Properties

Label 195.3.d.a.131.14
Level $195$
Weight $3$
Character 195.131
Analytic conductor $5.313$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,3,Mod(131,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.131"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.14
Character \(\chi\) \(=\) 195.131
Dual form 195.3.d.a.131.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.858859i q^{2} +(2.44162 - 1.74313i) q^{3} +3.26236 q^{4} +2.23607i q^{5} +(-1.49710 - 2.09701i) q^{6} +2.16867 q^{7} -6.23734i q^{8} +(2.92302 - 8.51211i) q^{9} +1.92047 q^{10} +7.88082i q^{11} +(7.96545 - 5.68671i) q^{12} +3.60555 q^{13} -1.86258i q^{14} +(3.89775 + 5.45963i) q^{15} +7.69245 q^{16} +3.67384i q^{17} +(-7.31070 - 2.51046i) q^{18} -20.8237 q^{19} +7.29486i q^{20} +(5.29507 - 3.78027i) q^{21} +6.76851 q^{22} -6.25251i q^{23} +(-10.8725 - 15.2292i) q^{24} -5.00000 q^{25} -3.09666i q^{26} +(-7.70077 - 25.8785i) q^{27} +7.07498 q^{28} +2.29496i q^{29} +(4.68905 - 3.34762i) q^{30} -24.7051 q^{31} -31.5561i q^{32} +(13.7373 + 19.2420i) q^{33} +3.15531 q^{34} +4.84929i q^{35} +(9.53595 - 27.7696i) q^{36} -16.3579 q^{37} +17.8846i q^{38} +(8.80339 - 6.28493i) q^{39} +13.9471 q^{40} +18.7742i q^{41} +(-3.24671 - 4.54772i) q^{42} +58.4174 q^{43} +25.7101i q^{44} +(19.0336 + 6.53607i) q^{45} -5.37003 q^{46} +6.89606i q^{47} +(18.7820 - 13.4089i) q^{48} -44.2969 q^{49} +4.29429i q^{50} +(6.40397 + 8.97013i) q^{51} +11.7626 q^{52} +34.1678i q^{53} +(-22.2260 + 6.61387i) q^{54} -17.6221 q^{55} -13.5267i q^{56} +(-50.8435 + 36.2983i) q^{57} +1.97104 q^{58} +78.6419i q^{59} +(12.7159 + 17.8113i) q^{60} -98.8756 q^{61} +21.2182i q^{62} +(6.33907 - 18.4599i) q^{63} +3.66755 q^{64} +8.06226i q^{65} +(16.5261 - 11.7984i) q^{66} -55.1753 q^{67} +11.9854i q^{68} +(-10.8989 - 15.2663i) q^{69} +4.16486 q^{70} +67.9447i q^{71} +(-53.0929 - 18.2319i) q^{72} +99.2688 q^{73} +14.0492i q^{74} +(-12.2081 + 8.71563i) q^{75} -67.9343 q^{76} +17.0909i q^{77} +(-5.39787 - 7.56087i) q^{78} +66.9315 q^{79} +17.2008i q^{80} +(-63.9119 - 49.7621i) q^{81} +16.1244 q^{82} +138.095i q^{83} +(17.2744 - 12.3326i) q^{84} -8.21496 q^{85} -50.1723i q^{86} +(4.00040 + 5.60342i) q^{87} +49.1554 q^{88} -34.4200i q^{89} +(5.61356 - 16.3472i) q^{90} +7.81925 q^{91} -20.3980i q^{92} +(-60.3205 + 43.0641i) q^{93} +5.92274 q^{94} -46.5631i q^{95} +(-55.0063 - 77.0480i) q^{96} -3.08056 q^{97} +38.0448i q^{98} +(67.0824 + 23.0358i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 60 q^{4} - 8 q^{6} + 8 q^{9} - 20 q^{10} - 68 q^{12} + 172 q^{16} + 132 q^{18} - 16 q^{19} + 44 q^{21} - 64 q^{22} - 92 q^{24} - 160 q^{25} + 20 q^{27} + 224 q^{28} - 40 q^{30} - 56 q^{31}+ \cdots + 236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.858859i 0.429429i −0.976677 0.214715i \(-0.931118\pi\)
0.976677 0.214715i \(-0.0688822\pi\)
\(3\) 2.44162 1.74313i 0.813873 0.581042i
\(4\) 3.26236 0.815590
\(5\) 2.23607i 0.447214i
\(6\) −1.49710 2.09701i −0.249517 0.349501i
\(7\) 2.16867 0.309810 0.154905 0.987929i \(-0.450493\pi\)
0.154905 + 0.987929i \(0.450493\pi\)
\(8\) 6.23734i 0.779668i
\(9\) 2.92302 8.51211i 0.324780 0.945790i
\(10\) 1.92047 0.192047
\(11\) 7.88082i 0.716438i 0.933637 + 0.358219i \(0.116616\pi\)
−0.933637 + 0.358219i \(0.883384\pi\)
\(12\) 7.96545 5.68671i 0.663787 0.473892i
\(13\) 3.60555 0.277350
\(14\) 1.86258i 0.133042i
\(15\) 3.89775 + 5.45963i 0.259850 + 0.363975i
\(16\) 7.69245 0.480778
\(17\) 3.67384i 0.216108i 0.994145 + 0.108054i \(0.0344620\pi\)
−0.994145 + 0.108054i \(0.965538\pi\)
\(18\) −7.31070 2.51046i −0.406150 0.139470i
\(19\) −20.8237 −1.09598 −0.547991 0.836484i \(-0.684607\pi\)
−0.547991 + 0.836484i \(0.684607\pi\)
\(20\) 7.29486i 0.364743i
\(21\) 5.29507 3.78027i 0.252146 0.180013i
\(22\) 6.76851 0.307660
\(23\) 6.25251i 0.271848i −0.990719 0.135924i \(-0.956600\pi\)
0.990719 0.135924i \(-0.0434004\pi\)
\(24\) −10.8725 15.2292i −0.453020 0.634551i
\(25\) −5.00000 −0.200000
\(26\) 3.09666i 0.119102i
\(27\) −7.70077 25.8785i −0.285214 0.958464i
\(28\) 7.07498 0.252678
\(29\) 2.29496i 0.0791365i 0.999217 + 0.0395682i \(0.0125982\pi\)
−0.999217 + 0.0395682i \(0.987402\pi\)
\(30\) 4.68905 3.34762i 0.156302 0.111587i
\(31\) −24.7051 −0.796939 −0.398469 0.917182i \(-0.630458\pi\)
−0.398469 + 0.917182i \(0.630458\pi\)
\(32\) 31.5561i 0.986128i
\(33\) 13.7373 + 19.2420i 0.416281 + 0.583090i
\(34\) 3.15531 0.0928033
\(35\) 4.84929i 0.138551i
\(36\) 9.53595 27.7696i 0.264887 0.771377i
\(37\) −16.3579 −0.442106 −0.221053 0.975262i \(-0.570949\pi\)
−0.221053 + 0.975262i \(0.570949\pi\)
\(38\) 17.8846i 0.470647i
\(39\) 8.80339 6.28493i 0.225728 0.161152i
\(40\) 13.9471 0.348678
\(41\) 18.7742i 0.457908i 0.973437 + 0.228954i \(0.0735306\pi\)
−0.973437 + 0.228954i \(0.926469\pi\)
\(42\) −3.24671 4.54772i −0.0773027 0.108279i
\(43\) 58.4174 1.35854 0.679272 0.733887i \(-0.262296\pi\)
0.679272 + 0.733887i \(0.262296\pi\)
\(44\) 25.7101i 0.584320i
\(45\) 19.0336 + 6.53607i 0.422970 + 0.145246i
\(46\) −5.37003 −0.116740
\(47\) 6.89606i 0.146725i 0.997305 + 0.0733623i \(0.0233730\pi\)
−0.997305 + 0.0733623i \(0.976627\pi\)
\(48\) 18.7820 13.4089i 0.391292 0.279352i
\(49\) −44.2969 −0.904018
\(50\) 4.29429i 0.0858859i
\(51\) 6.40397 + 8.97013i 0.125568 + 0.175885i
\(52\) 11.7626 0.226204
\(53\) 34.1678i 0.644675i 0.946625 + 0.322338i \(0.104469\pi\)
−0.946625 + 0.322338i \(0.895531\pi\)
\(54\) −22.2260 + 6.61387i −0.411593 + 0.122479i
\(55\) −17.6221 −0.320401
\(56\) 13.5267i 0.241549i
\(57\) −50.8435 + 36.2983i −0.891991 + 0.636812i
\(58\) 1.97104 0.0339835
\(59\) 78.6419i 1.33291i 0.745543 + 0.666457i \(0.232190\pi\)
−0.745543 + 0.666457i \(0.767810\pi\)
\(60\) 12.7159 + 17.8113i 0.211931 + 0.296855i
\(61\) −98.8756 −1.62091 −0.810456 0.585800i \(-0.800781\pi\)
−0.810456 + 0.585800i \(0.800781\pi\)
\(62\) 21.2182i 0.342229i
\(63\) 6.33907 18.4599i 0.100620 0.293015i
\(64\) 3.66755 0.0573055
\(65\) 8.06226i 0.124035i
\(66\) 16.5261 11.7984i 0.250396 0.178763i
\(67\) −55.1753 −0.823512 −0.411756 0.911294i \(-0.635084\pi\)
−0.411756 + 0.911294i \(0.635084\pi\)
\(68\) 11.9854i 0.176256i
