Properties

Label 195.3.d.a.131.12
Level $195$
Weight $3$
Character 195.131
Analytic conductor $5.313$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,3,Mod(131,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.131"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 195.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31336515503\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.12
Character \(\chi\) \(=\) 195.131
Dual form 195.3.d.a.131.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.11947i q^{2} +(2.93515 - 0.620391i) q^{3} +2.74679 q^{4} -2.23607i q^{5} +(-0.694509 - 3.28581i) q^{6} -5.59346 q^{7} -7.55282i q^{8} +(8.23023 - 3.64188i) q^{9} -2.50321 q^{10} -6.16296i q^{11} +(8.06224 - 1.70408i) q^{12} -3.60555 q^{13} +6.26171i q^{14} +(-1.38724 - 6.56320i) q^{15} +2.53200 q^{16} +15.1180i q^{17} +(-4.07698 - 9.21349i) q^{18} +20.3138 q^{19} -6.14200i q^{20} +(-16.4177 + 3.47013i) q^{21} -6.89924 q^{22} +33.6359i q^{23} +(-4.68570 - 22.1687i) q^{24} -5.00000 q^{25} +4.03630i q^{26} +(21.8976 - 15.7954i) q^{27} -15.3641 q^{28} -7.19415i q^{29} +(-7.34730 + 1.55297i) q^{30} -24.0139 q^{31} -33.0458i q^{32} +(-3.82344 - 18.0892i) q^{33} +16.9242 q^{34} +12.5074i q^{35} +(22.6067 - 10.0035i) q^{36} +22.3357 q^{37} -22.7407i q^{38} +(-10.5828 + 2.23685i) q^{39} -16.8886 q^{40} -21.1281i q^{41} +(3.88471 + 18.3791i) q^{42} -43.3742 q^{43} -16.9283i q^{44} +(-8.14350 - 18.4034i) q^{45} +37.6544 q^{46} +76.6441i q^{47} +(7.43179 - 1.57083i) q^{48} -17.7132 q^{49} +5.59735i q^{50} +(9.37910 + 44.3737i) q^{51} -9.90368 q^{52} +85.5633i q^{53} +(-17.6825 - 24.5137i) q^{54} -13.7808 q^{55} +42.2464i q^{56} +(59.6242 - 12.6025i) q^{57} -8.05364 q^{58} -16.4722i q^{59} +(-3.81044 - 18.0277i) q^{60} +65.6450 q^{61} +26.8829i q^{62} +(-46.0355 + 20.3707i) q^{63} -26.8658 q^{64} +8.06226i q^{65} +(-20.2503 + 4.28023i) q^{66} +46.7201 q^{67} +41.5260i q^{68} +(20.8674 + 98.7265i) q^{69} +14.0016 q^{70} +91.1773i q^{71} +(-27.5065 - 62.1615i) q^{72} -82.8650 q^{73} -25.0041i q^{74} +(-14.6758 + 3.10196i) q^{75} +55.7978 q^{76} +34.4723i q^{77} +(2.50409 + 11.8472i) q^{78} +60.9960 q^{79} -5.66172i q^{80} +(54.4734 - 59.9471i) q^{81} -23.6523 q^{82} -106.124i q^{83} +(-45.0958 + 9.53172i) q^{84} +33.8050 q^{85} +48.5561i q^{86} +(-4.46319 - 21.1159i) q^{87} -46.5477 q^{88} +89.3690i q^{89} +(-20.6020 + 9.11640i) q^{90} +20.1675 q^{91} +92.3907i q^{92} +(-70.4845 + 14.8980i) q^{93} +85.8008 q^{94} -45.4231i q^{95} +(-20.5013 - 96.9944i) q^{96} -90.4120 q^{97} +19.8294i q^{98} +(-22.4448 - 50.7226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} - 60 q^{4} - 8 q^{6} + 8 q^{9} - 20 q^{10} - 68 q^{12} + 172 q^{16} + 132 q^{18} - 16 q^{19} + 44 q^{21} - 64 q^{22} - 92 q^{24} - 160 q^{25} + 20 q^{27} + 224 q^{28} - 40 q^{30} - 56 q^{31}+ \cdots + 236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11947i 0.559735i −0.960039 0.279867i \(-0.909710\pi\)
0.960039 0.279867i \(-0.0902905\pi\)
\(3\) 2.93515 0.620391i 0.978384 0.206797i
\(4\) 2.74679 0.686697
\(5\) 2.23607i 0.447214i
\(6\) −0.694509 3.28581i −0.115751 0.547635i
\(7\) −5.59346 −0.799066 −0.399533 0.916719i \(-0.630828\pi\)
−0.399533 + 0.916719i \(0.630828\pi\)
\(8\) 7.55282i 0.944103i
\(9\) 8.23023 3.64188i 0.914470 0.404654i
\(10\) −2.50321 −0.250321
\(11\) 6.16296i 0.560269i −0.959961 0.280134i \(-0.909621\pi\)
0.959961 0.280134i \(-0.0903791\pi\)
\(12\) 8.06224 1.70408i 0.671853 0.142007i
\(13\) −3.60555 −0.277350
\(14\) 6.26171i 0.447265i
\(15\) −1.38724 6.56320i −0.0924824 0.437547i
\(16\) 2.53200 0.158250
\(17\) 15.1180i 0.889296i 0.895705 + 0.444648i \(0.146671\pi\)
−0.895705 + 0.444648i \(0.853329\pi\)
\(18\) −4.07698 9.21349i −0.226499 0.511861i
\(19\) 20.3138 1.06915 0.534575 0.845121i \(-0.320472\pi\)
0.534575 + 0.845121i \(0.320472\pi\)
\(20\) 6.14200i 0.307100i
\(21\) −16.4177 + 3.47013i −0.781793 + 0.165244i
\(22\) −6.89924 −0.313602
\(23\) 33.6359i 1.46243i 0.682147 + 0.731215i \(0.261046\pi\)
−0.682147 + 0.731215i \(0.738954\pi\)
\(24\) −4.68570 22.1687i −0.195238 0.923695i
\(25\) −5.00000 −0.200000
\(26\) 4.03630i 0.155242i
\(27\) 21.8976 15.7954i 0.811021 0.585016i
\(28\) −15.3641 −0.548716
\(29\) 7.19415i 0.248074i −0.992278 0.124037i \(-0.960416\pi\)
0.992278 0.124037i \(-0.0395842\pi\)
\(30\) −7.34730 + 1.55297i −0.244910 + 0.0517656i
\(31\) −24.0139 −0.774643 −0.387322 0.921945i \(-0.626600\pi\)
−0.387322 + 0.921945i \(0.626600\pi\)
\(32\) 33.0458i 1.03268i
\(33\) −3.82344 18.0892i −0.115862 0.548158i
\(34\) 16.9242 0.497770
\(35\) 12.5074i 0.357353i
\(36\) 22.6067 10.0035i 0.627964 0.277875i
\(37\) 22.3357 0.603668 0.301834 0.953361i \(-0.402401\pi\)
0.301834 + 0.953361i \(0.402401\pi\)
\(38\) 22.7407i 0.598440i
\(39\) −10.5828 + 2.23685i −0.271355 + 0.0573552i
\(40\) −16.8886 −0.422216
\(41\) 21.1281i 0.515320i −0.966236 0.257660i \(-0.917048\pi\)
0.966236 0.257660i \(-0.0829515\pi\)
\(42\) 3.88471 + 18.3791i 0.0924931 + 0.437597i
\(43\) −43.3742 −1.00870 −0.504351 0.863499i \(-0.668268\pi\)
−0.504351 + 0.863499i \(0.668268\pi\)
\(44\) 16.9283i 0.384735i
\(45\) −8.14350 18.4034i −0.180967 0.408963i
\(46\) 37.6544 0.818573
\(47\) 76.6441i 1.63073i 0.578950 + 0.815363i \(0.303463\pi\)
−0.578950 + 0.815363i \(0.696537\pi\)
\(48\) 7.43179 1.57083i 0.154829 0.0327256i
\(49\) −17.7132 −0.361493
\(50\) 5.59735i 0.111947i
\(51\) 9.37910 + 44.3737i 0.183904 + 0.870073i
\(52\) −9.90368 −0.190455
\(53\) 85.5633i 1.61440i 0.590277 + 0.807201i \(0.299019\pi\)
−0.590277 + 0.807201i \(0.700981\pi\)
\(54\) −17.6825 24.5137i −0.327454 0.453957i
\(55\) −13.7808 −0.250560
\(56\) 42.2464i 0.754401i
\(57\) 59.6242 12.6025i 1.04604 0.221097i
\(58\) −8.05364 −0.138856
\(59\) 16.4722i 0.279190i −0.990209 0.139595i \(-0.955420\pi\)
0.990209 0.139595i \(-0.0445800\pi\)
\(60\) −3.81044 18.0277i −0.0635074 0.300462i
\(61\) 65.6450 1.07615 0.538074 0.842898i \(-0.319152\pi\)
0.538074 + 0.842898i \(0.319152\pi\)
\(62\) 26.8829i 0.433595i
\(63\) −46.0355 + 20.3707i −0.730722 + 0.323345i
\(64\) −26.8658 −0.419778
\(65\) 8.06226i 0.124035i
\(66\) −20.2503 + 4.28023i −0.306823 + 0.0648520i
