(368\) 634.893i 1.72525i
\(369\) 146.975 + 191.839i 0.398307 + 0.519888i
\(370\) −100.058 −0.270426
\(371\) 42.0243i 0.113273i
\(372\) 563.718 + 1662.70i 1.51537 + 4.46963i
\(373\) −112.412 −0.301374 −0.150687 0.988582i \(-0.548149\pi\)
−0.150687 + 0.988582i \(0.548149\pi\)
\(374\) 420.920i 1.12545i
\(375\) 31.7650 10.7695i 0.0847068 0.0287187i
\(376\) −1581.46 −4.20600
\(377\) 117.196i 0.310865i
\(378\) 44.0106 65.7068i 0.116430 0.173827i
\(379\) −268.973 −0.709691 −0.354845 0.934925i \(-0.615467\pi\)
−0.354845 + 0.934925i \(0.615467\pi\)
\(380\) 459.711i 1.20977i
\(381\) 164.788 + 486.048i 0.432516 + 1.27572i
\(382\) −1164.02 −3.04718
\(383\) 165.919i 0.433210i −0.976259 0.216605i \(-0.930502\pi\)
0.976259 0.216605i \(-0.0694983\pi\)
\(384\) −877.796 + 297.605i −2.28593 + 0.775014i
\(385\) 30.4015 0.0789650
\(386\) 447.244i 1.15866i
\(387\) −547.406 + 419.389i −1.41449 + 1.08369i
\(388\) −1790.26 −4.61406
\(389\) 68.1098i 0.175090i −0.996161 0.0875448i \(-0.972098\pi\)
0.996161 0.0875448i \(-0.0279021\pi\)
\(390\) −29.7192 87.6576i −0.0762030 0.224763i
\(391\) 71.8328 0.183716
\(392\) 1231.06i 3.14045i
\(393\) 402.324 136.403i 1.02372 0.347081i
\(394\) 404.784 1.02737
\(395\) 6.87371i 0.0174018i
\(396\) 1034.95 + 1350.86i 2.61350 + 3.41126i
\(397\) −227.675 −0.573490 −0.286745 0.958007i \(-0.592573\pi\)
−0.286745 + 0.958007i \(0.592573\pi\)
\(398\) 122.089i 0.306756i
\(399\) −14.2397 42.0004i −0.0356885 0.105264i
\(400\) −273.644 −0.684110
\(401\) 102.824i 0.256418i 0.991747 + 0.128209i \(0.0409229\pi\)
−0.991747 + 0.128209i \(0.959077\pi\)
\(402\) −100.513 + 34.0775i −0.250031 + 0.0847699i
\(403\) 198.227 0.491879
\(404\) 1690.10i 4.18341i
\(405\) 174.880 + 47.1393i 0.431802 + 0.116393i
\(406\) −95.2066 −0.234499
\(407\) 207.706i 0.510335i
\(408\) −151.665 447.341i −0.371729 1.09642i
\(409\) −98.8897 −0.241784 −0.120892 0.992666i \(-0.538575\pi\)
−0.120892 + 0.992666i \(0.538575\pi\)
\(410\) 229.774i 0.560425i
\(411\) 347.904 117.952i 0.846481 0.286989i
\(412\) 38.0519 0.0923590
\(413\) 51.9806i 0.125861i
\(414\) 317.162 242.990i 0.766092 0.586933i
\(415\) 11.9786 0.0288641
\(416\) 388.415i 0.933689i
\(417\) 80.7921 + 238.299i 0.193746 + 0.571459i
\(418\) 1312.90 3.14092
\(419\) 600.336i 1.43278i 0.697699 + 0.716391i \(0.254207\pi\)
−0.697699 + 0.716391i \(0.745793\pi\)
\(420\) −51.7601 + 17.5486i −0.123238 + 0.0417824i
\(421\) −565.415 −1.34303 −0.671514 0.740992i \(-0.734356\pi\)
−0.671514 + 0.740992i \(0.734356\pi\)
\(422\) 543.702i 1.28839i
\(423\) −340.422 444.334i −0.804779 1.05043i
\(424\) −1396.11 −3.29271
\(425\) 30.9605i 0.0728483i
\(426\) 33.8226 + 99.7607i 0.0793958 + 0.234180i
\(427\) −25.4187 −0.0595287
\(428\) 685.846i 1.60244i
\(429\) 181.965 61.6930i 0.424162 0.143807i
\(430\) 655.654 1.52478
\(431\) 335.903i 0.779356i −0.920951 0.389678i \(-0.872586\pi\)
0.920951 0.389678i \(-0.127414\pi\)
\(432\) −1227.72 822.331i −2.84195 1.90354i
\(433\) 373.117 0.861701 0.430851 0.902423i \(-0.358214\pi\)
0.430851 + 0.902423i \(0.358214\pi\)
\(434\) 161.034i 0.371046i
\(435\) −70.0112 206.500i −0.160945 0.474713i
\(436\) 110.862 0.254270
\(437\) 224.056i 0.512714i
\(438\) 612.973 207.821i 1.39948 0.474477i
\(439\) −132.713 −0.302308 −0.151154 0.988510i \(-0.548299\pi\)
−0.151154 + 0.988510i \(0.548299\pi\)
\(440\) 1009.98i 2.29541i
\(441\) 345.884 264.995i 0.784318 0.600897i
\(442\) −85.4375 −0.193297
\(443\) 243.325i 0.549267i 0.961549 + 0.274633i \(0.0885565\pi\)
−0.961549 + 0.274633i \(0.911444\pi\)
\(444\) 119.894 + 353.631i 0.270032 + 0.796466i
\(445\) 163.823 0.368141