\(69\) −10.8989 15.2663i −0.157955 0.221250i
\(70\) 4.16486 0.0594980
\(71\) 67.9447i 0.956968i 0.878096 + 0.478484i \(0.158814\pi\)
−0.878096 + 0.478484i \(0.841186\pi\)
\(72\) −53.0929 18.2319i −0.737402 0.253221i
\(73\) 99.2688 1.35985 0.679924 0.733283i \(-0.262013\pi\)
0.679924 + 0.733283i \(0.262013\pi\)
\(74\) 14.0492i 0.189853i
\(75\) −12.2081 + 8.71563i −0.162775 + 0.116208i
\(76\) −67.9343 −0.893872
\(77\) 17.0909i 0.221960i
\(78\) −5.39787 7.56087i −0.0692035 0.0969342i
\(79\) 66.9315 0.847235 0.423617 0.905841i \(-0.360760\pi\)
0.423617 + 0.905841i \(0.360760\pi\)
\(80\) 17.2008i 0.215010i
\(81\) −63.9119 49.7621i −0.789036 0.614347i
\(82\) 16.1244 0.196639
\(83\) 138.095i 1.66380i 0.554928 + 0.831898i \(0.312746\pi\)
−0.554928 + 0.831898i \(0.687254\pi\)
\(84\) 17.2744 12.3326i 0.205648 0.146817i
\(85\) −8.21496 −0.0966466
\(86\) 50.1723i 0.583399i
\(87\) 4.00040 + 5.60342i 0.0459816 + 0.0644071i
\(88\) 49.1554 0.558584
\(89\) 34.4200i 0.386742i −0.981126 0.193371i \(-0.938058\pi\)
0.981126 0.193371i \(-0.0619421\pi\)
\(90\) 5.61356 16.3472i 0.0623729 0.181636i
\(91\) 7.81925 0.0859258
\(92\) 20.3980i 0.221717i
\(93\) −60.3205 + 43.0641i −0.648607 + 0.463055i
\(94\) 5.92274 0.0630079
\(95\) 46.5631i 0.490138i
\(96\) −55.0063 77.0480i −0.572982 0.802584i
\(97\) −3.08056 −0.0317584 −0.0158792 0.999874i \(-0.505055\pi\)
−0.0158792 + 0.999874i \(0.505055\pi\)
\(98\) 38.0448i 0.388212i
\(99\) 67.0824 + 23.0358i 0.677600 + 0.232685i
\(100\) −16.3118 −0.163118
\(101\) 161.574i 1.59975i −0.600169 0.799873i \(-0.704900\pi\)
0.600169 0.799873i \(-0.295100\pi\)
\(102\) 7.70407 5.50011i 0.0755301 0.0539226i
\(103\) 98.9611 0.960787 0.480393 0.877053i \(-0.340494\pi\)
0.480393 + 0.877053i \(0.340494\pi\)
\(104\) 22.4891i 0.216241i
\(105\) 8.45293 + 11.8401i 0.0805041 + 0.112763i
\(106\) 29.3453 0.276843
\(107\) 79.3997i 0.742053i −0.928622 0.371027i \(-0.879006\pi\)
0.928622 0.371027i \(-0.120994\pi\)
\(108\) −25.1227 84.4251i −0.232618 0.781714i
\(109\) −55.4375 −0.508601 −0.254301 0.967125i \(-0.581845\pi\)
−0.254301 + 0.967125i \(0.581845\pi\)
\(110\) 15.1349i 0.137590i
\(111\) −39.9399 + 28.5139i −0.359819 + 0.256882i
\(112\) 16.6824 0.148950
\(113\) 141.110i 1.24876i 0.781120 + 0.624381i \(0.214649\pi\)
−0.781120 + 0.624381i \(0.785351\pi\)
\(114\) 31.1751 + 43.6674i 0.273466 + 0.383047i
\(115\) 13.9810 0.121574
\(116\) 7.48698i 0.0645429i
\(117\) 10.5391 30.6908i 0.0900778 0.262315i
\(118\) 67.5423 0.572393
\(119\) 7.96735i 0.0669525i
\(120\) 34.0536 24.3116i 0.283780 0.202597i
\(121\) 58.8926 0.486716
\(122\) 84.9202i 0.696067i
\(123\) 32.7259 + 45.8396i 0.266064 + 0.372680i
\(124\) −80.5970 −0.649975
\(125\) 11.1803i 0.0894427i
\(126\) −15.8545 5.44436i −0.125829 0.0432092i
\(127\) 61.8511 0.487017 0.243508 0.969899i \(-0.421702\pi\)
0.243508 + 0.969899i \(0.421702\pi\)
\(128\) 129.374i 1.01074i
\(129\) 142.633 101.829i 1.10568 0.789371i
\(130\) 6.92434 0.0532642
\(131\) 195.560i 1.49282i −0.665485 0.746411i \(-0.731775\pi\)
0.665485 0.746411i \(-0.268225\pi\)
\(132\) 44.8159 + 62.7743i 0.339515 + 0.475563i
\(133\) −45.1596 −0.339546
\(134\) 47.3878i 0.353640i
\(135\) 57.8661 17.2194i 0.428638 0.127551i
\(136\) 22.9150 0.168493
\(137\) 196.564i 1.43477i −0.696676 0.717386i \(-0.745338\pi\)
0.696676 0.717386i \(-0.254662\pi\)
\(138\) −13.1116 + 9.36064i −0.0950114 + 0.0678307i
\(139\) −159.050 −1.14424 −0.572121 0.820169i \(-0.693879\pi\)
−0.572121 + 0.820169i \(0.693879\pi\)
\(140\) 15.8201i 0.113001i
\(141\) 12.0207 + 16.8376i 0.0852532 + 0.119415i
\(142\) 58.3549 0.410950
\(143\) 28.4147i 0.198704i
\(144\) 22.4852 65.4789i 0.156147 0.454715i
\(145\) −5.13168 −0.0353909
\(146\) 85.2579i 0.583958i
\(147\) −108.156 + 77.2150i −0.735756 + 0.525272i
\(148\) −53.3655 −0.360578
\(149\) 130.652i 0.876860i −0.898765 0.438430i \(-0.855535\pi\)
0.898765 0.438430i \(-0.144465\pi\)
\(150\) 7.48550 + 10.4850i 0.0499033 + 0.0699002i
\(151\) −183.626 −1.21607 −0.608033 0.793912i \(-0.708041\pi\)
−0.608033 + 0.793912i \(0.708041\pi\)
\(152\) 129.884i 0.854502i
\(153\) 31.2721 + 10.7387i 0.204393 + 0.0701877i
\(154\) 14.6787 0.0953161
\(155\) 55.2423i 0.356402i
\(156\) 28.7198 20.5037i 0.184101 0.131434i
\(157\) −105.599 −0.672606 −0.336303 0.941754i \(-0.609177\pi\)
−0.336303 + 0.941754i \(0.609177\pi\)
\(158\) 57.4847i 0.363827i
\(159\) 59.5588 + 83.4248i 0.374584 + 0.524684i
\(160\) 70.5616 0.441010
\(161\) 13.5596i 0.0842213i
\(162\) −42.7386 + 54.8913i −0.263819 + 0.338835i
\(163\) 168.274 1.03236 0.516179 0.856481i \(-0.327354\pi\)
0.516179 + 0.856481i \(0.327354\pi\)
\(164\) 61.2484i 0.373466i
\(165\) −43.0264 + 30.7175i −0.260766 + 0.186166i
\(166\) 118.604 0.714483
\(167\) 219.443i 1.31403i −0.753877 0.657015i \(-0.771819\pi\)
0.753877 0.657015i \(-0.228181\pi\)
\(168\) −23.5788 33.0272i −0.140350 0.196590i
\(169\) 13.0000 0.0769231
\(170\) 7.05549i 0.0415029i
\(171\) −60.8680 + 177.253i −0.355953 + 1.03657i
\(172\) 190.579 1.10802
\(173\) 106.638i 0.616406i −0.951321 0.308203i \(-0.900272\pi\)
0.951321 0.308203i \(-0.0997276\pi\)
\(174\) 4.81254 3.43578i 0.0276583 0.0197459i
\(175\) −10.8433 −0.0619620
\(176\) 60.6228i 0.344448i
\(177\) 137.083 + 192.014i 0.774479 + 1.08482i
\(178\) −29.5619 −0.166078
\(179\) 185.383i 1.03566i −0.855483 0.517830i \(-0.826740\pi\)
0.855483 0.517830i \(-0.173260\pi\)
\(180\) 62.0946 + 21.3230i 0.344970 + 0.118461i
\(181\) 116.307 0.642580 0.321290 0.946981i \(-0.395884\pi\)
0.321290 + 0.946981i \(0.395884\pi\)
\(182\) 6.71563i 0.0368991i
\(183\) −241.417 + 172.353i −1.31922 + 0.941818i
\(184\) −38.9991 −0.211951
\(185\) 36.5774i 0.197716i
\(186\) 36.9860 + 51.8068i 0.198849 + 0.278531i
\(187\) −28.9529 −0.154828
\(188\) 22.4974i 0.119667i
\(189\) −16.7004 56.1220i −0.0883620 0.296942i
\(190\) −39.9911 −0.210480
\(191\) 304.954i 1.59662i 0.602247 + 0.798310i \(0.294272\pi\)
−0.602247 + 0.798310i \(0.705728\pi\)
\(192\) 8.95478 6.39301i 0.0466395 0.0332969i
\(193\) 171.435 0.888266 0.444133 0.895961i \(-0.353512\pi\)
0.444133 + 0.895961i \(0.353512\pi\)
\(194\) 2.64577i 0.0136380i
\(195\) 14.0535 + 19.6850i 0.0720694 + 0.100949i
\(196\) −144.512 −0.737308