\(67\) 46.7201 0.697315 0.348657 0.937250i \(-0.386638\pi\)
0.348657 + 0.937250i \(0.386638\pi\)
\(68\) 41.5260i 0.610677i
\(69\) 20.8674 + 98.7265i 0.302426 + 1.43082i
\(70\) 14.0016 0.200023
\(71\) 91.1773i 1.28419i 0.766626 + 0.642094i \(0.221934\pi\)
−0.766626 + 0.642094i \(0.778066\pi\)
\(72\) −27.5065 62.1615i −0.382035 0.863354i
\(73\) −82.8650 −1.13514 −0.567568 0.823326i \(-0.692116\pi\)
−0.567568 + 0.823326i \(0.692116\pi\)
\(74\) 25.0041i 0.337894i
\(75\) −14.6758 + 3.10196i −0.195677 + 0.0413594i
\(76\) 55.7978 0.734182
\(77\) 34.4723i 0.447692i
\(78\) 2.50409 + 11.8472i 0.0321037 + 0.151887i
\(79\) 60.9960 0.772101 0.386050 0.922478i \(-0.373839\pi\)
0.386050 + 0.922478i \(0.373839\pi\)
\(80\) 5.66172i 0.0707714i
\(81\) 54.4734 59.9471i 0.672511 0.740087i
\(82\) −23.6523 −0.288443
\(83\) 106.124i 1.27860i −0.768959 0.639298i \(-0.779225\pi\)
0.768959 0.639298i \(-0.220775\pi\)
\(84\) −45.0958 + 9.53172i −0.536855 + 0.113473i
\(85\) 33.8050 0.397705
\(86\) 48.5561i 0.564605i
\(87\) −4.46319 21.1159i −0.0513010 0.242712i
\(88\) −46.5477 −0.528952
\(89\) 89.3690i 1.00415i 0.864825 + 0.502073i \(0.167429\pi\)
−0.864825 + 0.502073i \(0.832571\pi\)
\(90\) −20.6020 + 9.11640i −0.228911 + 0.101293i
\(91\) 20.1675 0.221621
\(92\) 92.3907i 1.00425i
\(93\) −70.4845 + 14.8980i −0.757898 + 0.160194i
\(94\) 85.8008 0.912774
\(95\) 45.4231i 0.478138i
\(96\) −20.5013 96.9944i −0.213555 1.01036i
\(97\) −90.4120 −0.932083 −0.466041 0.884763i \(-0.654320\pi\)
−0.466041 + 0.884763i \(0.654320\pi\)
\(98\) 19.8294i 0.202340i
\(99\) −22.4448 50.7226i −0.226715 0.512349i
\(100\) −13.7339 −0.137339
\(101\) 11.8910i 0.117733i −0.998266 0.0588663i \(-0.981251\pi\)
0.998266 0.0588663i \(-0.0187486\pi\)
\(102\) 49.6750 10.4996i 0.487010 0.102937i
\(103\) −175.477 −1.70366 −0.851828 0.523822i \(-0.824506\pi\)
−0.851828 + 0.523822i \(0.824506\pi\)
\(104\) 27.2321i 0.261847i
\(105\) 7.75946 + 36.7110i 0.0738996 + 0.349629i
\(106\) 95.7855 0.903637
\(107\) 43.4800i 0.406355i −0.979142 0.203178i \(-0.934873\pi\)
0.979142 0.203178i \(-0.0651269\pi\)
\(108\) 60.1480 43.3867i 0.556926 0.401729i
\(109\) −14.9421 −0.137084 −0.0685418 0.997648i \(-0.521835\pi\)
−0.0685418 + 0.997648i \(0.521835\pi\)
\(110\) 15.4272i 0.140247i
\(111\) 65.5587 13.8569i 0.590619 0.124837i
\(112\) −14.1626 −0.126452
\(113\) 171.981i 1.52195i −0.648779 0.760977i \(-0.724720\pi\)
0.648779 0.760977i \(-0.275280\pi\)
\(114\) −14.1081 66.7475i −0.123756 0.585504i
\(115\) 75.2121 0.654019
\(116\) 19.7608i 0.170352i
\(117\) −29.6745 + 13.1310i −0.253628 + 0.112231i
\(118\) −18.4401 −0.156272
\(119\) 84.5622i 0.710607i
\(120\) −49.5707 + 10.4776i −0.413089 + 0.0873129i
\(121\) 83.0179 0.686099
\(122\) 73.4876i 0.602357i
\(123\) −13.1077 62.0143i −0.106567 0.504181i
\(124\) −65.9612 −0.531945
\(125\) 11.1803i 0.0894427i
\(126\) 22.8044 + 51.5353i 0.180987 + 0.409010i
\(127\) 170.795 1.34484 0.672422 0.740168i \(-0.265254\pi\)
0.672422 + 0.740168i \(0.265254\pi\)
\(128\) 102.108i 0.797717i
\(129\) −127.310 + 26.9089i −0.986897 + 0.208596i
\(130\) 9.02545 0.0694266
\(131\) 49.4560i 0.377526i −0.982023 0.188763i \(-0.939552\pi\)
0.982023 0.188763i \(-0.0604479\pi\)
\(132\) −10.5022 49.6872i −0.0795621 0.376419i
\(133\) −113.625 −0.854322
\(134\) 52.3017i 0.390311i
\(135\) −35.3197 48.9645i −0.261627 0.362700i
\(136\) 114.184 0.839587
\(137\) 66.2896i 0.483866i −0.970293 0.241933i \(-0.922219\pi\)
0.970293 0.241933i \(-0.0777814\pi\)
\(138\) 110.521 23.3604i 0.800879 0.169278i
\(139\) 12.2888 0.0884086 0.0442043 0.999023i \(-0.485925\pi\)
0.0442043 + 0.999023i \(0.485925\pi\)
\(140\) 34.3551i 0.245393i
\(141\) 47.5493 + 224.962i 0.337229 + 1.59548i
\(142\) 102.070 0.718805
\(143\) 22.2209i 0.155391i
\(144\) 20.8389 9.22124i 0.144715 0.0640364i
\(145\) −16.0866 −0.110942
\(146\) 92.7648i 0.635376i
\(147\) −51.9908 + 10.9891i −0.353679 + 0.0747557i
\(148\) 61.3514 0.414537
\(149\) 153.598i 1.03086i −0.856932 0.515430i \(-0.827632\pi\)
0.856932 0.515430i \(-0.172368\pi\)
\(150\) 3.47254 + 16.4291i 0.0231503 + 0.109527i
\(151\) −191.330 −1.26709 −0.633543 0.773708i \(-0.718400\pi\)
−0.633543 + 0.773708i \(0.718400\pi\)
\(152\) 153.427i 1.00939i
\(153\) 55.0581 + 124.425i 0.359857 + 0.813235i
\(154\) 38.5907 0.250589
\(155\) 53.6968i 0.346431i
\(156\) −29.0688 + 6.14416i −0.186339 + 0.0393856i
\(157\) −100.744 −0.641681 −0.320840 0.947133i \(-0.603965\pi\)
−0.320840 + 0.947133i \(0.603965\pi\)
\(158\) 68.2831i 0.432172i
\(159\) 53.0827 + 251.141i 0.333853 + 1.57950i
\(160\) −73.8926 −0.461829
\(161\) 188.141i 1.16858i
\(162\) −67.1089 60.9813i −0.414253 0.376428i
\(163\) −32.8559 −0.201570 −0.100785 0.994908i \(-0.532135\pi\)
−0.100785 + 0.994908i \(0.532135\pi\)
\(164\) 58.0345i 0.353869i
\(165\) −40.4487 + 8.54948i −0.245144 + 0.0518150i
\(166\) −118.802 −0.715675
\(167\) 261.495i 1.56584i 0.622125 + 0.782918i \(0.286269\pi\)
−0.622125 + 0.782918i \(0.713731\pi\)
\(168\) 26.2093 + 124.000i 0.156008 + 0.738093i
\(169\) 13.0000 0.0769231
\(170\) 37.8436i 0.222610i
\(171\) 167.188 73.9807i 0.977706 0.432636i
\(172\) −119.140 −0.692672
\(173\) 263.381i 1.52243i −0.648499 0.761215i \(-0.724603\pi\)
0.648499 0.761215i \(-0.275397\pi\)
\(174\) −23.6386 + 4.99640i −0.135854 + 0.0287150i
\(175\) 27.9673 0.159813
\(176\) 15.6046i 0.0886624i
\(177\) −10.2192 48.3484i −0.0577356 0.273155i
\(178\) 100.046 0.562056
\(179\) 219.780i 1.22782i 0.789375 + 0.613911i \(0.210405\pi\)
−0.789375 + 0.613911i \(0.789595\pi\)
\(180\) −22.3685 50.5501i −0.124269 0.280834i
\(181\) 77.9617 0.430727 0.215364 0.976534i \(-0.430906\pi\)
0.215364 + 0.976534i \(0.430906\pi\)
\(182\) 22.5769i 0.124049i
\(183\) 192.678 40.7256i 1.05289 0.222544i
\(184\) 254.046 1.38068
\(185\) 49.9442i 0.269968i
\(186\) 16.6779 + 78.9053i 0.0896661 + 0.424222i
\(187\) 93.1718 0.498245
\(188\) 210.525i 1.11982i
\(189\) −122.483 + 88.3512i −0.648060 + 0.467467i
\(190\) −50.8498 −0.267631
\(191\) 360.429i 1.88706i −0.331284 0.943531i \(-0.607482\pi\)
0.331284 0.943531i \(-0.392518\pi\)
\(192\) −78.8551 + 16.6673i −0.410704 + 0.0868088i
\(193\) 39.8730 0.206596 0.103298 0.994650i \(-0.467060\pi\)