\(446\) 451.871i 1.01316i
\(447\) −107.072 + 36.3015i −0.239535 + 0.0812114i
\(448\) 147.980 0.330311
\(449\) 257.697i 0.573936i −0.957940 0.286968i \(-0.907353\pi\)
0.957940 0.286968i \(-0.0926473\pi\)
\(450\) −104.731 136.699i −0.232735 0.303776i
\(451\) 476.980 1.05761
\(452\) 416.834i 0.922198i
\(453\) −254.094 749.457i −0.560914 1.65443i
\(454\) −1321.18 −2.91009
\(455\) 6.17084i 0.0135623i
\(456\) −1395.31 + 473.064i −3.05990 + 1.03742i
\(457\) 657.168 1.43800 0.719002 0.695008i \(-0.244599\pi\)
0.719002 + 0.695008i \(0.244599\pi\)
\(458\) 116.530i 0.254432i
\(459\) 93.0399 138.906i 0.202701 0.302628i
\(460\) −276.120 −0.600261
\(461\) 288.831i 0.626531i −0.949666 0.313265i \(-0.898577\pi\)
0.949666 0.313265i \(-0.101423\pi\)
\(462\) −50.1176 147.823i −0.108480 0.319964i
\(463\) −676.522 −1.46117 −0.730586 0.682821i \(-0.760753\pi\)
−0.730586 + 0.682821i \(0.760753\pi\)
\(464\) 1778.92i 3.83388i
\(465\) 349.278 118.418i 0.751135 0.254663i
\(466\) 1582.99 3.39698
\(467\) 73.8083i 0.158048i 0.996873 + 0.0790239i \(0.0251804\pi\)
−0.996873 + 0.0790239i \(0.974820\pi\)
\(468\) −274.194 + 210.071i −0.585885 + 0.448870i
\(469\) 7.07579 0.0150870
\(470\) 532.200i 1.13234i
\(471\) 262.981 + 775.670i 0.558346 + 1.64686i
\(472\) 1726.87 3.65863
\(473\) 1361.05i 2.87748i
\(474\) 33.4225 11.3315i 0.0705116 0.0239061i
\(475\) −96.5699 −0.203305
\(476\) 50.4492i 0.105986i
\(477\) −300.524 392.258i −0.630029 0.822343i
\(478\) 1295.39 2.71002
\(479\) 575.041i 1.20050i −0.799811 0.600252i \(-0.795067\pi\)
0.799811 0.600252i \(-0.204933\pi\)
\(480\) 232.034 + 684.390i 0.483403 + 1.42581i
\(481\) 42.1598 0.0876504
\(482\) 350.444i 0.727062i
\(483\) −25.2270 + 8.55291i −0.0522299 + 0.0177079i
\(484\) 2070.73 4.27836
\(485\) 376.072i 0.775407i
\(486\) −59.0845 928.039i −0.121573 1.90955i
\(487\) 288.720 0.592855 0.296427 0.955055i \(-0.404205\pi\)
0.296427 + 0.955055i \(0.404205\pi\)
\(488\) 844.448i 1.73043i
\(489\) 0.525649 + 1.55042i 0.00107495 + 0.00317058i
\(490\) −414.282 −0.845473
\(491\) 724.099i 1.47474i −0.675487 0.737372i \(-0.736067\pi\)
0.675487 0.737372i \(-0.263933\pi\)
\(492\) −812.084 + 275.327i −1.65058 + 0.559607i
\(493\) −201.270 −0.408256
\(494\) 266.491i 0.539454i
\(495\) 283.770 217.407i 0.573272 0.439206i
\(496\) −3008.90 −6.06633
\(497\) 7.02287i 0.0141305i
\(498\) −19.7470 58.2444i −0.0396527 0.116957i
\(499\) 293.062 0.587298 0.293649 0.955913i \(-0.405130\pi\)
0.293649 + 0.955913i \(0.405130\pi\)
\(500\) 119.010i 0.238020i
\(501\) −45.8338 + 15.5394i −0.0914846 + 0.0310167i
\(502\) 1315.53 2.62058
\(503\) 548.696i 1.09085i −0.838160 0.545424i \(-0.816369\pi\)
0.838160 0.545424i \(-0.183631\pi\)
\(504\) 106.527 + 139.044i 0.211363 + 0.275881i
\(505\) −355.033 −0.703035
\(506\) 788.580i 1.55846i
\(507\) 12.5223 + 36.9350i 0.0246989 + 0.0728500i
\(508\) −1821.02 −3.58468
\(509\) 700.782i 1.37678i 0.725340 + 0.688391i \(0.241683\pi\)
−0.725340 + 0.688391i \(0.758317\pi\)
\(510\) −150.541 + 51.0392i −0.295179 + 0.100077i
\(511\) −43.1515 −0.0844453
\(512\) 329.265i 0.643096i
\(513\) −433.267 290.203i −0.844575 0.565699i
\(514\) 1327.51 2.58271
\(515\) 7.99342i 0.0155212i
\(516\) −785.636 2317.26i −1.52255 4.49081i
\(517\) −1104.77 −2.13689
\(518\) 34.2494i 0.0661185i
\(519\) −598.044 + 202.759i −1.15230 + 0.390673i
\(520\) 205.004 0.394239
\(521\) 154.996i 0.297497i 0.988875 + 0.148748i \(0.0475244\pi\)
−0.988875 + 0.148748i \(0.952476\pi\)
\(522\) −888.664 + 680.841i −1.70242 + 1.30429i
\(523\) 420.807 0.804602 0.402301 0.915508i \(-0.368211\pi\)