\(197\) 77.1378i 0.391562i 0.980648 + 0.195781i \(0.0627242\pi\)
−0.980648 + 0.195781i \(0.937276\pi\)
\(198\) 19.7845 57.6143i 0.0999218 0.290981i
\(199\) −207.306 −1.04174 −0.520870 0.853636i \(-0.674392\pi\)
−0.520870 + 0.853636i \(0.674392\pi\)
\(200\) 31.1867i 0.155934i
\(201\) −134.717 + 96.1775i −0.670234 + 0.478495i
\(202\) −138.770 −0.686978
\(203\) 4.97700i 0.0245173i
\(204\) 20.8921 + 29.2638i 0.102412 + 0.143450i
\(205\) −41.9805 −0.204783
\(206\) 84.9936i 0.412590i
\(207\) −53.2221 18.2762i −0.257111 0.0882909i
\(208\) 27.7355 0.133344
\(209\) 164.108i 0.785204i
\(210\) 10.1690 7.25987i 0.0484238 0.0345708i
\(211\) 131.933 0.625276 0.312638 0.949872i \(-0.398787\pi\)
0.312638 + 0.949872i \(0.398787\pi\)
\(212\) 111.468i 0.525791i
\(213\) 118.436 + 165.895i 0.556039 + 0.778851i
\(214\) −68.1931 −0.318659
\(215\) 130.625i 0.607559i
\(216\) −161.413 + 48.0323i −0.747284 + 0.222372i
\(217\) −53.5772 −0.246900
\(218\) 47.6130i 0.218408i
\(219\) 242.377 173.038i 1.10674 0.790128i
\(220\) −57.4895 −0.261316
\(221\) 13.2462i 0.0599377i
\(222\) 24.4894 + 34.3027i 0.110313 + 0.154517i
\(223\) −392.472 −1.75996 −0.879982 0.475007i \(-0.842445\pi\)
−0.879982 + 0.475007i \(0.842445\pi\)
\(224\) 68.4348i 0.305512i
\(225\) −14.6151 + 42.5605i −0.0649560 + 0.189158i
\(226\) 121.194 0.536255
\(227\) 212.311i 0.935293i −0.883916 0.467646i \(-0.845102\pi\)
0.883916 0.467646i \(-0.154898\pi\)
\(228\) −165.870 + 118.418i −0.727499 + 0.519377i
\(229\) 83.1407 0.363060 0.181530 0.983385i \(-0.441895\pi\)
0.181530 + 0.983385i \(0.441895\pi\)
\(230\) 12.0077i 0.0522076i
\(231\) 29.7916 + 41.7295i 0.128968 + 0.180647i
\(232\) 14.3144 0.0617002
\(233\) 410.058i 1.75991i −0.475061 0.879953i \(-0.657574\pi\)
0.475061 0.879953i \(-0.342426\pi\)
\(234\) −26.3591 9.05160i −0.112646 0.0386821i
\(235\) −15.4201 −0.0656173
\(236\) 256.558i 1.08711i
\(237\) 163.421 116.670i 0.689542 0.492279i
\(238\) 6.84283 0.0287514
\(239\) 262.360i 1.09774i 0.835907 + 0.548871i \(0.184942\pi\)
−0.835907 + 0.548871i \(0.815058\pi\)
\(240\) 29.9832 + 41.9979i 0.124930 + 0.174991i
\(241\) 360.621 1.49635 0.748176 0.663500i \(-0.230930\pi\)
0.748176 + 0.663500i \(0.230930\pi\)
\(242\) 50.5805i 0.209010i
\(243\) −242.790 10.0937i −0.999137 0.0415378i
\(244\) −322.568 −1.32200
\(245\) 99.0508i 0.404289i
\(246\) 39.3697 28.1069i 0.160040 0.114256i
\(247\) −75.0808 −0.303971
\(248\) 154.094i 0.621347i
\(249\) 240.717 + 337.176i 0.966736 + 1.35412i
\(250\) −9.60233 −0.0384093
\(251\) 451.867i 1.80027i 0.435613 + 0.900134i \(0.356532\pi\)
−0.435613 + 0.900134i \(0.643468\pi\)
\(252\) 20.6803 60.2230i 0.0820648 0.238980i
\(253\) 49.2750 0.194763
\(254\) 53.1214i 0.209139i
\(255\) −20.0578 + 14.3197i −0.0786581 + 0.0561557i
\(256\) −96.4441 −0.376735
\(257\) 89.1222i 0.346779i −0.984853 0.173390i \(-0.944528\pi\)
0.984853 0.173390i \(-0.0554720\pi\)
\(258\) −87.4566 122.502i −0.338979 0.474813i
\(259\) −35.4749 −0.136969
\(260\) 26.3020i 0.101162i
\(261\) 19.5349 + 6.70821i 0.0748464 + 0.0257019i
\(262\) −167.958 −0.641062
\(263\) 315.624i 1.20009i −0.799966 0.600046i \(-0.795149\pi\)
0.799966 0.600046i \(-0.204851\pi\)
\(264\) 120.019 85.6841i 0.454617 0.324561i
\(265\) −76.4015 −0.288308
\(266\) 38.7857i 0.145811i
\(267\) −59.9985 84.0406i −0.224713 0.314759i
\(268\) −180.002 −0.671648
\(269\) 284.707i 1.05839i 0.848500 + 0.529195i \(0.177506\pi\)
−0.848500 + 0.529195i \(0.822494\pi\)
\(270\) −14.7891 49.6989i −0.0547743 0.184070i
\(271\) 270.051 0.996498 0.498249 0.867034i \(-0.333976\pi\)
0.498249 + 0.867034i \(0.333976\pi\)
\(272\) 28.2608i 0.103900i
\(273\) 19.0916 13.6299i 0.0699327 0.0499265i
\(274\) −168.821 −0.616133
\(275\) 39.4041i 0.143288i
\(276\) −35.5562 49.8041i −0.128827 0.180450i
\(277\) −287.075 −1.03637 −0.518186 0.855268i \(-0.673393\pi\)
−0.518186 + 0.855268i \(0.673393\pi\)
\(278\) 136.601i 0.491372i
\(279\) −72.2135 + 210.292i −0.258830 + 0.753736i
\(280\) 30.2467 0.108024
\(281\) 338.918i 1.20611i −0.797698 0.603057i \(-0.793949\pi\)
0.797698 0.603057i \(-0.206051\pi\)
\(282\) 14.4611 10.3241i 0.0512805 0.0366102i
\(283\) 157.483 0.556479 0.278239 0.960512i \(-0.410249\pi\)
0.278239 + 0.960512i \(0.410249\pi\)
\(284\) 221.660i 0.780494i
\(285\) −81.1654 113.689i −0.284791 0.398910i
\(286\) 24.4042 0.0853295
\(287\) 40.7151i 0.141865i
\(288\) −268.609 92.2391i −0.932670 0.320275i
\(289\) 275.503 0.953297
\(290\) 4.40739i 0.0151979i
\(291\) −7.52157 + 5.36981i −0.0258473 + 0.0184530i
\(292\) 323.851 1.10908
\(293\) 24.6805i 0.0842337i 0.999113 + 0.0421169i \(0.0134102\pi\)
−0.999113 + 0.0421169i \(0.986590\pi\)
\(294\) 66.3168 + 92.8909i 0.225567 + 0.315955i
\(295\) −175.849 −0.596097
\(296\) 102.030i 0.344696i
\(297\) 203.944 60.6884i 0.686680 0.204338i
\(298\) −112.212 −0.376550
\(299\) 22.5438i 0.0753972i
\(300\) −39.8272 + 28.4335i −0.132757 + 0.0947785i
\(301\) 126.688 0.420890
\(302\) 157.709i 0.522214i
\(303\) −281.645 394.503i −0.929520 1.30199i
\(304\) −160.185 −0.526924
\(305\) 221.093i 0.724894i
\(306\) 9.22304 26.8583i 0.0301407 0.0877724i
\(307\) −169.717 −0.552823 −0.276412 0.961039i \(-0.589145\pi\)
−0.276412 + 0.961039i \(0.589145\pi\)
\(308\) 55.7567i 0.181028i
\(309\) 241.625 172.502i 0.781959 0.558258i
\(310\) −47.4453 −0.153049
\(311\) 189.448i 0.609157i 0.952487 + 0.304579i \(0.0985156\pi\)
−0.952487 + 0.304579i \(0.901484\pi\)
\(312\) −39.2013 54.9098i −0.125645 0.175993i
\(313\) 386.249 1.23402 0.617011 0.786954i \(-0.288343\pi\)
0.617011 + 0.786954i \(0.288343\pi\)
\(314\) 90.6948i 0.288837i
\(315\) 41.2777 + 14.1746i 0.131040 + 0.0449987i
\(316\) 218.355 0.690996
\(317\) 355.768i 1.12230i −0.827715 0.561148i \(-0.810360\pi\)
0.827715 0.561148i \(-0.189640\pi\)
\(318\) 71.6501 51.1526i 0.225315 0.160857i
\(319\) −18.0862 −0.0566964
\(320\) 8.20090i 0.0256278i
\(321\) −138.404 193.864i −0.431164 0.603937i
\(322\) −11.6458 −0.0361671
\(323\) 76.5028i 0.236851i
\(324\) −208.504 162.342i −0.643530 0.501056i
\(325\) −18.0278 −0.0554700
\(326\) 144.524i 0.443325i
\(327\) −135.357 + 96.6346i −0.413937 + 0.295519i
\(328\) 117.101 0.357017
