Properties

Label 1936.4.a.bv.1.3
Level $1936$
Weight $4$
Character 1936.1
Self dual yes
Analytic conductor $114.228$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1936,4,Mod(1,1936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1936.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,-13,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 87x^{6} + 12x^{5} + 2157x^{4} + 2939x^{3} - 5906x^{2} - 3030x + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 11 \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.92777\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.31763 q^{3} +6.10149 q^{5} +4.57313 q^{7} -21.6286 q^{9} +47.5050 q^{13} -14.1410 q^{15} -63.6175 q^{17} +18.4503 q^{19} -10.5988 q^{21} +51.9123 q^{23} -87.7719 q^{25} +112.703 q^{27} +77.1748 q^{29} -109.161 q^{31} +27.9029 q^{35} -139.985 q^{37} -110.099 q^{39} +158.382 q^{41} -26.9236 q^{43} -131.967 q^{45} +258.102 q^{47} -322.087 q^{49} +147.442 q^{51} -148.093 q^{53} -42.7609 q^{57} +725.622 q^{59} -482.462 q^{61} -98.9103 q^{63} +289.851 q^{65} +464.330 q^{67} -120.314 q^{69} -912.142 q^{71} -917.279 q^{73} +203.423 q^{75} -759.656 q^{79} +322.768 q^{81} +698.692 q^{83} -388.161 q^{85} -178.863 q^{87} -564.403 q^{89} +217.246 q^{91} +252.996 q^{93} +112.574 q^{95} +1167.45 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 13 q^{5} - 9 q^{7} + 36 q^{9} - 7 q^{13} + 66 q^{15} - 94 q^{17} - 92 q^{19} - 17 q^{21} + 46 q^{23} + 101 q^{25} - 124 q^{27} - 241 q^{29} + 265 q^{31} - 664 q^{35} - 469 q^{37} + 788 q^{39}+ \cdots - 4702 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.31763 −0.446028 −0.223014 0.974815i \(-0.571590\pi\)
−0.223014 + 0.974815i \(0.571590\pi\)
\(4\) 0 0
\(5\) 6.10149 0.545734 0.272867 0.962052i \(-0.412028\pi\)
0.272867 + 0.962052i \(0.412028\pi\)
\(6\) 0 0
\(7\) 4.57313 0.246926 0.123463 0.992349i \(-0.460600\pi\)
0.123463 + 0.992349i \(0.460600\pi\)
\(8\) 0 0
\(9\) −21.6286 −0.801059
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 47.5050 1.01350 0.506751 0.862093i \(-0.330847\pi\)
0.506751 + 0.862093i \(0.330847\pi\)
\(14\) 0 0
\(15\) −14.1410 −0.243413
\(16\) 0 0
\(17\) −63.6175 −0.907618 −0.453809 0.891099i \(-0.649935\pi\)
−0.453809 + 0.891099i \(0.649935\pi\)
\(18\) 0 0
\(19\) 18.4503 0.222778 0.111389 0.993777i \(-0.464470\pi\)
0.111389 + 0.993777i \(0.464470\pi\)
\(20\) 0 0
\(21\) −10.5988 −0.110136
\(22\) 0 0
\(23\) 51.9123 0.470629 0.235315 0.971919i \(-0.424388\pi\)
0.235315 + 0.971919i \(0.424388\pi\)
\(24\) 0 0
\(25\) −87.7719 −0.702175
\(26\) 0 0
\(27\) 112.703 0.803323
\(28\) 0 0
\(29\) 77.1748 0.494173 0.247086 0.968993i \(-0.420527\pi\)
0.247086 + 0.968993i \(0.420527\pi\)
\(30\) 0 0
\(31\) −109.161 −0.632451 −0.316226 0.948684i \(-0.602416\pi\)