0.402301 + 0.915508i \(0.368211\pi\)
\(524\) 1507.34i 2.87659i
\(525\) 3.68637 + 10.8731i 0.00702166 + 0.0207106i
\(526\) 826.641 1.57156
\(527\) 340.432i 0.645980i
\(528\) −2762.06 + 936.441i −5.23117 + 1.77356i
\(529\) 394.423 0.745602
\(530\) 469.826i 0.886463i
\(531\) 371.724 + 485.191i 0.700045 + 0.913730i
\(532\) 157.358 0.295785
\(533\) 96.8165i 0.181645i
\(534\) −270.065 796.565i −0.505740 1.49170i
\(535\) 144.073 0.269296
\(536\) 235.068i 0.438560i
\(537\) −201.740 + 68.3974i −0.375680 + 0.127369i
\(538\) −119.169 −0.221503
\(539\) 859.993i 1.59554i
\(540\) −357.639 + 533.947i −0.662294 + 0.988790i
\(541\) −961.104 −1.77653 −0.888267 0.459328i \(-0.848090\pi\)
−0.888267 + 0.459328i \(0.848090\pi\)
\(542\) 582.681i 1.07506i
\(543\) 197.941 + 583.831i 0.364531 + 1.07520i
\(544\) 667.056 1.22621
\(545\) 23.2883i 0.0427308i
\(546\) 30.0049 10.1728i 0.0549540 0.0186315i
\(547\) −412.803 −0.754667 −0.377334 0.926077i \(-0.623159\pi\)
−0.377334 + 0.926077i \(0.623159\pi\)
\(548\) 1303.45i 2.37855i
\(549\) −237.260 + 181.774i −0.432168 + 0.331101i
\(550\) −339.884 −0.617972
\(551\) 627.787i 1.13936i
\(552\) 284.140 + 838.079i 0.514747 + 1.51826i
\(553\) −2.35285 −0.00425470
\(554\) 1703.59i 3.07507i
\(555\) 74.2859 25.1857i 0.133848 0.0453796i
\(556\) −892.803 −1.60576
\(557\) 61.5448i 0.110493i −0.998473 0.0552467i \(-0.982405\pi\)
0.998473 0.0552467i \(-0.0175945\pi\)
\(558\) −1151.59 1503.10i −2.06377 2.69373i
\(559\) −276.263 −0.494210
\(560\) 93.6674i 0.167263i
\(561\) −105.950 312.504i −0.188860 0.557048i
\(562\) −538.673 −0.958493
\(563\) 820.428i 1.45724i −0.684916 0.728622i \(-0.740161\pi\)
0.684916 0.728622i \(-0.259839\pi\)
\(564\) 1880.94 637.707i 3.33499 1.13069i
\(565\) −87.5627 −0.154978
\(566\) 1105.43i 1.95305i
\(567\) −16.1356 + 59.8607i −0.0284579 + 0.105574i
\(568\) −233.310 −0.410757
\(569\) 228.404i 0.401413i −0.979651 0.200707i \(-0.935676\pi\)
0.979651 0.200707i \(-0.0643238\pi\)
\(570\) 159.198 + 469.558i 0.279294 + 0.823786i
\(571\) −121.969 −0.213606 −0.106803 0.994280i \(-0.534061\pi\)
−0.106803 + 0.994280i \(0.534061\pi\)
\(572\) 681.747i 1.19186i
\(573\) 864.207 292.998i 1.50821 0.511341i
\(574\) 78.6509 0.137022
\(575\) 58.0036i 0.100876i
\(576\) 1381.25 1058.23i 2.39800 1.83721i
\(577\) −377.617 −0.654448 −0.327224 0.944947i \(-0.606113\pi\)
−0.327224 + 0.944947i \(0.606113\pi\)
\(578\) 959.223i 1.65956i
\(579\) 112.576 + 332.047i 0.194433 + 0.573484i
\(580\) 773.668 1.33391
\(581\) 4.10024i 0.00705721i
\(582\) 1828.60 619.964i 3.14193 1.06523i
\(583\) −975.295 −1.67289
\(584\) 1433.56i 2.45472i
\(585\) 44.1289 + 57.5990i 0.0754339 + 0.0984598i
\(586\) 821.827 1.40243
\(587\) 57.5337i 0.0980132i −0.998798 0.0490066i \(-0.984394\pi\)
0.998798 0.0490066i \(-0.0156055\pi\)
\(588\) 496.413 + 1464.18i 0.844239 + 2.49011i
\(589\) −1061.85 −1.80280
\(590\) 581.136i 0.984976i
\(591\) −300.524 + 101.889i −0.508501 + 0.172401i
\(592\) −639.946 −1.08099
\(593\) 116.547i 0.196538i 0.995160 + 0.0982691i \(0.0313306\pi\)
−0.995160 + 0.0982691i \(0.968669\pi\)
\(594\) −1524.91 1021.39i −2.56720 1.71951i
\(595\) 10.5977 0.0178112
\(596\) 401.154i 0.673078i
\(597\) −30.7312 90.6424i −0.0514760 0.151830i
\(598\) 160.064 0.267666
\(599\) 11.4502i 0.0191156i 0.999954 + 0.00955779i \(0.00304239\pi\)
−0.999954 + 0.00955779i \(0.996958\pi\)
\(600\) 361.219 122.467i 0.602031 0.204111i
\(601\) −48.0256 −0.0799094 −0.0399547 0.999201i \(-0.512721\pi\)
−0.0399547 + 0.999201i \(0.512721\pi\)
\(602\) 224.428i 0.372804i
\(603\) 66.0459 50.6003i 0.109529 0.0839143i
\(604\) 2807.90 4.64884