0.103298 + 0.994650i \(0.467060\pi\)
\(194\) 101.214i 0.521719i
\(195\) 5.00175 + 23.6639i 0.0256500 + 0.121354i
\(196\) −48.6543 −0.248236
\(197\) 178.477i 0.905973i −0.891517 0.452986i \(-0.850359\pi\)
0.891517 0.452986i \(-0.149641\pi\)
\(198\) −56.7824 + 25.1262i −0.286780 + 0.126900i
\(199\) 156.078 0.784312 0.392156 0.919899i \(-0.371729\pi\)
0.392156 + 0.919899i \(0.371729\pi\)
\(200\) 37.7641i 0.188821i
\(201\) 137.131 28.9847i 0.682241 0.144203i
\(202\) −13.3116 −0.0658991
\(203\) 40.2402i 0.198228i
\(204\) 25.7624 + 121.885i 0.126286 + 0.597477i
\(205\) −47.2440 −0.230458
\(206\) 196.441i 0.953595i
\(207\) 122.498 + 276.831i 0.591778 + 1.33735i
\(208\) −9.12924 −0.0438906
\(209\) 125.193i 0.599012i
\(210\) 41.0969 8.68647i 0.195699 0.0413642i
\(211\) −371.766 −1.76192 −0.880961 0.473189i \(-0.843103\pi\)
−0.880961 + 0.473189i \(0.843103\pi\)
\(212\) 235.024i 1.10860i
\(213\) 56.5656 + 267.619i 0.265566 + 1.25643i
\(214\) −48.6745 −0.227451
\(215\) 96.9876i 0.451105i
\(216\) −119.300 165.389i −0.552316 0.765688i
\(217\) 134.321 0.618991
\(218\) 16.7272i 0.0767305i
\(219\) −243.221 + 51.4087i −1.11060 + 0.234743i
\(220\) −37.8529 −0.172059
\(221\) 54.5089i 0.246646i
\(222\) −15.5123 73.3909i −0.0698754 0.330590i
\(223\) −424.523 −1.90369 −0.951846 0.306576i \(-0.900817\pi\)
−0.951846 + 0.306576i \(0.900817\pi\)
\(224\) 184.840i 0.825180i
\(225\) −41.1511 + 18.2094i −0.182894 + 0.0809307i
\(226\) −192.527 −0.851890
\(227\) 5.89221i 0.0259569i 0.999916 + 0.0129784i \(0.00413128\pi\)
−0.999916 + 0.0129784i \(0.995869\pi\)
\(228\) 163.775 34.6165i 0.718312 0.151827i
\(229\) 227.275 0.992469 0.496234 0.868189i \(-0.334716\pi\)
0.496234 + 0.868189i \(0.334716\pi\)
\(230\) 84.1977i 0.366077i
\(231\) 21.3863 + 101.181i 0.0925814 + 0.438015i
\(232\) −54.3362 −0.234208
\(233\) 108.338i 0.464969i −0.972600 0.232484i \(-0.925315\pi\)
0.972600 0.232484i \(-0.0746854\pi\)
\(234\) 14.6998 + 33.2197i 0.0628195 + 0.141965i
\(235\) 171.382 0.729283
\(236\) 45.2456i 0.191719i
\(237\) 179.032 37.8413i 0.755411 0.159668i
\(238\) −94.6648 −0.397751
\(239\) 112.150i 0.469247i 0.972086 + 0.234623i \(0.0753857\pi\)
−0.972086 + 0.234623i \(0.924614\pi\)
\(240\) −3.51248 16.6180i −0.0146353 0.0692416i
\(241\) −246.300 −1.02199 −0.510996 0.859583i \(-0.670723\pi\)
−0.510996 + 0.859583i \(0.670723\pi\)
\(242\) 92.9361i 0.384033i
\(243\) 122.697 209.749i 0.504926 0.863163i
\(244\) 180.313 0.738987
\(245\) 39.6079i 0.161665i
\(246\) −69.4231 + 14.6737i −0.282208 + 0.0596491i
\(247\) −73.2426 −0.296529
\(248\) 181.373i 0.731343i
\(249\) −65.8381 311.489i −0.264410 1.25096i
\(250\) 12.5160 0.0500642
\(251\) 67.6636i 0.269576i −0.990874 0.134788i \(-0.956965\pi\)
0.990874 0.134788i \(-0.0430353\pi\)
\(252\) −126.450 + 55.9541i −0.501785 + 0.222040i
\(253\) 207.297 0.819354
\(254\) 191.200i 0.752756i
\(255\) 99.2227 20.9723i 0.389109 0.0822443i
\(256\) −221.770 −0.866287
\(257\) 113.536i 0.441772i 0.975300 + 0.220886i \(0.0708950\pi\)
−0.975300 + 0.220886i \(0.929105\pi\)
\(258\) 30.1237 + 142.519i 0.116759 + 0.552401i
\(259\) −124.934 −0.482370
\(260\) 22.1453i 0.0851743i
\(261\) −26.2003 59.2095i −0.100384 0.226856i
\(262\) −55.3644 −0.211315
\(263\) 380.049i 1.44505i 0.691343 + 0.722527i \(0.257019\pi\)
−0.691343 + 0.722527i \(0.742981\pi\)
\(264\) −136.625 + 28.8778i −0.517518 + 0.109386i
\(265\) 191.325 0.721982
\(266\) 127.199i 0.478193i
\(267\) 55.4437 + 262.312i 0.207654 + 0.982441i
\(268\) 128.330 0.478844
\(269\) 427.314i 1.58853i −0.607573 0.794264i \(-0.707857\pi\)
0.607573 0.794264i \(-0.292143\pi\)
\(270\) −54.8142 + 39.5393i −0.203016 + 0.146442i
\(271\) −349.256 −1.28877 −0.644383 0.764703i \(-0.722886\pi\)
−0.644383 + 0.764703i \(0.722886\pi\)
\(272\) 38.2788i 0.140731i
\(273\) 59.1947 12.5117i 0.216830 0.0458306i
\(274\) −74.2092 −0.270837
\(275\) 30.8148i 0.112054i
\(276\) 57.3183 + 271.181i 0.207675 + 0.982539i
\(277\) −43.5813 −0.157333 −0.0786666 0.996901i \(-0.525066\pi\)
−0.0786666 + 0.996901i \(0.525066\pi\)
\(278\) 13.7569i 0.0494854i
\(279\) −197.640 + 87.4560i −0.708388 + 0.313462i
\(280\) 94.4659 0.337378
\(281\) 7.43666i 0.0264650i −0.999912 0.0132325i \(-0.995788\pi\)
0.999912 0.0132325i \(-0.00421215\pi\)
\(282\) 251.838 53.2300i 0.893044 0.188759i
\(283\) 433.546 1.53196 0.765982 0.642862i \(-0.222253\pi\)
0.765982 + 0.642862i \(0.222253\pi\)
\(284\) 250.445i 0.881848i
\(285\) −28.1801 133.324i −0.0988776 0.467803i
\(286\) 24.8756 0.0869775
\(287\) 118.179i 0.411775i
\(288\) −120.349 271.974i −0.417878 0.944356i
\(289\) 60.4449 0.209152
\(290\) 18.0085i 0.0620982i
\(291\) −265.373 + 56.0908i −0.911935 + 0.192752i
\(292\) −227.613 −0.779495
\(293\) 221.584i 0.756260i −0.925753 0.378130i \(-0.876567\pi\)
0.925753 0.378130i \(-0.123433\pi\)
\(294\) 12.3020 + 58.2022i 0.0418434 + 0.197967i
\(295\) −36.8330 −0.124857
\(296\) 168.698i 0.569924i
\(297\) −97.3467 134.954i −0.327766 0.454390i
\(298\) −171.948 −0.577008
\(299\) 121.276i 0.405605i
\(300\) −40.3112 + 8.52041i −0.134371 + 0.0284014i
\(301\) 242.612 0.806019
\(302\) 214.188i 0.709232i
\(303\) −7.37707 34.9019i −0.0243468 0.115188i
\(304\) 51.4346 0.169193
\(305\) 146.787i 0.481268i
\(306\) 139.290 61.6359i 0.455196 0.201425i
\(307\) 365.472 1.19046 0.595232 0.803554i \(-0.297060\pi\)
0.595232 + 0.803554i \(0.297060\pi\)
\(308\) 94.6880i 0.307429i
\(309\) −515.050 + 108.864i −1.66683 + 0.352311i
\(310\) 60.1119 0.193909
\(311\) 353.621i 1.13705i 0.822668 + 0.568523i \(0.192485\pi\)
−0.822668 + 0.568523i \(0.807515\pi\)
\(312\) 16.8945 + 79.9303i 0.0541492 + 0.256187i
\(313\) 180.686 0.577271 0.288636 0.957439i \(-0.406798\pi\)
0.288636 + 0.957439i \(0.406798\pi\)
\(314\) 112.780i 0.359171i
\(315\) 45.5504 + 102.938i 0.144604 + 0.326789i
\(316\) 167.543 0.530199
\(317\) 500.949i 1.58028i −0.612926 0.790140i \(-0.710008\pi\)
0.612926 0.790140i \(-0.289992\pi\)
\(318\) 281.145 59.4245i 0.884104 0.186869i
\(319\) −44.3373 −0.138988
\(320\) 60.0737i 0.187730i
\(321\) −26.9746 127.620i −0.0840331 0.397571i
\(322\) −210.618 −0.654094
\(323\) 307.106i 0.950791i
\(324\) 149.627 164.662i 0.461811 0.508216i