−0.316226 + 0.948684i \(0.602416\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 27.9029 0.134756
\(36\) 0 0
\(37\) −139.985 −0.621983 −0.310992 0.950413i \(-0.600661\pi\)
−0.310992 + 0.950413i \(0.600661\pi\)
\(38\) 0 0
\(39\) −110.099 −0.452050
\(40\) 0 0
\(41\) 158.382 0.603297 0.301648 0.953419i \(-0.402463\pi\)
0.301648 + 0.953419i \(0.402463\pi\)
\(42\) 0 0
\(43\) −26.9236 −0.0954838 −0.0477419 0.998860i \(-0.515203\pi\)
−0.0477419 + 0.998860i \(0.515203\pi\)
\(44\) 0 0
\(45\) −131.967 −0.437165
\(46\) 0 0
\(47\) 258.102 0.801021 0.400510 0.916292i \(-0.368833\pi\)
0.400510 + 0.916292i \(0.368833\pi\)
\(48\) 0 0
\(49\) −322.087 −0.939028
\(50\) 0 0
\(51\) 147.442 0.404823
\(52\) 0 0
\(53\) −148.093 −0.383815 −0.191907 0.981413i \(-0.561467\pi\)
−0.191907 + 0.981413i \(0.561467\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −42.7609 −0.0993653
\(58\) 0 0
\(59\) 725.622 1.60115 0.800575 0.599232i \(-0.204527\pi\)
0.800575 + 0.599232i \(0.204527\pi\)
\(60\) 0 0
\(61\) −482.462 −1.01267 −0.506336 0.862336i \(-0.669000\pi\)
−0.506336 + 0.862336i \(0.669000\pi\)
\(62\) 0 0
\(63\) −98.9103 −0.197802
\(64\) 0 0
\(65\) 289.851 0.553102
\(66\) 0 0
\(67\) 464.330 0.846671 0.423335 0.905973i \(-0.360859\pi\)
0.423335 + 0.905973i \(0.360859\pi\)
\(68\) 0 0
\(69\) −120.314 −0.209914
\(70\) 0 0
\(71\) −912.142 −1.52467 −0.762333 0.647185i \(-0.775946\pi\)
−0.762333 + 0.647185i \(0.775946\pi\)
\(72\) 0 0
\(73\) −917.279 −1.47068 −0.735338 0.677700i \(-0.762977\pi\)
−0.735338 + 0.677700i \(0.762977\pi\)
\(74\) 0 0
\(75\) 203.423 0.313190
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −759.656 −1.08187 −0.540936 0.841064i \(-0.681930\pi\)
−0.540936 + 0.841064i \(0.681930\pi\)
\(80\) 0 0
\(81\) 322.768 0.442754
\(82\) 0 0
\(83\) 698.692 0.923992 0.461996 0.886882i \(-0.347133\pi\)
0.461996 + 0.886882i \(0.347133\pi\)
\(84\) 0 0
\(85\) −388.161 −0.495318
\(86\) 0 0
\(87\) −178.863 −0.220415
\(88\) 0 0
\(89\) −564.403 −0.672209 −0.336104 0.941825i \(-0.609109\pi\)
−0.336104 + 0.941825i \(0.609109\pi\)
\(90\) 0 0
\(91\) 217.246 0.250259
\(92\) 0 0
\(93\) 252.996 0.282091
\(94\) 0 0
\(95\) 112.574 0.121577
\(96\) 0 0
\(97\) 1167.45 1.22203 0.611013 0.791620i \(-0.290762\pi\)
0.611013 + 0.791620i \(0.290762\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1484.91 1.46291 0.731455 0.681890i \(-0.238842\pi\)
0.731455 + 0.681890i \(0.238842\pi\)
\(102\) 0 0
\(103\) 977.753 0.935348 0.467674 0.883901i \(-0.345092\pi\)
0.467674 + 0.883901i \(0.345092\pi\)
\(104\) 0 0
\(105\) −64.6685 −0.0601048
\(106\) 0 0
\(107\) −1222.15 −1.10421 −0.552103 0.833776i \(-0.686175\pi\)
−0.552103 + 0.833776i \(0.686175\pi\)
\(108\) 0 0
\(109\) 250.590 0.220203 0.110102 0.993920i \(-0.464882\pi\)