\(605\) 434.990i 0.718992i
\(606\) 585.280 + 1726.30i 0.965808 + 2.84868i
\(607\) −96.6498 −0.159225 −0.0796127 0.996826i \(-0.525368\pi\)
−0.0796127 + 0.996826i \(0.525368\pi\)
\(608\) 2080.63i 3.42210i
\(609\) 70.6843 23.9646i 0.116066 0.0393507i
\(610\) 284.178 0.465865
\(611\) 224.245i 0.367013i
\(612\) 360.772 + 470.896i 0.589497 + 0.769438i
\(613\) 166.005 0.270807 0.135404 0.990791i \(-0.456767\pi\)
0.135404 + 0.990791i \(0.456767\pi\)
\(614\) 690.671i 1.12487i
\(615\) 57.8368 + 170.591i 0.0940437 + 0.277384i
\(616\) 345.713 0.561223
\(617\) 810.007i 1.31282i −0.754406 0.656408i \(-0.772075\pi\)
0.754406 0.656408i \(-0.227925\pi\)
\(618\) −38.8670 + 13.1774i −0.0628915 + 0.0213226i
\(619\) 556.769 0.899465 0.449733 0.893163i \(-0.351519\pi\)
0.449733 + 0.893163i \(0.351519\pi\)
\(620\) 1308.60i 2.11064i
\(621\) −174.307 + 260.237i −0.280688 + 0.419061i
\(622\) 1293.82 2.08009
\(623\) 56.0759i 0.0900094i
\(624\) −190.077 560.637i −0.304610 0.898457i
\(625\) 25.0000 0.0400000
\(626\) 150.115i 0.239800i
\(627\) −974.740 + 330.473i −1.55461 + 0.527070i
\(628\) −2906.11 −4.62756
\(629\) 72.4045i 0.115110i
\(630\) 46.7917 35.8490i 0.0742726 0.0569032i
\(631\) 832.682 1.31962 0.659811 0.751432i \(-0.270636\pi\)
0.659811 + 0.751432i \(0.270636\pi\)
\(632\) 78.1650i 0.123679i
\(633\) 136.856 + 403.661i 0.216202 + 0.637695i
\(634\) −317.517 −0.500816
\(635\) 382.534i 0.602416i
\(636\) 1660.49 562.968i 2.61083 0.885169i
\(637\) 174.560 0.274034
\(638\) 2209.54i 3.46323i
\(639\) −50.2219 65.5519i −0.0785945 0.102585i
\(640\) −690.851 −1.07945
\(641\) 385.612i 0.601578i 0.953691 + 0.300789i \(0.0972500\pi\)
−0.953691 + 0.300789i \(0.902750\pi\)
\(642\) −237.508 700.537i −0.369950 1.09118i
\(643\) 590.422 0.918230 0.459115 0.888377i \(-0.348167\pi\)
0.459115 + 0.888377i \(0.348167\pi\)
\(644\) 94.5150i 0.146762i
\(645\) −486.778 + 165.036i −0.754694 + 0.255869i
\(646\) 457.666 0.708461
\(647\) 670.561i 1.03642i −0.855255 0.518208i \(-0.826599\pi\)
0.855255 0.518208i \(-0.173401\pi\)
\(648\) 1988.66 + 536.049i 3.06892 + 0.827236i
\(649\) 1206.36 1.85880
\(650\) 68.9891i 0.106137i
\(651\) 40.5341 + 119.557i 0.0622644 + 0.183651i
\(652\) −5.80875 −0.00890912
\(653\) 161.297i 0.247009i −0.992344 0.123505i \(-0.960587\pi\)
0.992344 0.123505i \(-0.0394133\pi\)
\(654\) −113.236 + 38.3913i −0.173144 + 0.0587023i
\(655\) 316.640 0.483420
\(656\) 1469.58i 2.24022i
\(657\) −402.779 + 308.585i −0.613058 + 0.469688i
\(658\) −182.170 −0.276854
\(659\) 34.9635i 0.0530555i −0.999648 0.0265277i \(-0.991555\pi\)
0.999648 0.0265277i \(-0.00844503\pi\)
\(660\) 407.266 + 1201.24i 0.617070 + 1.82006i
\(661\) 773.240 1.16980 0.584902 0.811104i \(-0.301133\pi\)
0.584902 + 0.811104i \(0.301133\pi\)
\(662\) 1862.58i 2.81356i
\(663\) 63.4314 21.5056i 0.0956733 0.0324368i
\(664\) 136.216 0.205144
\(665\) 33.0555i 0.0497076i
\(666\) −244.924 319.686i −0.367754 0.480009i
\(667\) 377.073 0.565327
\(668\) 171.720i 0.257065i
\(669\) −113.741 335.483i −0.170017 0.501469i
\(670\) −79.1063 −0.118069
\(671\) 589.915i 0.879158i
\(672\) −234.264 + 79.4243i −0.348607 + 0.118191i
\(673\) −962.003 −1.42942 −0.714712 0.699419i \(-0.753442\pi\)
−0.714712 + 0.699419i \(0.753442\pi\)
\(674\) 285.313i 0.423314i
\(675\) 112.164 + 75.1279i 0.166169 + 0.111301i
\(676\) −138.380 −0.204703
\(677\) 639.211i 0.944182i 0.881550 + 0.472091i \(0.156501\pi\)
−0.881550 + 0.472091i \(0.843499\pi\)
\(678\) 144.349 + 425.762i 0.212904 + 0.627967i
\(679\) −128.728 −0.189585
\(680\) 352.070i 0.517750i
\(681\) 980.883 332.556i 1.44036 0.488335i