\(325\) 18.0278 0.0554700
\(326\) 36.7811i 0.112826i
\(327\) −43.8574 + 9.26996i −0.134120 + 0.0283485i
\(328\) −159.577 −0.486516
\(329\) 428.706i 1.30306i
\(330\) 9.57088 + 45.2811i 0.0290027 + 0.137215i
\(331\) −202.405 −0.611495 −0.305747 0.952113i \(-0.598906\pi\)
−0.305747 + 0.952113i \(0.598906\pi\)
\(332\) 291.499i 0.878009i
\(333\) 183.828 81.3440i 0.552036 0.244276i
\(334\) 292.735 0.876453
\(335\) 104.469i 0.311849i
\(336\) −41.5695 + 8.78637i −0.123719 + 0.0261499i
\(337\) 158.743 0.471047 0.235523 0.971869i \(-0.424320\pi\)
0.235523 + 0.971869i \(0.424320\pi\)
\(338\) 14.5531i 0.0430565i
\(339\) −106.695 504.789i −0.314735 1.48905i
\(340\) 92.8551 0.273103
\(341\) 147.997i 0.434008i
\(342\) −82.8191 187.161i −0.242161 0.547256i
\(343\) 373.158 1.08792
\(344\) 327.597i 0.952318i
\(345\) 220.759 46.6609i 0.639881 0.135249i
\(346\) −294.846 −0.852157
\(347\) 295.158i 0.850600i −0.905052 0.425300i \(-0.860169\pi\)
0.905052 0.425300i \(-0.139831\pi\)
\(348\) −12.2594 58.0010i −0.0352283 0.166669i
\(349\) 256.538 0.735066 0.367533 0.930010i \(-0.380202\pi\)
0.367533 + 0.930010i \(0.380202\pi\)
\(350\) 31.3086i 0.0894530i
\(351\) −78.9528 + 56.9513i −0.224937 + 0.162254i
\(352\) −203.660 −0.578579
\(353\) 153.321i 0.434337i −0.976134 0.217169i \(-0.930318\pi\)
0.976134 0.217169i \(-0.0696822\pi\)
\(354\) −54.1246 + 11.4401i −0.152894 + 0.0323166i
\(355\) 203.879 0.574306
\(356\) 245.478i 0.689544i
\(357\) −52.4616 248.203i −0.146951 0.695246i
\(358\) 246.037 0.687254
\(359\) 169.182i 0.471260i −0.971843 0.235630i \(-0.924285\pi\)
0.971843 0.235630i \(-0.0757154\pi\)
\(360\) −138.997 + 61.5064i −0.386104 + 0.170851i
\(361\) 51.6525 0.143082
\(362\) 87.2757i 0.241093i
\(363\) 243.670 51.5036i 0.671268 0.141883i
\(364\) 55.3959 0.152187
\(365\) 185.292i 0.507649i
\(366\) −45.5910 215.697i −0.124566 0.589336i
\(367\) 319.768 0.871303 0.435651 0.900116i \(-0.356518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(368\) 85.1660i 0.231429i
\(369\) −76.9462 173.889i −0.208526 0.471245i
\(370\) −55.9110 −0.151111
\(371\) 478.595i 1.29001i
\(372\) −193.606 + 40.9217i −0.520446 + 0.110005i
\(373\) −68.2799 −0.183056 −0.0915280 0.995803i \(-0.529175\pi\)
−0.0915280 + 0.995803i \(0.529175\pi\)
\(374\) 104.303i 0.278885i
\(375\) 6.93618 + 32.8160i 0.0184965 + 0.0875093i
\(376\) 578.880 1.53957
\(377\) 25.9389i 0.0688034i
\(378\) 98.9065 + 137.116i 0.261657 + 0.362742i
\(379\) 361.468 0.953742 0.476871 0.878973i \(-0.341771\pi\)
0.476871 + 0.878973i \(0.341771\pi\)
\(380\) 124.768i 0.328336i
\(381\) 501.310 105.960i 1.31577 0.278110i
\(382\) −403.489 −1.05625
\(383\) 578.493i 1.51043i 0.655479 + 0.755213i \(0.272467\pi\)
−0.655479 + 0.755213i \(0.727533\pi\)
\(384\) −63.3467 299.702i −0.164965 0.780473i
\(385\) 77.0824 0.200214
\(386\) 44.6366i 0.115639i
\(387\) −356.979 + 157.964i −0.922427 + 0.408175i
\(388\) −248.343 −0.640059
\(389\) 98.5631i 0.253376i −0.991943 0.126688i \(-0.959565\pi\)
0.991943 0.126688i \(-0.0404346\pi\)
\(390\) 26.4911 5.59931i 0.0679258 0.0143572i
\(391\) −508.509 −1.30053
\(392\) 133.784i 0.341287i
\(393\) −30.6820 145.161i −0.0780713 0.369366i
\(394\) −199.799 −0.507104
\(395\) 136.391i 0.345294i
\(396\) −61.6510 139.324i −0.155684 0.351829i
\(397\) −412.726 −1.03961 −0.519806 0.854284i \(-0.673996\pi\)
−0.519806 + 0.854284i \(0.673996\pi\)
\(398\) 174.725i 0.439007i
\(399\) −333.506 + 70.4918i −0.835854 + 0.176671i
\(400\) −12.6600 −0.0316500
\(401\) 586.192i 1.46182i −0.682472 0.730912i \(-0.739095\pi\)
0.682472 0.730912i \(-0.260905\pi\)
\(402\) −32.4475 153.513i −0.0807152 0.381874i
\(403\) 86.5835 0.214847
\(404\) 32.6621i 0.0808467i
\(405\) −134.046 121.806i −0.330977 0.300756i
\(406\) 45.0477 0.110955
\(407\) 137.654i 0.338216i
\(408\) 335.147 70.8387i 0.821439 0.173624i
\(409\) −426.519 −1.04283 −0.521417 0.853302i \(-0.674596\pi\)
−0.521417 + 0.853302i \(0.674596\pi\)
\(410\) 52.8882i 0.128996i
\(411\) −41.1255 194.570i −0.100062 0.473407i
\(412\) −481.997 −1.16990
\(413\) 92.1366i 0.223091i
\(414\) 309.904 137.133i 0.748560 0.331239i
\(415\) −237.299 −0.571806
\(416\) 119.148i 0.286414i
\(417\) 36.0695 7.62386i 0.0864976 0.0182826i
\(418\) −140.150 −0.335288
\(419\) 549.373i 1.31115i 0.755128 + 0.655577i \(0.227574\pi\)
−0.755128 + 0.655577i \(0.772426\pi\)
\(420\) 21.3136 + 100.837i 0.0507466 + 0.240089i
\(421\) 437.822 1.03996 0.519978 0.854179i \(-0.325940\pi\)
0.519978 + 0.854179i \(0.325940\pi\)
\(422\) 416.180i 0.986209i
\(423\) 279.129 + 630.799i 0.659880 + 1.49125i
\(424\) 646.244 1.52416
\(425\) 75.5902i 0.177859i
\(426\) 299.592 63.3235i 0.703267 0.148647i
\(427\) −367.183 −0.859913
\(428\) 119.430i 0.279043i
\(429\) 13.7856 + 65.2216i 0.0321343 + 0.152032i
\(430\) 108.575 0.252499
\(431\) 807.375i 1.87326i 0.350320 + 0.936630i \(0.386073\pi\)
−0.350320 + 0.936630i \(0.613927\pi\)
\(432\) 55.4446 39.9940i 0.128344 0.0925787i
\(433\) −553.350 −1.27795 −0.638973 0.769230i \(-0.720640\pi\)
−0.638973 + 0.769230i \(0.720640\pi\)
\(434\) 150.368i 0.346471i
\(435\) −47.2167 + 9.97999i −0.108544 + 0.0229425i
\(436\) −41.0428 −0.0941349
\(437\) 683.275i 1.56356i
\(438\) 57.5505 + 272.279i 0.131394 + 0.621641i
\(439\) −713.121 −1.62442 −0.812211 0.583364i \(-0.801736\pi\)
−0.812211 + 0.583364i \(0.801736\pi\)
\(440\) 104.084i 0.236554i
\(441\) −145.783 + 64.5093i −0.330575 + 0.146280i
\(442\) −61.0210 −0.138057
\(443\) 69.1318i 0.156054i 0.996951 + 0.0780268i \(0.0248620\pi\)
−0.996951 + 0.0780268i \(0.975138\pi\)
\(444\) 180.076 38.0619i 0.405576 0.0857250i
\(445\) 199.835 0.449068
\(446\) 475.241i 1.06556i
\(447\) −95.2909 450.834i −0.213179 1.00858i
\(448\) 150.273 0.335430
\(449\) 782.570i 1.74292i 0.490468 + 0.871459i \(0.336826\pi\)
−0.490468 + 0.871459i \(0.663174\pi\)
\(450\) 20.3849 + 46.0675i 0.0452998 + 0.102372i
\(451\) −130.212 −0.288718
\(452\) 472.395i 1.04512i
\(453\) −561.582 + 118.699i −1.23970 + 0.262030i
\(454\) 6.59615 0.0145290
\(455\) 45.0959i 0.0991120i
\(456\) −95.1847 450.331i −0.208738 0.987569i
\(457\) 308.581 0.675231 0.337616 0.941284i \(-0.390380\pi\)
0.337616 + 0.941284i \(0.390380\pi\)
\(458\) 254.428i 0.555519i