0.110102 + 0.993920i \(0.464882\pi\)
\(110\) 0 0
\(111\) 324.433 0.277422
\(112\) 0 0
\(113\) −2151.57 −1.79118 −0.895589 0.444883i \(-0.853245\pi\)
−0.895589 + 0.444883i \(0.853245\pi\)
\(114\) 0 0
\(115\) 316.742 0.256838
\(116\) 0 0
\(117\) −1027.47 −0.811874
\(118\) 0 0
\(119\) −290.931 −0.224114
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −367.072 −0.269087
\(124\) 0 0
\(125\) −1298.22 −0.928934
\(126\) 0 0
\(127\) −1785.31 −1.24741 −0.623703 0.781662i \(-0.714372\pi\)
−0.623703 + 0.781662i \(0.714372\pi\)
\(128\) 0 0
\(129\) 62.3989 0.0425885
\(130\) 0 0
\(131\) 127.974 0.0853522 0.0426761 0.999089i \(-0.486412\pi\)
0.0426761 + 0.999089i \(0.486412\pi\)
\(132\) 0 0
\(133\) 84.3754 0.0550096
\(134\) 0 0
\(135\) 687.656 0.438400
\(136\) 0 0
\(137\) 429.255 0.267691 0.133846 0.991002i \(-0.457267\pi\)
0.133846 + 0.991002i \(0.457267\pi\)
\(138\) 0 0
\(139\) 2437.56 1.48742 0.743708 0.668505i \(-0.233065\pi\)
0.743708 + 0.668505i \(0.233065\pi\)
\(140\) 0 0
\(141\) −598.184 −0.357278
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 470.881 0.269687
\(146\) 0 0
\(147\) 746.478 0.418833
\(148\) 0 0
\(149\) −2787.37 −1.53255 −0.766277 0.642511i \(-0.777893\pi\)
−0.766277 + 0.642511i \(0.777893\pi\)
\(150\) 0 0
\(151\) 1273.46 0.686308 0.343154 0.939279i \(-0.388505\pi\)
0.343154 + 0.939279i \(0.388505\pi\)
\(152\) 0 0
\(153\) 1375.96 0.727055
\(154\) 0 0
\(155\) −666.047 −0.345150
\(156\) 0 0
\(157\) −3651.44 −1.85616 −0.928078 0.372385i \(-0.878540\pi\)
−0.928078 + 0.372385i \(0.878540\pi\)
\(158\) 0 0
\(159\) 343.225 0.171192
\(160\) 0 0
\(161\) 237.402 0.116210
\(162\) 0 0
\(163\) 1688.61 0.811422 0.405711 0.914001i \(-0.367024\pi\)
0.405711 + 0.914001i \(0.367024\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1963.34 −0.909748 −0.454874 0.890556i \(-0.650316\pi\)
−0.454874 + 0.890556i \(0.650316\pi\)
\(168\) 0 0
\(169\) 59.7247 0.0271847
\(170\) 0 0
\(171\) −399.053 −0.178458
\(172\) 0 0
\(173\) −2482.07 −1.09080 −0.545399 0.838177i \(-0.683622\pi\)
−0.545399 + 0.838177i \(0.683622\pi\)
\(174\) 0 0
\(175\) −401.392 −0.173385
\(176\) 0 0
\(177\) −1681.72 −0.714158
\(178\) 0 0
\(179\) −445.341 −0.185957 −0.0929787 0.995668i \(-0.529639\pi\)
−0.0929787 + 0.995668i \(0.529639\pi\)
\(180\) 0 0
\(181\) 1387.76 0.569898 0.284949 0.958543i \(-0.408023\pi\)
0.284949 + 0.958543i \(0.408023\pi\)
\(182\) 0 0
\(183\) 1118.17 0.451680
\(184\) 0 0
\(185\) −854.116 −0.339437
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 515.406 0.198361
\(190\) 0 0
\(191\) 4319.98 1.63656 0.818280 0.574819i \(-0.194928\pi\)
0.818280 + 0.574819i \(0.194928\pi\)
\(192\) 0 0
\(193\) −1831.34 −0.683018 −0.341509 0.939878i \(-0.610938\pi\)
−0.341509 + 0.939878i \(0.610938\pi\)
\(194\) 0 0
\(195\) −671.768 −0.246699