\(682\) −3737.26 −5.47985
\(683\) 1045.15i 1.53023i −0.643891 0.765117i \(-0.722681\pi\)
0.643891 0.765117i \(-0.277319\pi\)
\(684\) 1468.79 1125.29i 2.14735 1.64517i
\(685\) 273.810 0.399723
\(686\) 285.330i 0.415933i
\(687\) −29.3320 86.5155i −0.0426957 0.125932i
\(688\) 4193.41 6.09507
\(689\) 197.963i 0.287320i
\(690\) 282.035 95.6202i 0.408746 0.138580i
\(691\) 1007.15 1.45753 0.728765 0.684764i \(-0.240095\pi\)
0.728765 + 0.684764i \(0.240095\pi\)
\(692\) 2240.62i 3.23788i
\(693\) 74.4177 + 97.1333i 0.107385 + 0.140164i
\(694\) −1858.11 −2.67739
\(695\) 187.548i 0.269853i
\(696\) −796.139 2348.23i −1.14388 3.37390i
\(697\) 166.271 0.238552
\(698\) 1376.97i 1.97273i
\(699\) −1175.26 + 398.457i −1.68135 + 0.570039i
\(700\) −40.7367 −0.0581953
\(701\) 131.829i 0.188058i 0.995569 + 0.0940292i \(0.0299747\pi\)
−0.995569 + 0.0940292i \(0.970025\pi\)
\(702\) 207.320 309.524i 0.295328 0.440917i
\(703\) −225.839 −0.321250
\(704\) 3434.29i 4.87825i
\(705\) −133.961 395.121i −0.190015 0.560456i
\(706\) −16.0704 −0.0227626
\(707\) 121.526i 0.171890i
\(708\) −2053.89 + 696.345i −2.90097 + 0.983538i
\(709\) −800.698 −1.12933 −0.564667 0.825319i \(-0.690995\pi\)
−0.564667 + 0.825319i \(0.690995\pi\)
\(710\) 78.5146i 0.110584i
\(711\) −21.9616 + 16.8257i −0.0308884 + 0.0236648i
\(712\) 1862.92 2.61646
\(713\) 637.788i 0.894513i
\(714\) −17.4705 51.5298i −0.0244685 0.0721706i
\(715\) 143.212 0.200296
\(716\) 755.834i 1.05563i
\(717\) −961.736 + 326.064i −1.34133 + 0.454762i
\(718\) 986.968 1.37461
\(719\) 1133.64i 1.57668i 0.615237 + 0.788342i \(0.289060\pi\)
−0.615237 + 0.788342i \(0.710940\pi\)
\(720\) −669.834 874.297i −0.930324 1.21430i
\(721\) 2.73612 0.00379490
\(722\) 46.0348i 0.0637601i
\(723\) 88.2108 + 260.180i 0.122007 + 0.359862i
\(724\) −2187.37 −3.02123
\(725\) 162.522i 0.224168i
\(726\) −2115.08 + 717.091i −2.91334 + 0.987729i
\(727\) 623.805 0.858053 0.429027 0.903292i \(-0.358857\pi\)
0.429027 + 0.903292i \(0.358857\pi\)
\(728\) 70.1722i 0.0963904i
\(729\) 277.464 + 674.132i 0.380610 + 0.924736i
\(730\) 482.428 0.660860
\(731\) 474.449i 0.649041i
\(732\) −340.516 1004.36i −0.465185 1.37208i
\(733\) −452.753 −0.617672 −0.308836 0.951115i \(-0.599939\pi\)
−0.308836 + 0.951115i \(0.599939\pi\)
\(734\) 567.521i 0.773189i
\(735\) 307.575 104.280i 0.418470 0.141877i
\(736\) −1249.71 −1.69797
\(737\) 164.214i 0.222814i
\(738\) 734.133 562.448i 0.994760 0.762125i
\(739\) 392.901 0.531666 0.265833 0.964019i \(-0.414353\pi\)
0.265833 + 0.964019i \(0.414353\pi\)
\(740\) 278.318i 0.376105i
\(741\) −67.0788 197.851i −0.0905246 0.267005i
\(742\) −160.820 −0.216738
\(743\) 119.313i 0.160583i −0.996771 0.0802915i \(-0.974415\pi\)
0.996771 0.0802915i \(-0.0255851\pi\)
\(744\) 3971.84 1346.60i 5.33850 1.80995i
\(745\) −84.2690 −0.113113
\(746\) 430.183i 0.576652i
\(747\) 29.3216 + 38.2719i 0.0392525 + 0.0512341i
\(748\) 1170.82 1.56527
\(749\) 49.3157i 0.0658421i
\(750\) −41.2131 121.559i −0.0549508 0.162079i
\(751\) 64.5944 0.0860112 0.0430056 0.999075i \(-0.486307\pi\)
0.0430056 + 0.999075i \(0.486307\pi\)
\(752\) 3403.82i 4.52636i
\(753\) −976.689 + 331.134i −1.29706 + 0.439753i
\(754\) −448.488 −0.594812
\(755\) 589.845i 0.781251i
\(756\) −182.768 122.418i −0.241757 0.161929i
\(757\) −676.373 −0.893491 −0.446746 0.894661i \(-0.647417\pi\)
−0.446746 + 0.894661i \(0.647417\pi\)
\(758\) 1029.31i 1.35793i
\(759\) 198.495 + 585.466i 0.261521 + 0.771365i
\(760\) −1098.15 −1.44494
\(761\) 148.782i 0.195509i 0.995211 + 0.0977545i \(0.0311660\pi\)
−0.995211 + 0.0977545i \(0.968834\pi\)