\(459\) 238.796 + 331.048i 0.520253 + 0.721239i
\(460\) 206.592 0.449113
\(461\) 71.0626i 0.154149i 0.997025 + 0.0770744i \(0.0245579\pi\)
−0.997025 + 0.0770744i \(0.975442\pi\)
\(462\) 113.269 23.9413i 0.245172 0.0518210i
\(463\) −66.9585 −0.144619 −0.0723094 0.997382i \(-0.523037\pi\)
−0.0723094 + 0.997382i \(0.523037\pi\)
\(464\) 18.2156i 0.0392577i
\(465\) 33.3130 + 157.608i 0.0716409 + 0.338942i
\(466\) −121.281 −0.260259
\(467\) 489.508i 1.04820i 0.851658 + 0.524098i \(0.175597\pi\)
−0.851658 + 0.524098i \(0.824403\pi\)
\(468\) −81.5096 + 36.0681i −0.174166 + 0.0770685i
\(469\) −261.327 −0.557201
\(470\) 191.856i 0.408205i
\(471\) −295.698 + 62.5006i −0.627810 + 0.132698i
\(472\) −124.412 −0.263584
\(473\) 267.313i 0.565144i
\(474\) −42.3622 200.421i −0.0893718 0.422830i
\(475\) −101.569 −0.213830
\(476\) 232.274i 0.487971i
\(477\) 311.612 + 704.206i 0.653274 + 1.47632i
\(478\) 125.549 0.262654
\(479\) 208.858i 0.436028i 0.975946 + 0.218014i \(0.0699579\pi\)
−0.975946 + 0.218014i \(0.930042\pi\)
\(480\) −216.886 + 45.8423i −0.451846 + 0.0955048i
\(481\) −80.5325 −0.167427
\(482\) 275.725i 0.572044i
\(483\) −116.721 552.223i −0.241659 1.14332i
\(484\) 228.033 0.471142
\(485\) 202.167i 0.416840i
\(486\) −234.807 137.356i −0.483142 0.282624i
\(487\) 891.523 1.83064 0.915321 0.402725i \(-0.131937\pi\)
0.915321 + 0.402725i \(0.131937\pi\)
\(488\) 495.805i 1.01599i
\(489\) −96.4369 + 20.3835i −0.197213 + 0.0416840i
\(490\) 44.3398 0.0904894
\(491\) 570.781i 1.16249i 0.813729 + 0.581244i \(0.197434\pi\)
−0.813729 + 0.581244i \(0.802566\pi\)
\(492\) −36.0041 170.340i −0.0731791 0.346220i
\(493\) 108.761 0.220612
\(494\) 81.9929i 0.165978i
\(495\) −113.419 + 50.1880i −0.229129 + 0.101390i
\(496\) −60.8032 −0.122587
\(497\) 509.997i 1.02615i
\(498\) −348.702 + 73.7037i −0.700205 + 0.147999i
\(499\) 115.129 0.230720 0.115360 0.993324i \(-0.463198\pi\)
0.115360 + 0.993324i \(0.463198\pi\)
\(500\) 30.7100i 0.0614200i
\(501\) 162.229 + 767.526i 0.323810 + 1.53199i
\(502\) −75.7473 −0.150891
\(503\) 179.212i 0.356287i −0.984005 0.178143i \(-0.942991\pi\)
0.984005 0.178143i \(-0.0570091\pi\)
\(504\) 153.857 + 347.698i 0.305271 + 0.689877i
\(505\) −26.5891 −0.0526517
\(506\) 232.062i 0.458621i
\(507\) 38.1570 8.06508i 0.0752603 0.0159075i
\(508\) 469.138 0.923500
\(509\) 551.465i 1.08343i 0.840563 + 0.541714i \(0.182224\pi\)
−0.840563 + 0.541714i \(0.817776\pi\)
\(510\) −23.4778 111.077i −0.0460350 0.217798i
\(511\) 463.502 0.907049
\(512\) 160.167i 0.312826i
\(513\) 444.824 320.866i 0.867104 0.625470i
\(514\) 127.100 0.247275
\(515\) 392.377i 0.761898i
\(516\) −349.693 + 73.9132i −0.677699 + 0.143243i
\(517\) 472.355 0.913645
\(518\) 139.860i 0.270000i
\(519\) −163.399 773.062i −0.314834 1.48952i
\(520\) 60.8928 0.117102
\(521\) 462.639i 0.887982i 0.896031 + 0.443991i \(0.146438\pi\)
−0.896031 + 0.443991i \(0.853562\pi\)
\(522\) −66.2833 + 29.3304i −0.126979 + 0.0561885i
\(523\) −1005.90 −1.92332 −0.961661 0.274240i \(-0.911574\pi\)
−0.961661 + 0.274240i \(0.911574\pi\)
\(524\) 135.845i 0.259246i
\(525\) 82.0883 17.3507i 0.156359 0.0330489i
\(526\) 425.453 0.808847
\(527\) 363.044i 0.688887i
\(528\) −9.68095 45.8018i −0.0183351 0.0867459i
\(529\) −602.373 −1.13870
\(530\) 214.183i 0.404119i
\(531\) −59.9898 135.570i −0.112975 0.255311i
\(532\) −312.103 −0.586660
\(533\) 76.1786i 0.142924i
\(534\) 293.650 62.0676i 0.549906 0.116231i
\(535\) −97.2243 −0.181728
\(536\) 352.869i 0.658337i
\(537\) 136.350 + 645.088i 0.253910 + 1.20128i
\(538\) −478.365 −0.889154
\(539\) 109.166i 0.202533i
\(540\) −97.0157 134.495i −0.179659 0.249065i
\(541\) −638.887 −1.18094 −0.590469 0.807061i \(-0.701057\pi\)
−0.590469 + 0.807061i \(0.701057\pi\)
\(542\) 390.981i 0.721368i
\(543\) 228.829 48.3667i 0.421417 0.0890731i
\(544\) 499.588 0.918359
\(545\) 33.4116i 0.0613057i
\(546\) −14.0065 66.2667i −0.0256530 0.121368i
\(547\) −306.558 −0.560435 −0.280218 0.959937i \(-0.590407\pi\)
−0.280218 + 0.959937i \(0.590407\pi\)
\(548\) 182.084i 0.332269i
\(549\) 540.273 239.071i 0.984104 0.435467i
\(550\) 34.4962 0.0627204
\(551\) 146.141i 0.265229i
\(552\) 745.663 157.608i 1.35084 0.285521i
\(553\) −341.179 −0.616959
\(554\) 48.7879i 0.0880648i
\(555\) −30.9849 146.594i −0.0558287 0.264133i
\(556\) 33.7547 0.0607099
\(557\) 478.312i 0.858729i −0.903131 0.429365i \(-0.858738\pi\)
0.903131 0.429365i \(-0.141262\pi\)
\(558\) 97.9043 + 221.252i 0.175456 + 0.396509i
\(559\) 156.388 0.279764
\(560\) 31.6686i 0.0565511i
\(561\) 273.473 57.8030i 0.487475 0.103036i
\(562\) −8.32511 −0.0148134
\(563\) 336.935i 0.598463i 0.954180 + 0.299232i \(0.0967304\pi\)
−0.954180 + 0.299232i \(0.903270\pi\)
\(564\) 130.608 + 617.923i 0.231574 + 1.09561i
\(565\) −384.561 −0.680638
\(566\) 485.341i 0.857493i
\(567\) −304.695 + 335.312i −0.537381 + 0.591379i
\(568\) 688.646 1.21241
\(569\) 885.531i 1.55629i −0.628082 0.778147i \(-0.716160\pi\)
0.628082 0.778147i \(-0.283840\pi\)
\(570\) −149.252 + 31.5468i −0.261846 + 0.0553452i
\(571\) 579.884 1.01556 0.507779 0.861487i \(-0.330467\pi\)
0.507779 + 0.861487i \(0.330467\pi\)
\(572\) 61.0360i 0.106706i
\(573\) −223.607 1057.91i −0.390239 1.84627i
\(574\) 132.298 0.230485
\(575\) 168.179i 0.292486i
\(576\) −221.111 + 97.8420i −0.383874 + 0.169865i
\(577\) 326.531 0.565912 0.282956 0.959133i \(-0.408685\pi\)
0.282956 + 0.959133i \(0.408685\pi\)
\(578\) 67.6662i 0.117070i
\(579\) 117.033 24.7369i 0.202130 0.0427234i
\(580\) −44.1865 −0.0761837
\(581\) 593.598i 1.02168i
\(582\) 62.7920 + 297.077i 0.107890 + 0.510442i
\(583\) 527.323 0.904499
\(584\) 625.865i 1.07169i
\(585\) 29.3618 + 66.3542i 0.0501911 + 0.113426i
\(586\) −248.057 −0.423305
\(587\) 226.579i 0.385995i 0.981199 + 0.192998i \(0.0618210\pi\)
−0.981199 + 0.192998i \(0.938179\pi\)
\(588\) −142.808 + 30.1847i −0.242870 + 0.0513345i
\(589\) −487.815 −0.828210
\(590\) 41.2334i 0.0698871i
\(591\) −110.725 523.856i −0.187352 0.886389i
\(592\) 56.5539 0.0955303
\(593\) 725.233i 1.22299i 0.791248 + 0.611495i \(0.209432\pi\)
−0.791248 + 0.611495i \(0.790568\pi\)
\(594\) −151.077 + 108.977i −0.254338 + 0.183462i