\(196\) 0 0
\(197\) 720.368 0.260529 0.130264 0.991479i \(-0.458417\pi\)
0.130264 + 0.991479i \(0.458417\pi\)
\(198\) 0 0
\(199\) 1848.51 0.658478 0.329239 0.944247i \(-0.393208\pi\)
0.329239 + 0.944247i \(0.393208\pi\)
\(200\) 0 0
\(201\) −1076.15 −0.377639
\(202\) 0 0
\(203\) 352.930 0.122024
\(204\) 0 0
\(205\) 966.368 0.329239
\(206\) 0 0
\(207\) −1122.79 −0.377002
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5819.77 −1.89881 −0.949407 0.314048i \(-0.898315\pi\)
−0.949407 + 0.314048i \(0.898315\pi\)
\(212\) 0 0
\(213\) 2114.01 0.680044
\(214\) 0 0
\(215\) −164.274 −0.0521087
\(216\) 0 0
\(217\) −499.209 −0.156168
\(218\) 0 0
\(219\) 2125.91 0.655963
\(220\) 0 0
\(221\) −3022.15 −0.919872
\(222\) 0 0
\(223\) −955.771 −0.287010 −0.143505 0.989650i \(-0.545837\pi\)
−0.143505 + 0.989650i \(0.545837\pi\)
\(224\) 0 0
\(225\) 1898.38 0.562483
\(226\) 0 0
\(227\) 2061.22 0.602677 0.301339 0.953517i \(-0.402567\pi\)
0.301339 + 0.953517i \(0.402567\pi\)
\(228\) 0 0
\(229\) 4092.88 1.18107 0.590535 0.807012i \(-0.298917\pi\)
0.590535 + 0.807012i \(0.298917\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2635.96 −0.741149 −0.370574 0.928803i \(-0.620839\pi\)
−0.370574 + 0.928803i \(0.620839\pi\)
\(234\) 0 0
\(235\) 1574.80 0.437144
\(236\) 0 0
\(237\) 1760.60 0.482546
\(238\) 0 0
\(239\) −6625.08 −1.79306 −0.896529 0.442986i \(-0.853919\pi\)
−0.896529 + 0.442986i \(0.853919\pi\)
\(240\) 0 0
\(241\) −19.3078 −0.00516069 −0.00258034 0.999997i \(-0.500821\pi\)
−0.00258034 + 0.999997i \(0.500821\pi\)
\(242\) 0 0
\(243\) −3791.04 −1.00080
\(244\) 0 0
\(245\) −1965.21 −0.512459
\(246\) 0 0
\(247\) 876.480 0.225786
\(248\) 0 0
\(249\) −1619.31 −0.412127
\(250\) 0 0
\(251\) −913.662 −0.229760 −0.114880 0.993379i \(-0.536648\pi\)
−0.114880 + 0.993379i \(0.536648\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 899.614 0.220926
\(256\) 0 0
\(257\) 3024.41 0.734077 0.367038 0.930206i \(-0.380372\pi\)
0.367038 + 0.930206i \(0.380372\pi\)
\(258\) 0 0
\(259\) −640.169 −0.153584
\(260\) 0 0
\(261\) −1669.18 −0.395861
\(262\) 0 0
\(263\) 302.593 0.0709456 0.0354728 0.999371i \(-0.488706\pi\)
0.0354728 + 0.999371i \(0.488706\pi\)
\(264\) 0 0
\(265\) −903.589 −0.209460
\(266\) 0 0
\(267\) 1308.08 0.299824
\(268\) 0 0
\(269\) −5429.36 −1.23061 −0.615305 0.788289i \(-0.710967\pi\)
−0.615305 + 0.788289i \(0.710967\pi\)
\(270\) 0 0
\(271\) −4003.29 −0.897353 −0.448677 0.893694i \(-0.648104\pi\)
−0.448677 + 0.893694i \(0.648104\pi\)
\(272\) 0 0
\(273\) −503.497 −0.111623
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7343.17 −1.59281 −0.796405 0.604764i \(-0.793267\pi\)
−0.796405 + 0.604764i \(0.793267\pi\)
\(278\) 0 0
\(279\) 2361.01 0.506630
\(280\) 0 0
\(281\) −6982.61 −1.48238 −0.741188 0.671298i \(-0.765737\pi\)