\(762\) 1860.02 630.616i 2.44097 0.827581i
\(763\) 7.97150 0.0104476
\(764\) 3237.82i 4.23798i
\(765\) 98.9194 75.7860i 0.129306 0.0990667i
\(766\) −634.944 −0.828909
\(767\) 244.865i 0.319250i
\(768\) 393.953 + 1161.98i 0.512960 + 1.51299i
\(769\) −106.923 −0.139042 −0.0695209 0.997580i \(-0.522147\pi\)
−0.0695209 + 0.997580i \(0.522147\pi\)
\(770\) 116.341i 0.151092i
\(771\) −985.585 + 334.150i −1.27832 + 0.433398i
\(772\) −1244.04 −1.61145
\(773\) 1140.76i 1.47576i 0.674932 + 0.737880i \(0.264173\pi\)
−0.674932 + 0.737880i \(0.735827\pi\)
\(774\) 1604.93 + 2094.83i 2.07355 + 2.70649i
\(775\) 274.892 0.354699
\(776\) 4276.54i 5.51101i
\(777\) 8.62097 + 25.4278i 0.0110952 + 0.0327256i
\(778\) −260.644 −0.335018
\(779\) 518.620i 0.665751i
\(780\) −243.826 + 82.6660i −0.312597 + 0.105982i
\(781\) −162.986 −0.208689
\(782\) 274.892i 0.351524i
\(783\) 488.396 729.164i 0.623749 0.931244i
\(784\) −2649.65 −3.37965
\(785\) 610.475i 0.777675i
\(786\) −521.989 1539.62i −0.664108 1.95881i
\(787\) 203.210 0.258209 0.129104 0.991631i \(-0.458790\pi\)
0.129104 + 0.991631i \(0.458790\pi\)
\(788\) 1125.94i 1.42885i
\(789\) −613.723 + 208.075i −0.777849 + 0.263720i
\(790\) 26.3045 0.0332968
\(791\) 29.9724i 0.0378918i
\(792\) 3226.91 2472.26i 4.07438 3.12155i
\(793\) −119.740 −0.150996
\(794\) 871.274i 1.09732i
\(795\) −118.261 348.813i −0.148755 0.438758i
\(796\) 339.599 0.426631
\(797\) 187.116i 0.234775i 0.993086 + 0.117387i \(0.0374519\pi\)
−0.993086 + 0.117387i \(0.962548\pi\)
\(798\) −160.728 + 54.4928i −0.201414 + 0.0682867i
\(799\) −385.114 −0.481995
\(800\) 538.634i 0.673293i
\(801\) 401.010 + 523.416i 0.500636 + 0.653453i
\(802\) 393.489 0.490634
\(803\) 1001.46i 1.24714i
\(804\) 94.7890 + 279.583i 0.117897 + 0.347740i
\(805\) −19.8544 −0.0246639
\(806\) 758.581i 0.941167i
\(807\) 88.4746 29.9962i 0.109634 0.0371700i
\(808\) −4037.29 −4.99664
\(809\) 339.771i 0.419988i 0.977703 + 0.209994i \(0.0673445\pi\)
−0.977703 + 0.209994i \(0.932655\pi\)
\(810\) 180.394 669.234i 0.222709 0.826214i
\(811\) 685.419 0.845152 0.422576 0.906327i \(-0.361126\pi\)
0.422576 + 0.906327i \(0.361126\pi\)
\(812\) 264.824i 0.326138i
\(813\) −146.668 432.600i −0.180403 0.532104i
\(814\) −794.856 −0.976481
\(815\) 1.22022i 0.00149720i
\(816\) −962.827 + 326.434i −1.17994 + 0.400042i
\(817\) 1479.87 1.81134
\(818\) 378.434i 0.462633i
\(819\) −19.7159 + 15.1052i −0.0240732 + 0.0184434i
\(820\) −639.133 −0.779431
\(821\) 1189.70i 1.44909i −0.689230 0.724543i \(-0.742051\pi\)
0.689230 0.724543i \(-0.257949\pi\)
\(822\) −451.383 1331.37i −0.549128 1.61967i
\(823\) 1383.79 1.68140 0.840699 0.541503i \(-0.182144\pi\)
0.840699 + 0.541503i \(0.182144\pi\)
\(824\) 90.8979i 0.110313i
\(825\) 252.341 85.5528i 0.305867 0.103700i
\(826\) 198.921 0.240824
\(827\) 1369.76i 1.65630i −0.560505 0.828151i \(-0.689393\pi\)
0.560505 0.828151i \(-0.310607\pi\)
\(828\) −675.895 882.209i −0.816298 1.06547i
\(829\) 34.2053 0.0412610 0.0206305 0.999787i \(-0.493433\pi\)
0.0206305 + 0.999787i \(0.493433\pi\)
\(830\) 45.8400i 0.0552290i
\(831\) 428.813 + 1264.80i 0.516021 + 1.52202i
\(832\) 697.085 0.837843
\(833\) 299.786i 0.359887i
\(834\) 911.926 309.177i 1.09344 0.370716i
\(835\) −36.0725 −0.0432006
\(836\) 3651.93i 4.36834i
\(837\) 1233.32 + 826.081i 1.47350 + 0.986955i
\(838\) 2297.38 2.74150
\(839\) 154.593i 0.184258i −0.995747 0.0921290i \(-0.970633\pi\)
0.995747 0.0921290i \(-0.0293672\pi\)
\(840\) 41.9199 + 123.644i 0.0499047 + 0.147195i
\(841\) −215.530 −0.256279
\(842\) 2163.74i 2.56977i