\(595\) −189.087 −0.317793
\(596\) 421.902i 0.707889i
\(597\) 458.113 96.8295i 0.767358 0.162193i
\(598\) −135.765 −0.227031
\(599\) 910.888i 1.52068i 0.649524 + 0.760341i \(0.274968\pi\)
−0.649524 + 0.760341i \(0.725032\pi\)
\(600\) 23.4285 + 110.843i 0.0390475 + 0.184739i
\(601\) 366.944 0.610557 0.305278 0.952263i \(-0.401251\pi\)
0.305278 + 0.952263i \(0.401251\pi\)
\(602\) 271.597i 0.451157i
\(603\) 384.517 170.149i 0.637673 0.282171i
\(604\) −525.543 −0.870104
\(605\) 185.634i 0.306833i
\(606\) −39.0716 + 8.25841i −0.0644746 + 0.0136277i
\(607\) 592.791 0.976591 0.488295 0.872678i \(-0.337619\pi\)
0.488295 + 0.872678i \(0.337619\pi\)
\(608\) 671.287i 1.10409i
\(609\) 24.9647 + 118.111i 0.0409929 + 0.193943i
\(610\) −164.323 −0.269382
\(611\) 276.344i 0.452282i
\(612\) 151.233 + 341.769i 0.247113 + 0.558446i
\(613\) −1151.53 −1.87852 −0.939261 0.343202i \(-0.888488\pi\)
−0.939261 + 0.343202i \(0.888488\pi\)
\(614\) 409.135i 0.666344i
\(615\) −138.668 + 29.3097i −0.225477 + 0.0476581i
\(616\) 260.363 0.422667
\(617\) 737.148i 1.19473i −0.801970 0.597364i \(-0.796215\pi\)
0.801970 0.597364i \(-0.203785\pi\)
\(618\) 121.870 + 576.583i 0.197201 + 0.932982i
\(619\) 105.331 0.170164 0.0850819 0.996374i \(-0.472885\pi\)
0.0850819 + 0.996374i \(0.472885\pi\)
\(620\) 147.494i 0.237893i
\(621\) 531.294 + 736.545i 0.855546 + 1.18606i
\(622\) 395.868 0.636444
\(623\) 499.882i 0.802379i
\(624\) −26.7957 + 5.66370i −0.0429418 + 0.00907644i
\(625\) 25.0000 0.0400000
\(626\) 202.272i 0.323119i
\(627\) −77.6689 367.462i −0.123874 0.586063i
\(628\) −276.722 −0.440640
\(629\) 337.672i 0.536840i
\(630\) 115.236 50.9922i 0.182915 0.0809401i
\(631\) −574.340 −0.910206 −0.455103 0.890439i \(-0.650398\pi\)
−0.455103 + 0.890439i \(0.650398\pi\)
\(632\) 460.692i 0.728943i
\(633\) −1091.19 + 230.640i −1.72384 + 0.364360i
\(634\) −560.797 −0.884538
\(635\) 381.910i 0.601432i
\(636\) 145.807 + 689.832i 0.229256 + 1.08464i
\(637\) 63.8658 0.100260
\(638\) 49.6342i 0.0777966i
\(639\) 332.057 + 750.410i 0.519651 + 1.17435i
\(640\) −228.320 −0.356750
\(641\) 682.520i 1.06477i −0.846501 0.532387i \(-0.821295\pi\)
0.846501 0.532387i \(-0.178705\pi\)
\(642\) −142.867 + 30.1973i −0.222535 + 0.0470362i
\(643\) 298.380 0.464044 0.232022 0.972711i \(-0.425466\pi\)
0.232022 + 0.972711i \(0.425466\pi\)
\(644\) 516.784i 0.802459i
\(645\) 60.1702 + 284.673i 0.0932872 + 0.441354i
\(646\) 343.795 0.532191
\(647\) 40.4589i 0.0625331i 0.999511 + 0.0312666i \(0.00995408\pi\)
−0.999511 + 0.0312666i \(0.990046\pi\)
\(648\) −452.770 411.428i −0.698719 0.634919i
\(649\) −101.517 −0.156421
\(650\) 20.1815i 0.0310485i
\(651\) 394.253 83.3316i 0.605611 0.128006i
\(652\) −90.2481 −0.138417
\(653\) 927.349i 1.42014i −0.704133 0.710068i \(-0.748664\pi\)
0.704133 0.710068i \(-0.251336\pi\)
\(654\) 10.3774 + 49.0970i 0.0158676 + 0.0750719i
\(655\) −110.587 −0.168835
\(656\) 53.4964i 0.0815493i
\(657\) −681.998 + 301.785i −1.03805 + 0.459337i
\(658\) −479.924 −0.729367
\(659\) 712.210i 1.08074i −0.841426 0.540372i \(-0.818284\pi\)
0.841426 0.540372i \(-0.181716\pi\)
\(660\) −111.104 + 23.4836i −0.168339 + 0.0355812i
\(661\) 390.806 0.591234 0.295617 0.955306i \(-0.404475\pi\)
0.295617 + 0.955306i \(0.404475\pi\)
\(662\) 226.586i 0.342275i
\(663\) −33.8168 159.992i −0.0510058 0.241315i
\(664\) −801.532 −1.20713
\(665\) 254.073i 0.382064i
\(666\) −91.0622 205.790i −0.136730 0.308994i
\(667\) 241.982 0.362791
\(668\) 718.270i 1.07525i
\(669\) −1246.04 + 263.371i −1.86254 + 0.393678i
\(670\) −116.950 −0.174552
\(671\) 404.567i 0.602932i
\(672\) 114.673 + 542.535i 0.170645 + 0.807343i
\(673\) 710.679 1.05599 0.527993 0.849249i \(-0.322945\pi\)
0.527993 + 0.849249i \(0.322945\pi\)
\(674\) 177.708i 0.263661i
\(675\) −109.488 + 78.9772i −0.162204 + 0.117003i
\(676\) 35.7082 0.0528228
\(677\) 711.445i 1.05088i 0.850831 + 0.525440i \(0.176099\pi\)
−0.850831 + 0.525440i \(0.823901\pi\)
\(678\) −565.096 + 119.442i −0.833476 + 0.176168i
\(679\) 505.716 0.744796
\(680\) 255.323i 0.375475i
\(681\) 3.65547 + 17.2945i 0.00536780 + 0.0253958i
\(682\) 165.678 0.242930
\(683\) 44.5787i 0.0652690i −0.999467 0.0326345i \(-0.989610\pi\)
0.999467 0.0326345i \(-0.0103897\pi\)
\(684\) 459.229 203.209i 0.671387 0.297090i
\(685\) −148.228 −0.216391
\(686\) 417.739i 0.608948i
\(687\) 667.088 141.000i 0.971016 0.205240i
\(688\) −109.823 −0.159627
\(689\) 308.503i 0.447754i
\(690\) −52.2355 247.133i −0.0757036 0.358164i
\(691\) −324.404 −0.469471 −0.234735 0.972059i \(-0.575422\pi\)
−0.234735 + 0.972059i \(0.575422\pi\)
\(692\) 723.451i 1.04545i
\(693\) 125.544 + 283.715i 0.181160 + 0.409401i
\(694\) −330.421 −0.476110
\(695\) 27.4786i 0.0395375i
\(696\) −159.485 + 33.7097i −0.229145 + 0.0484334i
\(697\) 319.416 0.458273
\(698\) 287.187i 0.411442i
\(699\) −67.2117 317.988i −0.0961541 0.454918i
\(700\) 76.8203 0.109743
\(701\) 964.757i 1.37626i −0.725589 0.688129i \(-0.758432\pi\)
0.725589 0.688129i \(-0.241568\pi\)
\(702\) 63.7552 + 88.3853i 0.0908194 + 0.125905i
\(703\) 453.724 0.645411
\(704\) 165.573i 0.235188i
\(705\) 503.031 106.324i 0.713519 0.150814i
\(706\) −171.638 −0.243114
\(707\) 66.5119i 0.0940762i
\(708\) −28.0700 132.803i −0.0396469 0.187575i
\(709\) 1242.13 1.75195 0.875974 0.482358i \(-0.160220\pi\)
0.875974 + 0.482358i \(0.160220\pi\)
\(710\) 228.236i 0.321459i
\(711\) 502.011 222.140i 0.706063 0.312433i
\(712\) 674.989 0.948018
\(713\) 807.730i 1.13286i
\(714\) −277.856 + 58.7292i −0.389153 + 0.0822538i
\(715\) 49.6874 0.0694928
\(716\) 603.689i 0.843141i
\(717\) 69.5769 + 329.177i 0.0970389 + 0.459104i
\(718\) −189.395 −0.263781
\(719\) 711.793i 0.989977i −0.868900 0.494988i \(-0.835172\pi\)
0.868900 0.494988i \(-0.164828\pi\)
\(720\) −20.6193 46.5972i −0.0286379 0.0647184i
\(721\) 981.522 1.36133
\(722\) 57.8234i 0.0800878i
\(723\) −722.927 + 152.802i −0.999900 + 0.211345i
\(724\) 214.144 0.295779
\(725\) 35.9708i 0.0496148i
\(726\) −57.6567 272.781i −0.0794169 0.375732i
\(727\) −613.120 −0.843356 −0.421678 0.906746i \(-0.638559\pi\)
−0.421678 + 0.906746i \(0.638559\pi\)
\(728\) 152.322i 0.209233i
\(729\) 230.008 691.764i 0.315512 0.948922i