\(329\) 14.9553i 0.0454568i
\(330\) 26.3820 + 36.9536i 0.0799454 + 0.111981i
\(331\) 584.473 1.76578 0.882890 0.469579i \(-0.155594\pi\)
0.882890 + 0.469579i \(0.155594\pi\)
\(332\) 450.516i 1.35698i
\(333\) −47.8146 + 139.240i −0.143587 + 0.418139i
\(334\) −188.471 −0.564284
\(335\) 123.376i 0.368286i
\(336\) 40.7320 29.0795i 0.121226 0.0865461i
\(337\) 259.709 0.770649 0.385324 0.922781i \(-0.374090\pi\)
0.385324 + 0.922781i \(0.374090\pi\)
\(338\) 11.1652i 0.0330330i
\(339\) 245.973 + 344.537i 0.725583 + 1.01633i
\(340\) −26.8002 −0.0788240
\(341\) 194.697i 0.570957i
\(342\) 152.235 + 52.2770i 0.445133 + 0.152857i
\(343\) −202.330 −0.589884
\(344\) 364.369i 1.05921i
\(345\) 34.1364 24.3707i 0.0989461 0.0706398i
\(346\) −91.5872 −0.264703
\(347\) 607.556i 1.75088i 0.483326 + 0.875440i \(0.339429\pi\)
−0.483326 + 0.875440i \(0.660571\pi\)
\(348\) 13.0508 + 18.2804i 0.0375022 + 0.0525298i
\(349\) 90.4877 0.259277 0.129639 0.991561i \(-0.458618\pi\)
0.129639 + 0.991561i \(0.458618\pi\)
\(350\) 9.31291i 0.0266083i
\(351\) −27.7655 93.3064i −0.0791040 0.265830i
\(352\) 248.688 0.706500
\(353\) 701.372i 1.98689i −0.114318 0.993444i \(-0.536468\pi\)
0.114318 0.993444i \(-0.463532\pi\)
\(354\) 164.913 117.735i 0.465855 0.332584i
\(355\) −151.929 −0.427969
\(356\) 112.291i 0.315423i
\(357\) 13.8881 + 19.4532i 0.0389022 + 0.0544909i
\(358\) −159.218 −0.444743
\(359\) 197.298i 0.549576i −0.961505 0.274788i \(-0.911392\pi\)
0.961505 0.274788i \(-0.0886076\pi\)
\(360\) 40.7677 118.719i 0.113244 0.329776i
\(361\) 72.6246 0.201176
\(362\) 99.8912i 0.275943i
\(363\) 143.793 102.657i 0.396125 0.282802i
\(364\) 25.5092 0.0700803
\(365\) 221.972i 0.608142i
\(366\) 148.027 + 207.343i 0.404444 + 0.566511i
\(367\) 447.535 1.21944 0.609720 0.792617i \(-0.291282\pi\)
0.609720 + 0.792617i \(0.291282\pi\)
\(368\) 48.0971i 0.130699i
\(369\) 159.808 + 54.8775i 0.433085 + 0.148720i
\(370\) −31.4149 −0.0849050
\(371\) 74.0987i 0.199727i
\(372\) −196.787 + 140.491i −0.528998 + 0.377663i
\(373\) 464.809 1.24614 0.623068 0.782168i \(-0.285886\pi\)
0.623068 + 0.782168i \(0.285886\pi\)
\(374\) 24.8664i 0.0664878i
\(375\) −19.4887 27.2981i −0.0519700 0.0727951i
\(376\) 43.0131 0.114397
\(377\) 8.27459i 0.0219485i
\(378\) −48.2009 + 14.3433i −0.127515 + 0.0379453i
\(379\) 176.321 0.465226 0.232613 0.972569i \(-0.425273\pi\)
0.232613 + 0.972569i \(0.425273\pi\)
\(380\) 151.906i 0.399752i
\(381\) 151.017 107.814i 0.396370 0.282977i
\(382\) 261.913 0.685636
\(383\) 388.263i 1.01374i 0.862022 + 0.506871i \(0.169198\pi\)
−0.862022 + 0.506871i \(0.830802\pi\)
\(384\) −225.516 315.883i −0.587281 0.822612i
\(385\) −38.2164 −0.0992634
\(386\) 147.239i 0.381448i
\(387\) 170.755 497.255i 0.441228 1.28490i
\(388\) −10.0499 −0.0259018
\(389\) 177.598i 0.456551i 0.973597 + 0.228275i \(0.0733086\pi\)
−0.973597 + 0.228275i \(0.926691\pi\)
\(390\) 16.9066 12.0700i 0.0433503 0.0309487i
\(391\) 22.9707 0.0587487
\(392\) 276.295i 0.704834i
\(393\) −340.885 477.483i −0.867393 1.21497i
\(394\) 66.2505 0.168148
\(395\) 149.663i 0.378895i
\(396\) 218.847 + 75.1511i 0.552644 + 0.189776i
\(397\) −24.5812 −0.0619173 −0.0309587 0.999521i \(-0.509856\pi\)
−0.0309587 + 0.999521i \(0.509856\pi\)
\(398\) 178.047i 0.447354i
\(399\) −110.263 + 78.7189i −0.276348 + 0.197291i
\(400\) −38.4622 −0.0961556
\(401\) 249.018i 0.620993i −0.950575 0.310497i \(-0.899505\pi\)
0.950575 0.310497i \(-0.100495\pi\)
\(402\) 82.6029 + 115.703i 0.205480 + 0.287818i
\(403\) −89.0755 −0.221031
\(404\) 527.114i 1.30474i
\(405\) 111.271 142.911i 0.274744 0.352868i
\(406\) 4.27454 0.0105284
\(407\) 128.914i 0.316742i
\(408\) 55.9498 39.9438i 0.137132 0.0979014i
\(409\) −630.799 −1.54230 −0.771148 0.636656i \(-0.780317\pi\)
−0.771148 + 0.636656i \(0.780317\pi\)
\(410\) 36.0553i 0.0879398i
\(411\) −342.636 479.934i −0.833663 1.16772i
\(412\) 322.847 0.783609
\(413\) 170.548i 0.412950i
\(414\) −15.6967 + 45.7102i −0.0379147 + 0.110411i
\(415\) −308.790 −0.744072
\(416\) 113.777i 0.273503i
\(417\) −388.339 + 277.244i −0.931269 + 0.664853i
\(418\) −140.945 −0.337190
\(419\) 441.990i 1.05487i 0.849596 + 0.527434i \(0.176846\pi\)
−0.849596 + 0.527434i \(0.823154\pi\)
\(420\) 27.5765 + 38.6268i 0.0656584 + 0.0919685i
\(421\) −589.061 −1.39919 −0.699597 0.714537i \(-0.746637\pi\)
−0.699597 + 0.714537i \(0.746637\pi\)
\(422\) 113.312i 0.268512i
\(423\) 58.7000 + 20.1573i 0.138771 + 0.0476532i
\(424\) 213.116 0.502633
\(425\) 18.3692i 0.0432217i
\(426\) 142.481 101.720i 0.334461 0.238779i
\(427\) −214.429 −0.502175
\(428\) 259.030i 0.605211i
\(429\) 49.5304 + 69.3779i 0.115456 + 0.161720i
\(430\) 112.189 0.260904
\(431\) 435.952i 1.01149i 0.862683 + 0.505745i \(0.168782\pi\)
−0.862683 + 0.505745i \(0.831218\pi\)
\(432\) −59.2378 199.069i −0.137124 0.460808i
\(433\) −151.516 −0.349921 −0.174960 0.984575i \(-0.555980\pi\)
−0.174960 + 0.984575i \(0.555980\pi\)
\(434\) 46.0152i 0.106026i
\(435\) −12.5296 + 8.94517i −0.0288037 + 0.0205636i
\(436\) −180.857 −0.414810
\(437\) 130.200i 0.297941i
\(438\) −148.615 208.167i −0.339304 0.475268i
\(439\) −98.5022 −0.224379 −0.112189 0.993687i \(-0.535786\pi\)
−0.112189 + 0.993687i \(0.535786\pi\)
\(440\) 109.915i 0.249806i
\(441\) −129.481 + 377.060i −0.293607 + 0.855011i
\(442\) 11.3766 0.0257390
\(443\) 437.508i 0.987602i −0.869575 0.493801i \(-0.835607\pi\)
0.869575 0.493801i \(-0.164393\pi\)
\(444\) −130.298 + 93.0228i −0.293465 + 0.209511i
\(445\) 76.9655 0.172956
\(446\) 337.078i 0.755780i
\(447\) −227.743 319.003i −0.509493 0.713653i
\(448\) 7.95371 0.0177538
\(449\) 483.200i 1.07617i 0.842891 + 0.538084i \(0.180852\pi\)
−0.842891 + 0.538084i \(0.819148\pi\)
\(450\) 36.5535 + 12.5523i 0.0812300 + 0.0278940i
\(451\) −147.957 −0.328063
\(452\) 460.352i 1.01848i
\(453\) −448.345 + 320.083i −0.989723 + 0.706585i
\(454\) −182.346 −0.401642
\(455\) 17.4844i 0.0384272i
\(456\) 226.405 + 317.128i 0.496502 + 0.695456i
\(457\) −192.388 −0.420981 −0.210490 0.977596i \(-0.567506\pi\)
−0.210490 + 0.977596i \(0.567506\pi\)
\(458\) 71.4061i 0.155909i
\(459\) 95.0736 28.2914i 0.207132 0.0616370i
\(460\) 45.6112 0.0991548