\(843\) 399.927 135.590i 0.474410 0.160843i
\(844\) −1512.35 −1.79188
\(845\) 29.0689i 0.0344010i
\(846\) −1700.39 + 1302.73i −2.00991 + 1.53987i
\(847\) 148.896 0.175792
\(848\) 3004.89i 3.54351i
\(849\) −278.249 820.703i −0.327737 0.966670i
\(850\) −118.480 −0.139389
\(851\) 135.648i 0.159398i
\(852\) 277.492 94.0800i 0.325694 0.110423i
\(853\) 940.577 1.10267 0.551335 0.834284i \(-0.314119\pi\)
0.551335 + 0.834284i \(0.314119\pi\)
\(854\) 97.2731i 0.113903i
\(855\) −236.386 308.542i −0.276475 0.360868i
\(856\) 1638.34 1.91395
\(857\) 721.525i 0.841919i −0.907079 0.420960i \(-0.861693\pi\)
0.907079 0.420960i \(-0.138307\pi\)
\(858\) −236.088 696.349i −0.275161 0.811596i
\(859\) −984.953 −1.14663 −0.573314 0.819336i \(-0.694342\pi\)
−0.573314 + 0.819336i \(0.694342\pi\)
\(860\) 1823.75i 2.12064i
\(861\) −58.3928 + 19.7973i −0.0678198 + 0.0229934i
\(862\) −1285.44 −1.49123
\(863\) 268.705i 0.311361i −0.987807 0.155681i \(-0.950243\pi\)
0.987807 0.155681i \(-0.0497570\pi\)
\(864\) −1618.66 + 2416.62i −1.87345 + 2.79701i
\(865\) −470.678 −0.544136
\(866\) 1427.85i 1.64879i
\(867\) 241.448 + 712.157i 0.278486 + 0.821403i
\(868\) −447.928 −0.516046
\(869\) 54.6046i 0.0628361i
\(870\) −790.240 + 267.921i −0.908321 + 0.307955i
\(871\) 33.3318 0.0382685
\(872\) 264.825i 0.303698i
\(873\) −1201.56 + 920.561i −1.37635 + 1.05448i
\(874\) −857.422 −0.981032
\(875\) 8.55741i 0.00977990i
\(876\) −578.068 1705.03i −0.659895 1.94638i
\(877\) −400.930 −0.457160 −0.228580 0.973525i \(-0.573408\pi\)
−0.228580 + 0.973525i \(0.573408\pi\)
\(878\) 507.870i 0.578439i
\(879\) −610.149 + 206.863i −0.694140 + 0.235339i
\(880\) −2173.82 −2.47025
\(881\) 1310.86i 1.48792i −0.668223 0.743961i \(-0.732945\pi\)
0.668223 0.743961i \(-0.267055\pi\)
\(882\) −1014.09 1323.64i −1.14976 1.50072i
\(883\) 974.612 1.10375 0.551876 0.833926i \(-0.313912\pi\)
0.551876 + 0.833926i \(0.313912\pi\)
\(884\) 237.650i 0.268835i
\(885\) 146.279 + 431.453i 0.165287 + 0.487518i
\(886\) 931.162 1.05097
\(887\) 472.071i 0.532211i −0.963944 0.266105i \(-0.914263\pi\)
0.963944 0.266105i \(-0.0857369\pi\)
\(888\) 844.749 286.401i 0.951294 0.322524i
\(889\) −130.940 −0.147289
\(890\) 626.920i 0.704405i
\(891\) 1389.24 + 374.473i 1.55919 + 0.420284i
\(892\) 1256.91 1.40909
\(893\) 1201.22i 1.34515i
\(894\) 138.919 + 409.747i 0.155391 + 0.458330i
\(895\) −158.775 −0.177402
\(896\) 236.476i 0.263924i
\(897\) −118.837 + 40.2901i −0.132482 + 0.0449165i
\(898\) −986.161 −1.09818
\(899\) 1787.03i 1.98780i
\(900\) −380.239 + 291.316i −0.422488 + 0.323685i
\(901\) −339.978 −0.377335
\(902\) 1825.32i 2.02364i
\(903\) −56.4912 166.622i −0.0625594 0.184521i
\(904\) −995.727 −1.10147
\(905\) 459.492i 0.507726i
\(906\) −2868.04 + 972.373i −3.16561 + 1.07326i
\(907\) −1079.15 −1.18980 −0.594899 0.803801i \(-0.702808\pi\)
−0.594899 + 0.803801i \(0.702808\pi\)
\(908\) 3674.95i 4.04730i
\(909\) −869.059 1134.34i −0.956061 1.24789i
\(910\) 23.6147 0.0259502
\(911\) 230.412i 0.252922i −0.991972 0.126461i \(-0.959638\pi\)
0.991972 0.126461i \(-0.0403618\pi\)
\(912\) 1018.19 + 3003.18i 1.11644 + 3.29296i
\(913\) 95.1578 0.104225
\(914\) 2514.87i 2.75150i
\(915\) −210.982 + 71.5309i −0.230582 + 0.0781758i
\(916\) 324.137 0.353861
\(917\) 108.385i 0.118195i
\(918\) −531.571 356.047i −0.579053 0.387851i
\(919\) 1000.28 1.08845 0.544224 0.838940i \(-0.316824\pi\)
0.544224 + 0.838940i \(0.316824\pi\)
\(920\) 659.593i 0.716948i
\(921\) −173.850 512.775i −0.188762 0.556759i
\(922\) −1105.30 −1.19881
\(923\) 33.0825i 0.0358424i
\(924\) −411.181 + 139.406i −0.445001 + 0.150872i