−0.741188 + 0.671298i \(0.765737\pi\)
\(282\) 0 0
\(283\) −4276.66 −0.898307 −0.449154 0.893454i \(-0.648274\pi\)
−0.449154 + 0.893454i \(0.648274\pi\)
\(284\) 0 0
\(285\) −260.905 −0.0542270
\(286\) 0 0
\(287\) 724.303 0.148969
\(288\) 0 0
\(289\) −865.816 −0.176229
\(290\) 0 0
\(291\) −2705.72 −0.545058
\(292\) 0 0
\(293\) −5548.43 −1.10629 −0.553144 0.833085i \(-0.686572\pi\)
−0.553144 + 0.833085i \(0.686572\pi\)
\(294\) 0 0
\(295\) 4427.37 0.873802
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2466.10 0.476983
\(300\) 0 0
\(301\) −123.125 −0.0235774
\(302\) 0 0
\(303\) −3441.47 −0.652499
\(304\) 0 0
\(305\) −2943.74 −0.552649
\(306\) 0 0
\(307\) −7074.54 −1.31520 −0.657598 0.753369i \(-0.728428\pi\)
−0.657598 + 0.753369i \(0.728428\pi\)
\(308\) 0 0
\(309\) −2266.07 −0.417192
\(310\) 0 0
\(311\) −10632.8 −1.93868 −0.969342 0.245716i \(-0.920977\pi\)
−0.969342 + 0.245716i \(0.920977\pi\)
\(312\) 0 0
\(313\) 2550.43 0.460571 0.230286 0.973123i \(-0.426034\pi\)
0.230286 + 0.973123i \(0.426034\pi\)
\(314\) 0 0
\(315\) −603.500 −0.107947
\(316\) 0 0
\(317\) 3921.78 0.694855 0.347428 0.937707i \(-0.387055\pi\)
0.347428 + 0.937707i \(0.387055\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2832.50 0.492507
\(322\) 0 0
\(323\) −1173.76 −0.202197
\(324\) 0 0
\(325\) −4169.60 −0.711655
\(326\) 0 0
\(327\) −580.775 −0.0982169
\(328\) 0 0
\(329\) 1180.33 0.197793
\(330\) 0 0
\(331\) −7694.76 −1.27777 −0.638886 0.769302i \(-0.720604\pi\)
−0.638886 + 0.769302i \(0.720604\pi\)
\(332\) 0 0
\(333\) 3027.68 0.498245
\(334\) 0 0
\(335\) 2833.10 0.462057
\(336\) 0 0
\(337\) 11047.7 1.78578 0.892890 0.450275i \(-0.148674\pi\)
0.892890 + 0.450275i \(0.148674\pi\)
\(338\) 0 0
\(339\) 4986.55 0.798916
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −3041.52 −0.478796
\(344\) 0 0
\(345\) −734.092 −0.114557
\(346\) 0 0
\(347\) −12119.6 −1.87497 −0.937487 0.348021i \(-0.886854\pi\)
−0.937487 + 0.348021i \(0.886854\pi\)
\(348\) 0 0
\(349\) −6056.42 −0.928919 −0.464460 0.885594i \(-0.653751\pi\)
−0.464460 + 0.885594i \(0.653751\pi\)
\(350\) 0 0
\(351\) 5353.96 0.814169
\(352\) 0 0
\(353\) −1840.84 −0.277558 −0.138779 0.990323i \(-0.544318\pi\)
−0.138779 + 0.990323i \(0.544318\pi\)
\(354\) 0 0
\(355\) −5565.42 −0.832062
\(356\) 0 0
\(357\) 674.270 0.0999612
\(358\) 0 0
\(359\) −3441.99 −0.506021 −0.253010 0.967464i \(-0.581421\pi\)
−0.253010 + 0.967464i \(0.581421\pi\)
\(360\) 0 0
\(361\) −6518.59 −0.950370
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5596.77 −0.802597
\(366\) 0 0
\(367\) −4887.65 −0.695186 −0.347593 0.937645i \(-0.613001\pi\)
−0.347593 + 0.937645i \(0.613001\pi\)
\(368\) 0 0
\(369\) −3425.59 −0.483276
\(370\) 0 0
\(371\) −677.249 −0.0947736