\(461\) 492.440i 1.06820i −0.845421 0.534100i \(-0.820651\pi\)
0.845421 0.534100i \(-0.179349\pi\)
\(462\) 35.8397 25.5868i 0.0775752 0.0553826i
\(463\) −352.360 −0.761037 −0.380519 0.924773i \(-0.624255\pi\)
−0.380519 + 0.924773i \(0.624255\pi\)
\(464\) 17.6538i 0.0380471i
\(465\) −96.2943 134.881i −0.207084 0.290066i
\(466\) −352.182 −0.755755
\(467\) 663.046i 1.41980i 0.704304 + 0.709899i \(0.251259\pi\)
−0.704304 + 0.709899i \(0.748741\pi\)
\(468\) 34.3824 100.125i 0.0734666 0.213941i
\(469\) −119.657 −0.255132
\(470\) 13.2437i 0.0281780i
\(471\) −257.833 + 184.073i −0.547416 + 0.390812i
\(472\) 490.517 1.03923
\(473\) 460.377i 0.973313i
\(474\) −100.203 140.356i −0.211399 0.296110i
\(475\) 104.118 0.219196
\(476\) 25.9924i 0.0546058i
\(477\) 290.840 + 99.8732i 0.609727 + 0.209378i
\(478\) 225.330 0.471403
\(479\) 632.137i 1.31970i 0.751397 + 0.659851i \(0.229380\pi\)
−0.751397 + 0.659851i \(0.770620\pi\)
\(480\) 172.285 122.998i 0.358926 0.256245i
\(481\) −58.9794 −0.122618
\(482\) 309.723i 0.642578i
\(483\) −23.6362 33.1075i −0.0489361 0.0685455i
\(484\) 192.129 0.396961
\(485\) 6.88835i 0.0142028i
\(486\) −8.66906 + 208.523i −0.0178376 + 0.429059i
\(487\) −605.100 −1.24250 −0.621252 0.783611i \(-0.713376\pi\)
−0.621252 + 0.783611i \(0.713376\pi\)
\(488\) 616.721i 1.26377i
\(489\) 410.862 293.323i 0.840208 0.599843i
\(490\) −85.0707 −0.173614
\(491\) 737.678i 1.50240i 0.660075 + 0.751200i \(0.270524\pi\)
−0.660075 + 0.751200i \(0.729476\pi\)
\(492\) 106.764 + 149.545i 0.216999 + 0.303954i
\(493\) −8.43131 −0.0171020
\(494\) 64.4838i 0.130534i
\(495\) −51.5096 + 150.001i −0.104060 + 0.303032i
\(496\) −190.043 −0.383151
\(497\) 147.350i 0.296478i
\(498\) 289.586 206.742i 0.581499 0.415145i
\(499\) −475.888 −0.953683 −0.476841 0.878989i \(-0.658218\pi\)
−0.476841 + 0.878989i \(0.658218\pi\)
\(500\) 36.4743i 0.0729486i
\(501\) −382.517 535.797i −0.763507 1.06945i
\(502\) 388.090 0.773088
\(503\) 508.608i 1.01115i 0.862783 + 0.505574i \(0.168719\pi\)
−0.862783 + 0.505574i \(0.831281\pi\)
\(504\) −115.141 39.5389i −0.228454 0.0784503i
\(505\) 361.291 0.715428
\(506\) 42.3202i 0.0836368i
\(507\) 31.7411 22.6606i 0.0626057 0.0446955i
\(508\) 201.781 0.397206
\(509\) 5.59169i 0.0109856i 0.999985 + 0.00549282i \(0.00174843\pi\)
−0.999985 + 0.00549282i \(0.998252\pi\)
\(510\) 12.2986 + 17.2268i 0.0241149 + 0.0337781i
\(511\) 215.281 0.421294
\(512\) 434.665i 0.848956i
\(513\) 160.358 + 538.886i 0.312589 + 1.05046i
\(514\) −76.5434 −0.148917
\(515\) 221.284i 0.429677i
\(516\) 465.321 332.203i 0.901784 0.643804i
\(517\) −54.3466 −0.105119
\(518\) 30.4680i 0.0588185i
\(519\) −185.884 260.370i −0.358158 0.501676i
\(520\) 50.2871 0.0967059
\(521\) 270.095i 0.518417i −0.965821 0.259209i \(-0.916538\pi\)
0.965821 0.259209i \(-0.0834617\pi\)
\(522\) 5.76140 16.7777i 0.0110372 0.0321413i
\(523\) −566.082 −1.08238 −0.541188 0.840902i \(-0.682025\pi\)
−0.541188 + 0.840902i \(0.682025\pi\)
\(524\) 637.987i 1.21753i
\(525\) −26.4753 + 18.9013i −0.0504292 + 0.0360025i
\(526\) −271.076 −0.515354
\(527\) 90.7626i 0.172225i
\(528\) 105.673 + 148.018i 0.200139 + 0.280337i
\(529\) 489.906 0.926098
\(530\) 65.6181i 0.123808i
\(531\) 669.408 + 229.872i 1.26066 + 0.432904i
\(532\) −147.327 −0.276931
\(533\) 67.6915i 0.127001i
\(534\) −72.1790 + 51.5302i −0.135167 + 0.0964985i
\(535\) 177.543 0.331856
\(536\) 344.147i 0.642066i
\(537\) −323.146 452.635i −0.601762 0.842896i
\(538\) 244.523 0.454504
\(539\) 349.096i 0.647673i
\(540\) 188.780 56.1761i 0.349593 0.104030i
\(541\) 661.837 1.22336 0.611680 0.791106i \(-0.290494\pi\)
0.611680 + 0.791106i \(0.290494\pi\)
\(542\) 231.936i 0.427926i
\(543\) 283.977 202.738i 0.522979 0.373366i
\(544\) 115.932 0.213110
\(545\) 123.962i 0.227453i
\(546\) −11.7062 16.3970i −0.0214399 0.0300312i
\(547\) −332.280 −0.607460 −0.303730 0.952758i \(-0.598232\pi\)
−0.303730 + 0.952758i \(0.598232\pi\)
\(548\) 641.262i 1.17019i
\(549\) −289.015 + 841.640i −0.526440 + 1.53304i
\(550\) −33.8426 −0.0615320
\(551\) 47.7894i 0.0867321i
\(552\) −95.2209 + 67.9803i −0.172502 + 0.123153i
\(553\) 145.152 0.262482
\(554\) 246.557i 0.445049i
\(555\) −63.7591 89.3082i −0.114881 0.160916i
\(556\) −518.878 −0.933233
\(557\) 238.585i 0.428340i 0.976796 + 0.214170i \(0.0687046\pi\)
−0.976796 + 0.214170i \(0.931295\pi\)
\(558\) 180.612 + 62.0212i 0.323677 + 0.111149i
\(559\) 210.627 0.376792
\(560\) 37.3029i 0.0666124i
\(561\) −70.6920 + 50.4686i −0.126011 + 0.0899618i
\(562\) −291.083 −0.517940
\(563\) 496.137i 0.881239i 0.897694 + 0.440619i \(0.145241\pi\)
−0.897694 + 0.440619i \(0.854759\pi\)
\(564\) 39.2159 + 54.9302i 0.0695317 + 0.0973940i
\(565\) −315.532 −0.558463
\(566\) 135.256i 0.238968i
\(567\) −138.604 107.918i −0.244451 0.190331i
\(568\) 423.795 0.746117
\(569\) 637.580i 1.12053i −0.828315 0.560263i \(-0.810700\pi\)
0.828315 0.560263i \(-0.189300\pi\)
\(570\) −97.6432 + 69.7096i −0.171304 + 0.122298i
\(571\) 463.764 0.812196 0.406098 0.913830i \(-0.366889\pi\)
0.406098 + 0.913830i \(0.366889\pi\)
\(572\) 92.6991i 0.162061i
\(573\) 531.574 + 744.583i 0.927704 + 1.29945i
\(574\) 34.9686 0.0609208
\(575\) 31.2626i 0.0543697i
\(576\) 10.7203 31.2186i 0.0186117 0.0541990i
\(577\) 150.749 0.261264 0.130632 0.991431i \(-0.458299\pi\)
0.130632 + 0.991431i \(0.458299\pi\)
\(578\) 236.618i 0.409374i
\(579\) 418.580 298.834i 0.722936 0.516120i
\(580\) −16.7414 −0.0288645
\(581\) 299.483i 0.515461i
\(582\) 4.61191 + 6.45997i 0.00792425 + 0.0110996i
\(583\) −269.270 −0.461870
\(584\) 619.174i 1.06023i
\(585\) 68.6268 + 23.5661i 0.117311 + 0.0402840i
\(586\) 21.1970 0.0361724
\(587\) 676.321i 1.15217i −0.817391 0.576083i \(-0.804581\pi\)
0.817391 0.576083i \(-0.195419\pi\)
\(588\) −352.844 + 251.903i −0.600076 + 0.428407i
\(589\) 514.450 0.873430
\(590\) 151.029i 0.255982i
\(591\) 134.461 + 188.341i 0.227514 + 0.318682i
\(592\) −125.833 −0.212555
\(593\) 364.257i 0.614262i −0.951667 0.307131i \(-0.900631\pi\)
0.951667 0.307131i \(-0.0993690\pi\)
\(594\) −52.1228 175.159i −0.0877488 0.294881i
\(595\) −17.8155 −0.0299421
\(596\) 426.235i 0.715159i
\(597\) −506.163 + 361.361i −0.847845 + 0.605295i