\(730\) 207.428 0.284149
\(731\) 655.732i 0.897035i
\(732\) 529.246 111.864i 0.723013 0.152820i
\(733\) −861.754 −1.17565 −0.587827 0.808987i \(-0.700016\pi\)
−0.587827 + 0.808987i \(0.700016\pi\)
\(734\) 357.971i 0.487698i
\(735\) 24.5724 + 116.255i 0.0334318 + 0.158170i
\(736\) 1111.52 1.51022
\(737\) 287.934i 0.390684i
\(738\) −194.664 + 86.1389i −0.263772 + 0.116719i
\(739\) −6.37973 −0.00863293 −0.00431646 0.999991i \(-0.501374\pi\)
−0.00431646 + 0.999991i \(0.501374\pi\)
\(740\) 137.186i 0.185387i
\(741\) −214.978 + 45.4391i −0.290119 + 0.0613213i
\(742\) −535.773 −0.722066
\(743\) 320.955i 0.431971i 0.976397 + 0.215986i \(0.0692964\pi\)
−0.976397 + 0.215986i \(0.930704\pi\)
\(744\) 112.522 + 532.357i 0.151240 + 0.715534i
\(745\) −343.456 −0.461015
\(746\) 76.4373i 0.102463i
\(747\) −386.490 873.421i −0.517389 1.16924i
\(748\) 255.923 0.342143
\(749\) 243.204i 0.324705i
\(750\) 36.7365 7.76485i 0.0489820 0.0103531i
\(751\) −250.805 −0.333962 −0.166981 0.985960i \(-0.553402\pi\)
−0.166981 + 0.985960i \(0.553402\pi\)
\(752\) 194.063i 0.258062i
\(753\) −41.9779 198.603i −0.0557475 0.263749i
\(754\) 29.0378 0.0385117
\(755\) 427.827i 0.566658i
\(756\) −336.436 + 242.682i −0.445021 + 0.321008i
\(757\) 461.728 0.609945 0.304972 0.952361i \(-0.401353\pi\)
0.304972 + 0.952361i \(0.401353\pi\)
\(758\) 404.653i 0.533843i
\(759\) 608.447 128.605i 0.801643 0.169440i
\(760\) −343.073 −0.451412
\(761\) 849.179i 1.11587i 0.829884 + 0.557937i \(0.188407\pi\)
−0.829884 + 0.557937i \(0.811593\pi\)
\(762\) −118.619 561.201i −0.155668 0.736484i
\(763\) 83.5782 0.109539
\(764\) 990.022i 1.29584i
\(765\) 278.223 123.114i 0.363690 0.160933i
\(766\) 647.606 0.845438
\(767\) 59.3914i 0.0774333i
\(768\) −650.927 + 137.584i −0.847562 + 0.179146i
\(769\) 1244.44 1.61826 0.809131 0.587628i \(-0.199938\pi\)
0.809131 + 0.587628i \(0.199938\pi\)
\(770\) 86.2914i 0.112067i
\(771\) 70.4364 + 333.244i 0.0913572 + 0.432223i
\(772\) 109.523 0.141869
\(773\) 808.965i 1.04653i 0.852171 + 0.523263i \(0.175286\pi\)
−0.852171 + 0.523263i \(0.824714\pi\)
\(774\) 176.836 + 399.628i 0.228470 + 0.516315i
\(775\) 120.070 0.154929
\(776\) 682.866i 0.879982i
\(777\) −366.700 + 77.5079i −0.471943 + 0.0997528i
\(778\) −110.338 −0.141823
\(779\) 429.194i 0.550955i
\(780\) 13.7388 + 64.9999i 0.0176138 + 0.0833331i
\(781\) 561.922 0.719491
\(782\) 569.260i 0.727954i
\(783\) −113.635 157.535i −0.145127 0.201194i
\(784\) −44.8497 −0.0572062
\(785\) 225.270i 0.286968i
\(786\) −162.503 + 34.3476i −0.206747 + 0.0436992i
\(787\) −8.98060 −0.0114112 −0.00570559 0.999984i \(-0.501816\pi\)
−0.00570559 + 0.999984i \(0.501816\pi\)
\(788\) 490.237i 0.622129i
\(789\) 235.779 + 1115.50i 0.298833 + 1.41382i
\(790\) −152.686 −0.193273
\(791\) 961.968i 1.21614i
\(792\) −383.099 + 169.521i −0.483710 + 0.214042i
\(793\) −236.686 −0.298470
\(794\) 462.034i 0.581907i
\(795\) 561.569 118.697i 0.706376 0.149304i
\(796\) 428.714 0.538585
\(797\) 413.956i 0.519392i 0.965690 + 0.259696i \(0.0836224\pi\)
−0.965690 + 0.259696i \(0.916378\pi\)
\(798\) 78.9134 + 373.350i 0.0988890 + 0.467857i
\(799\) −1158.71 −1.45020
\(800\) 165.229i 0.206536i
\(801\) 325.472 + 735.528i 0.406332 + 0.918262i
\(802\) −656.224 −0.818234
\(803\) 510.694i 0.635982i
\(804\) 376.668 79.6149i 0.468493 0.0990235i
\(805\) −420.696 −0.522604
\(806\) 96.9276i 0.120258i
\(807\) −265.102 1254.23i −0.328503 1.55419i
\(808\) −89.8106 −0.111152
\(809\) 406.692i 0.502709i 0.967895 + 0.251355i \(0.0808760\pi\)
−0.967895 + 0.251355i \(0.919124\pi\)
\(810\) −136.358 + 150.060i −0.168344 + 0.185259i
\(811\) −516.312 −0.636636 −0.318318 0.947984i \(-0.603118\pi\)
−0.318318 + 0.947984i \(0.603118\pi\)
\(812\) 110.531i 0.136122i
\(813\) −1025.12 + 216.675i −1.26091 + 0.266513i
\(814\) −154.099 −0.189311
\(815\) 73.4679i 0.0901447i
\(816\) 23.7478 + 112.354i 0.0291027 + 0.137689i
\(817\) −881.096 −1.07845
\(818\) 477.475i 0.583710i
\(819\) 165.983 73.4478i 0.202666 0.0896798i
\(820\) −129.769 −0.158255
\(821\) 1324.66i 1.61348i 0.590910 + 0.806738i \(0.298769\pi\)
−0.590910 + 0.806738i \(0.701231\pi\)
\(822\) −217.815 + 46.0387i −0.264982 + 0.0560082i
\(823\) 430.499 0.523086 0.261543 0.965192i \(-0.415769\pi\)
0.261543 + 0.965192i \(0.415769\pi\)
\(824\) 1325.34i 1.60843i
\(825\) 19.1172 + 90.4461i 0.0231724 + 0.109632i
\(826\) 103.144 0.124872
\(827\) 1237.94i 1.49691i 0.663186 + 0.748455i \(0.269204\pi\)
−0.663186 + 0.748455i \(0.730796\pi\)
\(828\) 336.476 + 760.396i 0.406372 + 0.918353i
\(829\) −540.995 −0.652588 −0.326294 0.945268i \(-0.605800\pi\)
−0.326294 + 0.945268i \(0.605800\pi\)
\(830\) 265.649i 0.320060i
\(831\) −127.918 + 27.0374i −0.153932 + 0.0325360i
\(832\) 96.8659 0.116425
\(833\) 267.788i 0.321475i
\(834\) −8.53468 40.3787i −0.0102334 0.0484157i
\(835\) 584.720 0.700263
\(836\) 343.880i 0.411339i
\(837\) −525.847 + 379.311i −0.628252 + 0.453179i
\(838\) 615.007 0.733898
\(839\) 565.476i 0.673988i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(840\) 277.272 58.6058i 0.330085 0.0697688i
\(841\) 789.244 0.938459
\(842\) 490.128i 0.582100i
\(843\) −4.61364 21.8277i −0.00547288 0.0258929i
\(844\) −1021.16 −1.20991
\(845\) 29.0689i 0.0344010i
\(846\) 706.160 312.476i 0.834705 0.369358i
\(847\) −464.358 −0.548238
\(848\) 216.646i 0.255479i
\(849\) 1272.52 268.968i 1.49885 0.316805i
\(850\) −84.6209 −0.0995540
\(851\) 751.281i 0.882822i
\(852\) 155.374 + 735.094i 0.182364 + 0.862786i
\(853\) −849.646 −0.996069 −0.498034 0.867157i \(-0.665945\pi\)
−0.498034 + 0.867157i \(0.665945\pi\)
\(854\) 411.050i 0.481323i
\(855\) −165.426 373.843i −0.193480 0.437243i
\(856\) −328.397 −0.383641
\(857\) 1021.50i 1.19195i −0.803001 0.595977i \(-0.796765\pi\)
0.803001 0.595977i \(-0.203235\pi\)
\(858\) 73.0136 15.4326i 0.0850974 0.0179867i
\(859\) 1141.94 1.32939 0.664693 0.747117i \(-0.268562\pi\)
0.664693 + 0.747117i \(0.268562\pi\)
\(860\) 266.404i 0.309773i
\(861\) 73.3175 + 346.875i 0.0851539 + 0.402874i
\(862\) 903.832 1.04853
\(863\) 504.249i 0.584298i −0.956373 0.292149i \(-0.905630\pi\)
0.956373 0.292149i \(-0.0943703\pi\)
\(864\) −521.973 723.623i −0.604135 0.837526i