\(372\) 0 0
\(373\) −9784.78 −1.35828 −0.679138 0.734011i \(-0.737646\pi\)
−0.679138 + 0.734011i \(0.737646\pi\)
\(374\) 0 0
\(375\) 3008.81 0.414331
\(376\) 0 0
\(377\) 3666.19 0.500845
\(378\) 0 0
\(379\) 8259.50 1.11942 0.559712 0.828687i \(-0.310912\pi\)
0.559712 + 0.828687i \(0.310912\pi\)
\(380\) 0 0
\(381\) 4137.69 0.556378
\(382\) 0 0
\(383\) −7248.34 −0.967031 −0.483515 0.875336i \(-0.660640\pi\)
−0.483515 + 0.875336i \(0.660640\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 582.319 0.0764882
\(388\) 0 0
\(389\) 11005.2 1.43441 0.717203 0.696864i \(-0.245422\pi\)
0.717203 + 0.696864i \(0.245422\pi\)
\(390\) 0 0
\(391\) −3302.53 −0.427151
\(392\) 0 0
\(393\) −296.596 −0.0380695
\(394\) 0 0
\(395\) −4635.03 −0.590414
\(396\) 0 0
\(397\) 7715.18 0.975349 0.487675 0.873025i \(-0.337845\pi\)
0.487675 + 0.873025i \(0.337845\pi\)
\(398\) 0 0
\(399\) −195.551 −0.0245358
\(400\) 0 0
\(401\) 2467.05 0.307228 0.153614 0.988131i \(-0.450909\pi\)
0.153614 + 0.988131i \(0.450909\pi\)
\(402\) 0 0
\(403\) −5185.72 −0.640990
\(404\) 0 0
\(405\) 1969.36 0.241626
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −8171.50 −0.987909 −0.493955 0.869488i \(-0.664449\pi\)
−0.493955 + 0.869488i \(0.664449\pi\)
\(410\) 0 0
\(411\) −994.854 −0.119398
\(412\) 0 0
\(413\) 3318.36 0.395365
\(414\) 0 0
\(415\) 4263.06 0.504254
\(416\) 0 0
\(417\) −5649.35 −0.663429
\(418\) 0 0
\(419\) −3563.75 −0.415514 −0.207757 0.978180i \(-0.566616\pi\)
−0.207757 + 0.978180i \(0.566616\pi\)
\(420\) 0 0
\(421\) −2252.68 −0.260781 −0.130391 0.991463i \(-0.541623\pi\)
−0.130391 + 0.991463i \(0.541623\pi\)
\(422\) 0 0
\(423\) −5582.37 −0.641665
\(424\) 0 0
\(425\) 5583.83 0.637307
\(426\) 0 0
\(427\) −2206.36 −0.250055
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10621.6 1.18706 0.593530 0.804811i \(-0.297734\pi\)
0.593530 + 0.804811i \(0.297734\pi\)
\(432\) 0 0
\(433\) 17520.7 1.94455 0.972276 0.233835i \(-0.0751276\pi\)
0.972276 + 0.233835i \(0.0751276\pi\)
\(434\) 0 0
\(435\) −1091.33 −0.120288
\(436\) 0 0
\(437\) 957.796 0.104846
\(438\) 0 0
\(439\) 13581.6 1.47657 0.738283 0.674491i \(-0.235637\pi\)
0.738283 + 0.674491i \(0.235637\pi\)
\(440\) 0 0
\(441\) 6966.28 0.752216
\(442\) 0 0
\(443\) 502.605 0.0539040 0.0269520 0.999637i \(-0.491420\pi\)
0.0269520 + 0.999637i \(0.491420\pi\)
\(444\) 0 0
\(445\) −3443.70 −0.366847
\(446\) 0 0
\(447\) 6460.10 0.683562
\(448\) 0 0
\(449\) 2526.93 0.265598 0.132799 0.991143i \(-0.457604\pi\)
0.132799 + 0.991143i \(0.457604\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −2951.41 −0.306113
\(454\) 0 0
\(455\) 1325.53 0.136575
\(456\) 0 0
\(457\) 6870.17 0.703223 0.351611 0.936146i \(-0.385634\pi\)
0.351611 + 0.936146i \(0.385634\pi\)
\(458\) 0 0
\(459\) −7169.89 −0.729110