\(598\) −19.3619 −0.0323778
\(599\) 355.195i 0.592979i −0.955036 0.296490i \(-0.904184\pi\)
0.955036 0.296490i \(-0.0958160\pi\)
\(600\) 54.3624 + 76.1461i 0.0906040 + 0.126910i
\(601\) −899.187 −1.49615 −0.748075 0.663614i \(-0.769022\pi\)
−0.748075 + 0.663614i \(0.769022\pi\)
\(602\) 108.807i 0.180743i
\(603\) −161.278 + 469.658i −0.267460 + 0.778869i
\(604\) −599.054 −0.991811
\(605\) 131.688i 0.217666i
\(606\) −338.823 + 241.893i −0.559113 + 0.399163i
\(607\) −768.361 −1.26583 −0.632917 0.774220i \(-0.718142\pi\)
−0.632917 + 0.774220i \(0.718142\pi\)
\(608\) 657.113i 1.08078i
\(609\) 8.67555 + 12.1520i 0.0142456 + 0.0199540i
\(610\) −189.887 −0.311291
\(611\) 24.8641i 0.0406941i
\(612\) 102.021 + 35.0336i 0.166701 + 0.0572444i
\(613\) 258.337 0.421430 0.210715 0.977547i \(-0.432421\pi\)
0.210715 + 0.977547i \(0.432421\pi\)
\(614\) 145.763i 0.237399i
\(615\) −102.500 + 73.1773i −0.166667 + 0.118987i
\(616\) 106.602 0.173055
\(617\) 316.180i 0.512448i −0.966617 0.256224i \(-0.917522\pi\)
0.966617 0.256224i \(-0.0824784\pi\)
\(618\) −148.155 207.522i −0.239732 0.335796i
\(619\) 655.788 1.05943 0.529716 0.848175i \(-0.322299\pi\)
0.529716 + 0.848175i \(0.322299\pi\)
\(620\) 180.220i 0.290678i
\(621\) −161.806 + 48.1492i −0.260557 + 0.0775349i
\(622\) 162.709 0.261590
\(623\) 74.6457i 0.119816i
\(624\) 67.7196 48.3465i 0.108525 0.0774784i
\(625\) 25.0000 0.0400000
\(626\) 331.734i 0.529926i
\(627\) −286.060 400.688i −0.456236 0.639056i
\(628\) −344.503 −0.548571
\(629\) 60.0964i 0.0955428i
\(630\) 12.1740 35.4517i 0.0193238 0.0562726i
\(631\) −9.22519 −0.0146200 −0.00730998 0.999973i \(-0.502327\pi\)
−0.00730998 + 0.999973i \(0.502327\pi\)
\(632\) 417.475i 0.660562i
\(633\) 322.131 229.976i 0.508896 0.363312i
\(634\) −305.555 −0.481947
\(635\) 138.303i 0.217801i
\(636\) 194.302 + 272.162i 0.305507 + 0.427927i
\(637\) −159.715 −0.250729
\(638\) 15.5335i 0.0243471i
\(639\) 578.353 + 198.604i 0.905090 + 0.310804i
\(640\) 289.290 0.452015
\(641\) 29.5373i 0.0460800i −0.999735 0.0230400i \(-0.992665\pi\)
0.999735 0.0230400i \(-0.00733451\pi\)
\(642\) −166.502 + 118.869i −0.259348 + 0.185155i
\(643\) 982.278 1.52765 0.763825 0.645424i \(-0.223319\pi\)
0.763825 + 0.645424i \(0.223319\pi\)
\(644\) 44.2364i 0.0686901i
\(645\) 227.696 + 318.937i 0.353018 + 0.494476i
\(646\) −65.7051 −0.101711
\(647\) 428.532i 0.662338i 0.943572 + 0.331169i \(0.107443\pi\)
−0.943572 + 0.331169i \(0.892557\pi\)
\(648\) −310.383 + 398.640i −0.478987 + 0.615186i
\(649\) −619.763 −0.954951
\(650\) 15.4833i 0.0238205i
\(651\) −130.815 + 93.3918i −0.200945 + 0.143459i
\(652\) 548.971 0.841980
\(653\) 314.873i 0.482195i 0.970501 + 0.241097i \(0.0775073\pi\)
−0.970501 + 0.241097i \(0.922493\pi\)
\(654\) 82.9955 + 116.253i 0.126904 + 0.177757i
\(655\) 437.285 0.667611
\(656\) 144.420i 0.220152i
\(657\) 290.165 844.987i 0.441651 1.28613i
\(658\) 12.8445 0.0195205
\(659\) 1090.81i 1.65525i −0.561282 0.827625i \(-0.689692\pi\)
0.561282 0.827625i \(-0.310308\pi\)
\(660\) −140.368 + 100.211i −0.212678 + 0.151836i
\(661\) −1100.10 −1.66429 −0.832145 0.554558i \(-0.812888\pi\)
−0.832145 + 0.554558i \(0.812888\pi\)
\(662\) 501.980i 0.758278i
\(663\) 23.0898 + 32.3422i 0.0348263 + 0.0487817i
\(664\) 861.347 1.29721
\(665\) 100.980i 0.151850i
\(666\) 119.588 + 41.0660i 0.179561 + 0.0616606i
\(667\) 14.3493 0.0215131
\(668\) 715.903i 1.07171i
\(669\) −958.267 + 684.128i −1.43239 + 1.02261i
\(670\) −105.962 −0.158153
\(671\) 779.221i 1.16128i
\(672\) −119.290 167.092i −0.177516 0.248648i
\(673\) 849.550 1.26233 0.631166 0.775648i \(-0.282577\pi\)
0.631166 + 0.775648i \(0.282577\pi\)
\(674\) 223.053i 0.330939i
\(675\) 38.5038 + 129.393i 0.0570427 + 0.191693i
\(676\) 42.4107 0.0627377
\(677\) 362.200i 0.535008i −0.963557 0.267504i \(-0.913801\pi\)
0.963557 0.267504i \(-0.0861988\pi\)
\(678\) 295.909 211.256i 0.436444 0.311587i
\(679\) −6.68073 −0.00983907
\(680\) 51.2395i 0.0753522i
\(681\) −370.086 518.384i −0.543444 0.761210i
\(682\) −167.217 −0.245186
\(683\) 151.262i 0.221466i −0.993850 0.110733i \(-0.964680\pi\)
0.993850 0.110733i \(-0.0353199\pi\)
\(684\) −198.573 + 578.264i −0.290312 + 0.845415i
\(685\) 439.530 0.641650
\(686\) 173.773i 0.253313i
\(687\) 202.998 144.925i 0.295485 0.210953i
\(688\) 449.373 0.653158
\(689\) 123.194i 0.178801i
\(690\) −20.9310 29.3184i −0.0303348 0.0424904i
\(691\) −57.4985 −0.0832106 −0.0416053 0.999134i \(-0.513247\pi\)
−0.0416053 + 0.999134i \(0.513247\pi\)
\(692\) 347.892i 0.502735i
\(693\) 145.480 + 49.9571i 0.209927 + 0.0720881i
\(694\) 521.805 0.751880
\(695\) 355.646i 0.511721i
\(696\) 34.9504 24.9519i 0.0502161 0.0358504i
\(697\) −68.9736 −0.0989578
\(698\) 77.7162i 0.111341i
\(699\) −714.783 1001.21i −1.02258 1.43234i
\(700\) −35.3749 −0.0505356
\(701\) 100.516i 0.143390i 0.997427 + 0.0716951i \(0.0228408\pi\)
−0.997427 + 0.0716951i \(0.977159\pi\)
\(702\) −80.1370 + 23.8467i −0.114155 + 0.0339696i
\(703\) 340.632 0.484540
\(704\) 28.9033i 0.0410559i
\(705\) −37.6499 + 26.8791i −0.0534042 + 0.0381264i
\(706\) −602.379 −0.853228
\(707\) 350.402i 0.495617i
\(708\) 447.214 + 626.418i 0.631658 + 0.884772i
\(709\) 461.780 0.651311 0.325656 0.945488i \(-0.394415\pi\)
0.325656 + 0.945488i \(0.394415\pi\)
\(710\) 130.486i 0.183783i
\(711\) 195.642 569.728i 0.275165 0.801306i
\(712\) −214.690 −0.301530
\(713\) 154.469i 0.216647i
\(714\) 16.7076 11.9279i 0.0234000 0.0167058i
\(715\) −63.5372 −0.0888633
\(716\) 604.787i 0.844675i
\(717\) 457.327 + 640.584i 0.637834 + 0.893423i
\(718\) −169.451 −0.236004
\(719\) 871.834i 1.21256i 0.795249 + 0.606282i \(0.207340\pi\)
−0.795249 + 0.606282i \(0.792660\pi\)
\(720\) 146.415 + 50.2784i 0.203355 + 0.0698311i
\(721\) 214.614 0.297661
\(722\) 62.3743i 0.0863910i
\(723\) 880.500 628.608i 1.21784 0.869444i
\(724\) 379.435 0.524082
\(725\) 11.4748i 0.0158273i
\(726\) −88.1681 123.498i −0.121444 0.170108i
\(727\) 532.393 0.732315 0.366157 0.930553i \(-0.380673\pi\)
0.366157 + 0.930553i \(0.380673\pi\)
\(728\) 48.7713i 0.0669936i
\(729\) −610.396 + 398.569i −0.837306 + 0.546734i
\(730\) 190.643 0.261154
\(731\) 214.616i 0.293593i