\(865\) −588.937 −0.680852
\(866\) 619.459i 0.715310i
\(867\) 177.415 37.4995i 0.204631 0.0432520i
\(868\) 368.951 0.425059
\(869\) 375.916i 0.432584i
\(870\) 11.1723 + 52.8576i 0.0128417 + 0.0607559i
\(871\) −168.452 −0.193400
\(872\) 112.855i 0.129421i
\(873\) −744.112 + 329.270i −0.852362 + 0.377171i
\(874\) 764.905 0.875177
\(875\) 62.5368i 0.0714706i
\(876\) −668.077 + 141.209i −0.762645 + 0.161197i
\(877\) −1191.38 −1.35847 −0.679235 0.733920i \(-0.737688\pi\)
−0.679235 + 0.733920i \(0.737688\pi\)
\(878\) 798.318i 0.909245i
\(879\) −137.469 650.383i −0.156392 0.739912i
\(880\) −34.8929 −0.0396510
\(881\) 1179.42i 1.33873i −0.742932 0.669367i \(-0.766566\pi\)
0.742932 0.669367i \(-0.233434\pi\)
\(882\) 72.2162 + 163.200i 0.0818778 + 0.185034i
\(883\) 1650.28 1.86895 0.934474 0.356031i \(-0.115870\pi\)
0.934474 + 0.356031i \(0.115870\pi\)
\(884\) 149.724i 0.169371i
\(885\) −108.110 + 22.8508i −0.122159 + 0.0258202i
\(886\) 77.3909 0.0873486
\(887\) 482.665i 0.544154i −0.962275 0.272077i \(-0.912289\pi\)
0.962275 0.272077i \(-0.0877105\pi\)
\(888\) −104.659 495.153i −0.117859 0.557605i
\(889\) −955.336 −1.07462
\(890\) 223.709i 0.251359i
\(891\) −369.451 335.717i −0.414648 0.376787i
\(892\) −1166.08 −1.30726
\(893\) 1556.94i 1.74349i
\(894\) −504.695 + 106.675i −0.564536 + 0.119324i
\(895\) 491.443 0.549099
\(896\) 571.136i 0.637428i
\(897\) −75.2385 355.963i −0.0838779 0.396838i
\(898\) 876.064 0.975572
\(899\) 172.760i 0.192169i
\(900\) −113.033 + 50.0174i −0.125593 + 0.0555749i
\(901\) −1293.55 −1.43568
\(902\) 145.768i 0.161606i
\(903\) 712.102 150.514i 0.788596 0.166682i
\(904\) −1298.94 −1.43688
\(905\) 174.328i 0.192627i
\(906\) 132.880 + 628.674i 0.146667 + 0.693901i
\(907\) 489.647 0.539853 0.269927 0.962881i \(-0.413001\pi\)
0.269927 + 0.962881i \(0.413001\pi\)
\(908\) 16.1846i 0.0178245i
\(909\) −43.3056 97.8657i −0.0476410 0.107663i
\(910\) −50.4835 −0.0554764
\(911\) 1192.85i 1.30939i −0.755894 0.654694i \(-0.772798\pi\)
0.755894 0.654694i \(-0.227202\pi\)
\(912\) 150.968 31.9096i 0.165535 0.0349886i
\(913\) −654.035 −0.716358
\(914\) 345.447i 0.377951i
\(915\) −91.0651 430.841i −0.0995247 0.470865i
\(916\) 624.277 0.681525
\(917\) 276.630i 0.301669i
\(918\) 370.599 267.325i 0.403702 0.291204i
\(919\) −1193.58 −1.29879 −0.649393 0.760453i \(-0.724977\pi\)
−0.649393 + 0.760453i \(0.724977\pi\)
\(920\) 568.064i 0.617461i
\(921\) 1072.72 226.736i 1.16473 0.246184i
\(922\) 79.5524 0.0862825
\(923\) 328.745i 0.356170i
\(924\) 58.7436 + 277.924i 0.0635753 + 0.300783i
\(925\) −111.679 −0.120734
\(926\) 74.9580i 0.0809481i
\(927\) −1444.21 + 639.065i −1.55794 + 0.689391i
\(928\) −237.736 −0.256182
\(929\) 1014.16i 1.09167i 0.837893 + 0.545835i \(0.183788\pi\)
−0.837893 + 0.545835i \(0.816212\pi\)
\(930\) 176.438 37.2929i 0.189718 0.0400999i
\(931\) −359.823 −0.386491
\(932\) 297.581i 0.319293i
\(933\) 219.383 + 1037.93i 0.235138 + 1.11247i
\(934\) 547.989 0.586712
\(935\) 208.339i 0.222822i
\(936\) 99.1761 + 224.126i 0.105957 + 0.239451i
\(937\) 1161.83 1.23994 0.619971 0.784625i \(-0.287144\pi\)
0.619971 + 0.784625i \(0.287144\pi\)
\(938\) 292.548i 0.311884i
\(939\) 530.340 112.096i 0.564793 0.119378i
\(940\) 470.749 0.500797
\(941\) 1114.52i 1.18440i 0.805792 + 0.592199i \(0.201740\pi\)
−0.805792 + 0.592199i \(0.798260\pi\)
\(942\) 69.9675 + 331.025i 0.0742755 + 0.351407i
\(943\) 710.664 0.753620
\(944\) 41.7076i 0.0441817i
\(945\) 197.559 + 273.881i 0.209057 + 0.289821i
\(946\) 299.249 0.316331
\(947\) 530.572i 0.560266i −0.959961 0.280133i \(-0.909621\pi\)
0.959961 0.280133i \(-0.0903785\pi\)
\(948\) 491.764 103.942i 0.518738 0.109644i
\(949\) 298.774 0.314830
\(950\) 113.704i 0.119688i
\(951\) −310.784 1470.36i −0.326797 1.54612i
\(952\) −638.683 −0.670886
\(953\) 703.897i 0.738612i −0.929308 0.369306i \(-0.879595\pi\)
0.929308 0.369306i \(-0.120405\pi\)
\(954\) 788.337 348.840i 0.826349 0.365660i
\(955\) −805.943 −0.843920
\(956\) 308.052i 0.322230i
\(957\) −130.137 + 27.5064i −0.135984 + 0.0287424i
\(958\) 233.810 0.244060
\(959\) 370.789i 0.386641i
\(960\) 37.2692 + 176.325i 0.0388221 + 0.183672i
\(961\) −384.331 −0.399928
\(962\) 90.1537i 0.0937149i
\(963\) −158.349 357.850i −0.164433 0.371600i
\(964\) −676.533 −0.701798
\(965\) 89.1587i 0.0923925i
\(966\) −618.197 + 130.666i −0.639955 + 0.135265i
\(967\) 1328.41 1.37374 0.686871 0.726779i \(-0.258984\pi\)
0.686871 + 0.726779i \(0.258984\pi\)
\(968\) 627.020i 0.647748i
\(969\) 190.526 + 901.401i 0.196621 + 0.930239i
\(970\) 226.320 0.233320
\(971\) 729.823i 0.751620i 0.926697 + 0.375810i \(0.122635\pi\)
−0.926697 + 0.375810i \(0.877365\pi\)
\(972\) 337.023 576.135i 0.346731 0.592731i
\(973\) −68.7369 −0.0706443
\(974\) 998.033i 1.02467i
\(975\) 52.9142 11.1843i 0.0542710 0.0114710i
\(976\) 166.213 0.170300
\(977\) 329.511i 0.337268i 0.985679 + 0.168634i \(0.0539356\pi\)
−0.985679 + 0.168634i \(0.946064\pi\)
\(978\) 22.8187 + 107.958i 0.0233320 + 0.110387i
\(979\) 550.778 0.562592
\(980\) 108.794i 0.111015i
\(981\) −122.977 + 54.4175i −0.125359 + 0.0554714i
\(982\) 638.972 0.650685
\(983\) 1084.63i 1.10339i −0.834047 0.551693i \(-0.813982\pi\)
0.834047 0.551693i \(-0.186018\pi\)
\(984\) −468.383 + 99.0002i −0.475999 + 0.100610i
\(985\) −399.086 −0.405163
\(986\) 121.755i 0.123484i
\(987\) −265.965 1258.32i −0.269469 1.27489i
\(988\) −201.182 −0.203625
\(989\) 1458.93i 1.47516i
\(990\) 56.1840 + 126.969i 0.0567515 + 0.128252i
\(991\) −1663.40 −1.67850 −0.839251 0.543744i \(-0.817006\pi\)
−0.839251 + 0.543744i \(0.817006\pi\)
\(992\) 793.559i 0.799959i
\(993\) −594.089 + 125.570i −0.598277 + 0.126455i
\(994\) −570.926 −0.574372
\(995\) 349.001i 0.350755i
\(996\) −180.843 855.593i −0.181570 0.859029i
\(997\) −1238.84 −1.24256 −0.621282 0.783587i \(-0.713388\pi\)
−0.621282 + 0.783587i \(0.713388\pi\)
\(998\) 128.884i 0.129142i
\(999\) 489.098 352.802i 0.489588 0.353156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.3.d.a.131.12 32
3.2 odd 2 inner 195.3.d.a.131.21 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.3.d.a.131.12 32 1.1 even 1 trivial
195.3.d.a.131.21 yes 32 3.2 odd 2 inner