\(460\) 0 0
\(461\) 6760.39 0.683000 0.341500 0.939882i \(-0.389065\pi\)
0.341500 + 0.939882i \(0.389065\pi\)
\(462\) 0 0
\(463\) −12796.6 −1.28447 −0.642236 0.766507i \(-0.721993\pi\)
−0.642236 + 0.766507i \(0.721993\pi\)
\(464\) 0 0
\(465\) 1543.65 0.153947
\(466\) 0 0
\(467\) 853.768 0.0845989 0.0422994 0.999105i \(-0.486532\pi\)
0.0422994 + 0.999105i \(0.486532\pi\)
\(468\) 0 0
\(469\) 2123.44 0.209065
\(470\) 0 0
\(471\) 8462.69 0.827898
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1619.41 −0.156429
\(476\) 0 0
\(477\) 3203.05 0.307458
\(478\) 0 0
\(479\) −4347.00 −0.414654 −0.207327 0.978272i \(-0.566476\pi\)
−0.207327 + 0.978272i \(0.566476\pi\)
\(480\) 0 0
\(481\) −6649.98 −0.630381
\(482\) 0 0
\(483\) −550.209 −0.0518331
\(484\) 0 0
\(485\) 7123.18 0.666901
\(486\) 0 0
\(487\) −12353.4 −1.14946 −0.574730 0.818343i \(-0.694893\pi\)
−0.574730 + 0.818343i \(0.694893\pi\)
\(488\) 0 0
\(489\) −3913.56 −0.361917
\(490\) 0 0
\(491\) −9316.08 −0.856271 −0.428135 0.903715i \(-0.640829\pi\)
−0.428135 + 0.903715i \(0.640829\pi\)
\(492\) 0 0
\(493\) −4909.67 −0.448520
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4171.34 −0.376479
\(498\) 0 0
\(499\) 2926.15 0.262510 0.131255 0.991349i \(-0.458099\pi\)
0.131255 + 0.991349i \(0.458099\pi\)
\(500\) 0 0
\(501\) 4550.30 0.405773
\(502\) 0 0
\(503\) 11343.0 1.00548 0.502742 0.864436i \(-0.332324\pi\)
0.502742 + 0.864436i \(0.332324\pi\)
\(504\) 0 0
\(505\) 9060.15 0.798359
\(506\) 0 0
\(507\) −138.420 −0.0121251
\(508\) 0 0
\(509\) 14351.9 1.24977 0.624887 0.780715i \(-0.285145\pi\)
0.624887 + 0.780715i \(0.285145\pi\)
\(510\) 0 0
\(511\) −4194.83 −0.363148
\(512\) 0 0
\(513\) 2079.40 0.178963
\(514\) 0 0
\(515\) 5965.75 0.510451
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 5752.51 0.486526
\(520\) 0 0
\(521\) 2623.27 0.220590 0.110295 0.993899i \(-0.464820\pi\)
0.110295 + 0.993899i \(0.464820\pi\)
\(522\) 0 0
\(523\) 3193.11 0.266969 0.133485 0.991051i \(-0.457383\pi\)
0.133485 + 0.991051i \(0.457383\pi\)
\(524\) 0 0
\(525\) 930.278 0.0773346
\(526\) 0 0
\(527\) 6944.58 0.574024
\(528\) 0 0
\(529\) −9472.11 −0.778508
\(530\) 0 0
\(531\) −15694.2 −1.28262
\(532\) 0 0
\(533\) 7523.95 0.611442
\(534\) 0 0
\(535\) −7456.96 −0.602603
\(536\) 0 0
\(537\) 1032.14 0.0829423
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8057.19 0.640306 0.320153 0.947366i \(-0.396266\pi\)
0.320153 + 0.947366i \(0.396266\pi\)
\(542\) 0 0
\(543\) −3216.32 −0.254191
\(544\) 0 0
\(545\) 1528.97 0.120172
\(546\) 0 0
\(547\) 1802.34 0.140882 0.0704410 0.997516i \(-0.477559\pi\)
0.0704410 + 0.997516i \(0.477559\pi\)
\(548\) 0 0
\(549\) 10435.0 0.811209
\(550\) 0 0
\(551\) 1423.90 0.110091
\(552\) 0 0
\(553\) −3474.00 −0.267142
\(554\) 0 0