\(732\) −787.589 + 562.277i −1.07594 + 0.768138i
\(733\) −436.449 −0.595429 −0.297714 0.954655i \(-0.596224\pi\)
−0.297714 + 0.954655i \(0.596224\pi\)
\(734\) 384.369i 0.523664i
\(735\) −172.658 241.844i −0.234909 0.329040i
\(736\) −197.305 −0.268077
\(737\) 434.827i 0.589995i
\(738\) 47.1320 137.253i 0.0638645 0.185979i
\(739\) 140.241 0.189772 0.0948858 0.995488i \(-0.469751\pi\)
0.0948858 + 0.995488i \(0.469751\pi\)
\(740\) 119.329i 0.161255i
\(741\) −183.319 + 130.875i −0.247394 + 0.176620i
\(742\) 63.6403 0.0857686
\(743\) 1066.05i 1.43479i −0.696665 0.717397i \(-0.745334\pi\)
0.696665 0.717397i \(-0.254666\pi\)
\(744\) 268.606 + 376.239i 0.361029 + 0.505698i
\(745\) 292.147 0.392144
\(746\) 399.205i 0.535127i
\(747\) 1175.48 + 403.655i 1.57360 + 0.540368i
\(748\) −94.4548 −0.126276
\(749\) 172.192i 0.229895i
\(750\) −23.4453 + 16.7381i −0.0312603 + 0.0223174i
\(751\) 673.484 0.896783 0.448391 0.893837i \(-0.351997\pi\)
0.448391 + 0.893837i \(0.351997\pi\)
\(752\) 53.0476i 0.0705420i
\(753\) 787.662 + 1103.29i 1.04603 + 1.46519i
\(754\) 7.10670 0.00942534
\(755\) 410.600i 0.543841i
\(756\) −54.4828 183.090i −0.0720672 0.242183i
\(757\) −661.610 −0.873990 −0.436995 0.899464i \(-0.643957\pi\)
−0.436995 + 0.899464i \(0.643957\pi\)
\(758\) 151.434i 0.199782i
\(759\) 120.311 85.8925i 0.158512 0.113165i
\(760\) −290.430 −0.382145
\(761\) 91.8473i 0.120693i −0.998177 0.0603464i \(-0.980779\pi\)
0.998177 0.0603464i \(-0.0192205\pi\)
\(762\) −92.5973 129.702i −0.121519 0.170213i
\(763\) −120.226 −0.157570
\(764\) 994.872i 1.30219i
\(765\) −24.0125 + 69.9266i −0.0313889 + 0.0914073i
\(766\) 333.463 0.435330
\(767\) 283.548i 0.369684i
\(768\) −235.480 + 168.114i −0.306614 + 0.218899i
\(769\) 1109.96 1.44338 0.721692 0.692214i \(-0.243364\pi\)
0.721692 + 0.692214i \(0.243364\pi\)
\(770\) 32.8225i 0.0426266i
\(771\) −155.351 217.603i −0.201493 0.282234i
\(772\) 559.284 0.724462
\(773\) 1213.29i 1.56958i 0.619761 + 0.784790i \(0.287229\pi\)
−0.619761 + 0.784790i \(0.712771\pi\)
\(774\) −427.072 146.655i −0.551772 0.189476i
\(775\) 123.525 0.159388
\(776\) 19.2145i 0.0247610i
\(777\) −86.6163 + 61.8373i −0.111475 + 0.0795847i
\(778\) 152.532 0.196056
\(779\) 390.948i 0.501859i
\(780\) 45.8477 + 64.2195i 0.0587791 + 0.0823327i
\(781\) −535.460 −0.685609
\(782\) 19.7286i 0.0252284i
\(783\) 59.3901 17.6729i 0.0758495 0.0225708i
\(784\) −340.751 −0.434632
\(785\) 236.127i 0.300799i
\(786\) −410.090 + 292.772i −0.521743 + 0.372484i
\(787\) −205.750 −0.261436 −0.130718 0.991420i \(-0.541728\pi\)
−0.130718 + 0.991420i \(0.541728\pi\)
\(788\) 251.651i 0.319355i
\(789\) −550.172 770.634i −0.697304 0.976722i
\(790\) 128.540 0.162709
\(791\) 306.021i 0.386879i
\(792\) 143.682 418.416i 0.181417 0.528303i
\(793\) −356.501 −0.449560
\(794\) 21.1118i 0.0265891i
\(795\) −186.543 + 133.177i −0.234646 + 0.167519i
\(796\) −676.308 −0.849633
\(797\) 1101.39i 1.38192i 0.722892 + 0.690961i \(0.242812\pi\)
−0.722892 + 0.690961i \(0.757188\pi\)
\(798\) 67.6085 + 94.7001i 0.0847224 + 0.118672i
\(799\) −25.3350 −0.0317084
\(800\) 157.781i 0.197226i
\(801\) −292.987 100.610i −0.365776 0.125606i
\(802\) −213.872 −0.266673
\(803\) 782.320i 0.974247i
\(804\) −439.496 + 313.766i −0.546637 + 0.390256i
\(805\) 30.3203 0.0376649
\(806\) 76.5033i 0.0949172i
\(807\) 496.280 + 695.147i 0.614970 + 0.861396i
\(808\) −1007.80 −1.24727
\(809\) 1245.96i 1.54013i 0.637967 + 0.770064i \(0.279776\pi\)
−0.637967 + 0.770064i \(0.720224\pi\)
\(810\) −122.741 95.5665i −0.151532 0.117983i
\(811\) 313.283 0.386292 0.193146 0.981170i \(-0.438131\pi\)
0.193146 + 0.981170i \(0.438131\pi\)
\(812\) 16.2368i 0.0199960i
\(813\) 659.362 470.733i 0.811024 0.579008i
\(814\) −110.719 −0.136018
\(815\) 376.273i 0.461684i
\(816\) 49.2622 + 69.0022i 0.0603703 + 0.0845616i
\(817\) −1216.46 −1.48894
\(818\) 541.767i 0.662307i
\(819\) 22.8558 66.5583i 0.0279070 0.0812677i
\(820\) −136.956 −0.167019
\(821\) 1561.58i 1.90205i −0.309120 0.951023i \(-0.600034\pi\)
0.309120 0.951023i \(-0.399966\pi\)
\(822\) −412.196 + 294.276i −0.501455 + 0.357999i
\(823\) −71.2864 −0.0866177 −0.0433089 0.999062i \(-0.513790\pi\)
−0.0433089 + 0.999062i \(0.513790\pi\)
\(824\) 617.254i 0.749095i
\(825\) −68.6864 96.2099i −0.0832562 0.116618i
\(826\) 146.477 0.177333
\(827\) 655.018i 0.792041i 0.918242 + 0.396020i \(0.129609\pi\)
−0.918242 + 0.396020i \(0.870391\pi\)
\(828\) −173.630 59.6237i −0.209698 0.0720092i
\(829\) −1649.47 −1.98971 −0.994854 0.101324i \(-0.967692\pi\)
−0.994854 + 0.101324i \(0.967692\pi\)
\(830\) 265.207i 0.319527i
\(831\) −700.929 + 500.408i −0.843476 + 0.602176i
\(832\) 13.2236 0.0158937
\(833\) 162.740i 0.195366i
\(834\) 238.113 + 333.529i 0.285508 + 0.399914i
\(835\) 490.690 0.587652
\(836\) 535.378i 0.640404i
\(837\) 190.248 + 639.332i 0.227298 + 0.763837i
\(838\) 379.607 0.452992
\(839\) 750.115i 0.894058i 0.894519 + 0.447029i \(0.147518\pi\)
−0.894519 + 0.447029i \(0.852482\pi\)
\(840\) 73.8510 52.7238i 0.0879178 0.0627665i
\(841\) 835.733 0.993737
\(842\) 505.920i 0.600855i
\(843\) −590.777 827.509i −0.700803 0.981623i
\(844\) 430.414 0.509969
\(845\) 29.0689i 0.0344010i
\(846\) 17.3123 50.4150i 0.0204637 0.0595922i
\(847\) 127.719 0.150789
\(848\) 262.834i 0.309946i
\(849\) 384.515 274.514i 0.452903 0.323338i
\(850\) −15.7766 −0.0185607
\(851\) 102.278i 0.120186i
\(852\) 386.382 + 541.210i 0.453500 + 0.635223i
\(853\) −1045.72 −1.22593 −0.612966 0.790109i \(-0.710024\pi\)
−0.612966 + 0.790109i \(0.710024\pi\)
\(854\) 184.164i 0.215649i
\(855\) −396.350 136.105i −0.463567 0.159187i
\(856\) −495.243 −0.578555
\(857\) 1325.06i 1.54616i 0.634307 + 0.773081i \(0.281285\pi\)
−0.634307 + 0.773081i \(0.718715\pi\)
\(858\) 59.5859 42.5397i 0.0694474 0.0495800i
\(859\) −1191.12 −1.38664 −0.693320 0.720630i \(-0.743853\pi\)
−0.693320 + 0.720630i \(0.743853\pi\)
\(860\) 426.147i 0.495519i
\(861\) 70.9716 + 99.4109i 0.0824293 + 0.115460i
\(862\) 374.421 0.434364
\(863\) 75.6364i 0.0876436i −0.999039 0.0438218i \(-0.986047\pi\)
0.999039 0.0438218i \(-0.0139534\pi\)
\(864\) −816.625 + 243.006i −0.945168 + 0.281257i
\(865\) 238.450 0.275665