\(925\) 58.4652 0.0632056
\(926\) 2588.93i 2.79582i
\(927\) 25.5391 19.5665i 0.0275503 0.0211074i
\(928\) 3501.59 3.77326
\(929\) 550.220i 0.592271i 0.955146 + 0.296136i \(0.0956980\pi\)
−0.955146 + 0.296136i \(0.904302\pi\)
\(930\) −453.166 1336.62i −0.487275 1.43723i
\(931\) −935.070 −1.00437
\(932\) 4403.20i 4.72447i
\(933\) −960.568 + 325.668i −1.02955 + 0.349055i
\(934\) 282.452 0.302411
\(935\) 245.949i 0.263048i
\(936\) 501.815 + 654.992i 0.536127 + 0.699778i
\(937\) 918.345 0.980091 0.490046 0.871697i \(-0.336980\pi\)
0.490046 + 0.871697i \(0.336980\pi\)
\(938\) 27.0778i 0.0288676i
\(939\) −37.7856 111.450i −0.0402402 0.118690i
\(940\) 1480.35 1.57484
\(941\) 14.6127i 0.0155289i 0.999970 + 0.00776446i \(0.00247153\pi\)
−0.999970 + 0.00776446i \(0.997528\pi\)
\(942\) 2968.35 1006.38i 3.15112 1.06835i
\(943\) −311.503 −0.330332
\(944\) 3716.81i 3.93730i
\(945\) −25.7160 + 38.3934i −0.0272127 + 0.0406279i
\(946\) 5208.50 5.50581
\(947\) 302.926i 0.319880i −0.987127 0.159940i \(-0.948870\pi\)
0.987127 0.159940i \(-0.0511301\pi\)
\(948\) −31.5193 92.9671i −0.0332482 0.0980665i
\(949\) −203.273 −0.214197
\(950\) 369.556i 0.389006i
\(951\) 235.734 79.9228i 0.247881 0.0840408i
\(952\) 120.512 0.126589
\(953\) 1059.71i 1.11197i 0.831191 + 0.555987i \(0.187660\pi\)
−0.831191 + 0.555987i \(0.812340\pi\)
\(954\) −1501.10 + 1150.05i −1.57348 + 1.20551i
\(955\) 680.156 0.712205
\(956\) 3603.22i 3.76905i
\(957\) −556.167 1640.43i −0.581157 1.71414i
\(958\) −2200.58 −2.29706
\(959\) 93.7243i 0.0977313i
\(960\) 1228.27 416.429i 1.27945 0.433780i
\(961\) 2061.62 2.14529
\(962\) 161.338i 0.167711i
\(963\) 352.667 + 460.316i 0.366217 + 0.478002i
\(964\) −974.785 −1.01119
\(965\) 261.331i 0.270809i
\(966\) 32.7305 + 96.5394i 0.0338825 + 0.0999373i
\(967\) 1056.74 1.09281 0.546404 0.837522i \(-0.315996\pi\)
0.546404 + 0.837522i \(0.315996\pi\)
\(968\) 4946.53i 5.11005i
\(969\) −339.785 + 115.200i −0.350655 + 0.118885i
\(970\) 1439.16 1.48367
\(971\) 270.764i 0.278851i 0.990233 + 0.139425i \(0.0445255\pi\)
−0.990233 + 0.139425i \(0.955474\pi\)
\(972\) −2581.41 + 164.348i −2.65577 + 0.169082i
\(973\) −64.1970 −0.0659784
\(974\) 1104.88i 1.13438i
\(975\) 17.3653 + 51.2196i 0.0178106 + 0.0525329i
\(976\) 1817.53 1.86223
\(977\) 1181.19i 1.20900i 0.796605 + 0.604500i \(0.206627\pi\)
−0.796605 + 0.604500i \(0.793373\pi\)
\(978\) 5.93317 2.01156i 0.00606663 0.00205681i
\(979\) 1301.40 1.32932
\(980\) 1152.35i 1.17587i
\(981\) 74.4065 57.0057i 0.0758476 0.0581098i
\(982\) −2771.00 −2.82179
\(983\) 964.232i 0.980907i −0.871467 0.490453i \(-0.836831\pi\)
0.871467 0.490453i \(-0.163169\pi\)
\(984\) 657.697 + 1939.90i 0.668391 + 1.97144i
\(985\) −236.521 −0.240123
\(986\) 770.225i 0.781161i
\(987\) 135.249 45.8543i 0.137030 0.0464583i
\(988\) 741.262 0.750265
\(989\) 888.865i 0.898751i
\(990\) −831.979 1085.94i −0.840383 1.09691i
\(991\) −503.550 −0.508123 −0.254062 0.967188i \(-0.581767\pi\)
−0.254062 + 0.967188i \(0.581767\pi\)
\(992\) 5922.65i 5.97041i
\(993\) −468.832 1382.83i −0.472137 1.39258i
\(994\) −26.8753 −0.0270375
\(995\) 71.3382i 0.0716967i
\(996\) −162.011 + 54.9278i −0.162662 + 0.0551484i
\(997\) 110.384 0.110716 0.0553581 0.998467i \(-0.482370\pi\)
0.0553581 + 0.998467i \(0.482370\pi\)
\(998\) 1121.50i 1.12374i
\(999\) 262.308 + 175.694i 0.262570 + 0.175870i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.3.d.a.131.2 32
3.2 odd 2 inner 195.3.d.a.131.31 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.3.d.a.131.2 32 1.1 even 1 trivial
195.3.d.a.131.31 yes 32 3.2 odd 2 inner