\(866\) 130.131i 0.150266i
\(867\) 672.673 480.236i 0.775863 0.553906i
\(868\) −174.788 −0.201369
\(869\) 527.476i 0.606991i
\(870\) 7.68264 + 10.7612i 0.00883062 + 0.0123692i
\(871\) −198.937 −0.228401
\(872\) 345.783i 0.396540i
\(873\) −9.00455 + 26.2221i −0.0103145 + 0.0300368i
\(874\) 111.824 0.127945
\(875\) 24.2465i 0.0277102i
\(876\) 790.721 564.513i 0.902649 0.644421i
\(877\) 899.812 1.02601 0.513006 0.858385i \(-0.328532\pi\)
0.513006 + 0.858385i \(0.328532\pi\)
\(878\) 84.5995i 0.0963548i
\(879\) 43.0212 + 60.2604i 0.0489433 + 0.0685556i
\(880\) −135.557 −0.154042
\(881\) 527.216i 0.598429i −0.954186 0.299215i \(-0.903275\pi\)
0.954186 0.299215i \(-0.0967246\pi\)
\(882\) 323.841 + 111.206i 0.367167 + 0.126083i
\(883\) −699.464 −0.792144 −0.396072 0.918219i \(-0.629627\pi\)
−0.396072 + 0.918219i \(0.629627\pi\)
\(884\) 43.2140i 0.0488846i
\(885\) −429.356 + 306.527i −0.485148 + 0.346358i
\(886\) −375.757 −0.424105
\(887\) 256.112i 0.288740i −0.989524 0.144370i \(-0.953884\pi\)
0.989524 0.144370i \(-0.0461156\pi\)
\(888\) 177.851 + 249.119i 0.200283 + 0.280539i
\(889\) 134.135 0.150883
\(890\) 66.1025i 0.0742725i
\(891\) 392.167 503.678i 0.440142 0.565296i
\(892\) −1280.39 −1.43541
\(893\) 143.601i 0.160808i
\(894\) −273.979 + 195.599i −0.306464 + 0.218791i
\(895\) 414.529 0.463161
\(896\) 280.570i 0.313136i
\(897\) −39.2966 55.0433i −0.0438089 0.0613638i
\(898\) 415.000 0.462138
\(899\) 56.6972i 0.0630669i
\(900\) −47.6797 + 138.848i −0.0529775 + 0.154275i
\(901\) −125.527 −0.139320
\(902\) 127.074i 0.140880i
\(903\) 309.324 220.833i 0.342552 0.244555i
\(904\) 880.152 0.973620
\(905\) 260.070i 0.287370i
\(906\) 274.906 + 385.065i 0.303429 + 0.425016i
\(907\) 393.756 0.434130 0.217065 0.976157i \(-0.430352\pi\)
0.217065 + 0.976157i \(0.430352\pi\)
\(908\) 692.637i 0.762816i
\(909\) −1375.34 472.285i −1.51302 0.519566i
\(910\) 15.0166 0.0165018
\(911\) 175.594i 0.192748i −0.995345 0.0963742i \(-0.969275\pi\)
0.995345 0.0963742i \(-0.0307246\pi\)
\(912\) −391.111 + 279.223i −0.428849 + 0.306165i
\(913\) −1088.30 −1.19201
\(914\) 165.234i 0.180782i
\(915\) −385.392 539.824i −0.421194 0.589972i
\(916\) 271.235 0.296108
\(917\) 424.104i 0.462491i
\(918\) −24.2983 81.6548i −0.0264688 0.0889486i
\(919\) −537.127 −0.584469 −0.292234 0.956347i \(-0.594399\pi\)
−0.292234 + 0.956347i \(0.594399\pi\)
\(920\) 87.2046i 0.0947876i
\(921\) −414.384 + 295.838i −0.449928 + 0.321214i
\(922\) −422.937 −0.458716
\(923\) 244.978i 0.265415i
\(924\) 97.1910 + 136.137i 0.105185 + 0.147334i
\(925\) 81.7896 0.0884212
\(926\) 302.628i 0.326812i
\(927\) 289.265 842.367i 0.312044 0.908702i
\(928\) 72.4199 0.0780387
\(929\) 857.033i 0.922533i −0.887262 0.461267i \(-0.847395\pi\)
0.887262 0.461267i \(-0.152605\pi\)
\(930\) −115.843 + 82.7032i −0.124563 + 0.0889282i
\(931\) 922.423 0.990787
\(932\) 1337.76i 1.43536i
\(933\) 330.232 + 462.560i 0.353946 + 0.495777i
\(934\) 569.463 0.609703
\(935\) 64.7406i 0.0692413i
\(936\) −191.429 65.7360i −0.204518 0.0702308i
\(937\) −1038.21 −1.10801 −0.554007 0.832512i \(-0.686902\pi\)
−0.554007 + 0.832512i \(0.686902\pi\)
\(938\) 102.768i 0.109561i
\(939\) 943.074 673.281i 1.00434 0.717019i
\(940\) −50.3058 −0.0535168
\(941\) 242.533i 0.257739i 0.991662 + 0.128870i \(0.0411349\pi\)
−0.991662 + 0.128870i \(0.958865\pi\)
\(942\) 158.092 + 221.442i 0.167826 + 0.235077i
\(943\) 117.386 0.124482
\(944\) 604.949i 0.640836i
\(945\) 125.493 37.3433i 0.132796 0.0395167i
\(946\) 395.399 0.417969
\(947\) 552.868i 0.583810i 0.956447 + 0.291905i \(0.0942890\pi\)
−0.956447 + 0.291905i \(0.905711\pi\)
\(948\) 533.140 380.620i 0.562384 0.401498i
\(949\) 357.919 0.377154
\(950\) 89.4229i 0.0941294i
\(951\) −620.149 868.650i −0.652102 0.913407i
\(952\) 49.6951 0.0522007
\(953\) 182.607i 0.191613i −0.995400 0.0958064i \(-0.969457\pi\)
0.995400 0.0958064i \(-0.0305430\pi\)
\(954\) 85.7770 249.790i 0.0899130 0.261835i
\(955\) −681.899 −0.714030
\(956\) 855.914i 0.895308i
\(957\) −44.1595 + 31.5265i −0.0461437 + 0.0329430i
\(958\) 542.916 0.566718
\(959\) 426.282i 0.444507i
\(960\) 14.2952 + 20.0235i 0.0148908 + 0.0208578i
\(961\) −350.658 −0.364889
\(962\) 50.6549i 0.0526559i
\(963\) −675.858 232.087i −0.701826 0.241004i
\(964\) 1176.48 1.22041
\(965\) 383.341i 0.397245i
\(966\) −28.4347 + 20.3001i −0.0294355 + 0.0210146i
\(967\) 1256.65 1.29953 0.649765 0.760135i \(-0.274867\pi\)
0.649765 + 0.760135i \(0.274867\pi\)
\(968\) 367.334i 0.379477i
\(969\) −133.354 186.791i −0.137620 0.192767i
\(970\) −5.91612 −0.00609909
\(971\) 1724.94i 1.77646i 0.459401 + 0.888229i \(0.348064\pi\)
−0.459401 + 0.888229i \(0.651936\pi\)
\(972\) −792.070 32.9293i −0.814886 0.0338779i
\(973\) −344.926 −0.354498
\(974\) 519.695i 0.533568i
\(975\) −44.0169 + 31.4247i −0.0451456 + 0.0322304i
\(976\) −760.596 −0.779299
\(977\) 1808.47i 1.85104i −0.378700 0.925520i \(-0.623629\pi\)
0.378700 0.925520i \(-0.376371\pi\)
\(978\) −251.923 352.872i −0.257590 0.360810i
\(979\) 271.258 0.277077
\(980\) 323.140i 0.329734i
\(981\) −162.045 + 471.890i −0.165183 + 0.481030i
\(982\) 633.561 0.645174
\(983\) 1758.03i 1.78843i −0.447639 0.894214i \(-0.647735\pi\)
0.447639 0.894214i \(-0.352265\pi\)
\(984\) 285.917 204.123i 0.290566 0.207442i
\(985\) −172.485 −0.175112
\(986\) 7.24131i 0.00734412i
\(987\) 26.0689 + 36.5151i 0.0264123 + 0.0369961i
\(988\) −244.941 −0.247916
\(989\) 365.255i 0.369318i
\(990\) 128.830 + 44.2395i 0.130131 + 0.0446864i
\(991\) 1355.64 1.36795 0.683975 0.729506i \(-0.260250\pi\)
0.683975 + 0.729506i \(0.260250\pi\)
\(992\) 779.597i 0.785884i
\(993\) 1427.06 1018.81i 1.43712 1.02599i
\(994\) 126.553 0.127316
\(995\) 463.551i 0.465880i
\(996\) 785.307 + 1099.99i 0.788460 + 1.10441i
\(997\) 355.215 0.356284 0.178142 0.984005i \(-0.442991\pi\)
0.178142 + 0.984005i \(0.442991\pi\)
\(998\) 408.720i 0.409539i
\(999\) 125.969 + 423.319i 0.126095 + 0.423743i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.3.d.a.131.14 32
3.2 odd 2 inner 195.3.d.a.131.19 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.3.d.a.131.14 32 1.1 even 1 trivial
195.3.d.a.131.19 yes 32 3.2 odd 2 inner