\(555\) 1979.53 0.151398
\(556\) 0 0
\(557\) −858.069 −0.0652739 −0.0326369 0.999467i \(-0.510391\pi\)
−0.0326369 + 0.999467i \(0.510391\pi\)
\(558\) 0 0
\(559\) −1279.00 −0.0967730
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −11092.2 −0.830342 −0.415171 0.909743i \(-0.636278\pi\)
−0.415171 + 0.909743i \(0.636278\pi\)
\(564\) 0 0
\(565\) −13127.8 −0.977506
\(566\) 0 0
\(567\) 1476.06 0.109327
\(568\) 0 0
\(569\) 13685.6 1.00832 0.504158 0.863611i \(-0.331803\pi\)
0.504158 + 0.863611i \(0.331803\pi\)
\(570\) 0 0
\(571\) 1193.39 0.0874637 0.0437319 0.999043i \(-0.486075\pi\)
0.0437319 + 0.999043i \(0.486075\pi\)
\(572\) 0 0
\(573\) −10012.1 −0.729952
\(574\) 0 0
\(575\) −4556.44 −0.330464
\(576\) 0 0
\(577\) −12284.3 −0.886313 −0.443157 0.896444i \(-0.646141\pi\)
−0.443157 + 0.896444i \(0.646141\pi\)
\(578\) 0 0
\(579\) 4244.36 0.304645
\(580\) 0 0
\(581\) 3195.20 0.228157
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6269.07 −0.443067
\(586\) 0 0
\(587\) −17013.3 −1.19628 −0.598139 0.801392i \(-0.704093\pi\)
−0.598139 + 0.801392i \(0.704093\pi\)
\(588\) 0 0
\(589\) −2014.06 −0.140896
\(590\) 0 0
\(591\) −1669.55 −0.116203
\(592\) 0 0
\(593\) −898.618 −0.0622291 −0.0311145 0.999516i \(-0.509906\pi\)
−0.0311145 + 0.999516i \(0.509906\pi\)
\(594\) 0 0
\(595\) −1775.11 −0.122307
\(596\) 0 0
\(597\) −4284.15 −0.293700
\(598\) 0 0
\(599\) −21083.4 −1.43814 −0.719068 0.694940i \(-0.755431\pi\)
−0.719068 + 0.694940i \(0.755431\pi\)
\(600\) 0 0
\(601\) −9414.85 −0.639001 −0.319500 0.947586i \(-0.603515\pi\)
−0.319500 + 0.947586i \(0.603515\pi\)
\(602\) 0 0
\(603\) −10042.8 −0.678233
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 23396.4 1.56447 0.782233 0.622987i \(-0.214081\pi\)
0.782233 + 0.622987i \(0.214081\pi\)
\(608\) 0 0
\(609\) −817.962 −0.0544261
\(610\) 0 0
\(611\) 12261.1 0.811836
\(612\) 0 0
\(613\) −11447.9 −0.754288 −0.377144 0.926155i \(-0.623094\pi\)
−0.377144 + 0.926155i \(0.623094\pi\)
\(614\) 0 0
\(615\) −2239.68 −0.146850
\(616\) 0 0
\(617\) 18827.4 1.22847 0.614233 0.789125i \(-0.289465\pi\)
0.614233 + 0.789125i \(0.289465\pi\)
\(618\) 0 0
\(619\) 22405.3 1.45484 0.727420 0.686192i \(-0.240719\pi\)
0.727420 + 0.686192i \(0.240719\pi\)
\(620\) 0 0
\(621\) 5850.68 0.378067
\(622\) 0 0
\(623\) −2581.09 −0.165986
\(624\) 0 0
\(625\) 3050.38 0.195224
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8905.49 0.564523
\(630\) 0 0
\(631\) −2506.14 −0.158111 −0.0790554 0.996870i \(-0.525190\pi\)
−0.0790554 + 0.996870i \(0.525190\pi\)
\(632\) 0 0
\(633\) 13488.1 0.846925
\(634\) 0 0
\(635\) −10893.0 −0.680751
\(636\) 0 0
\(637\) −15300.7 −0.951706
\(638\) 0 0
\(639\) 19728.3 1.22135
\(640\) 0 0
\(641\) −1636.46 −0.100837 −0.0504185 0.998728i \(-0.516055\pi\)
−0.0504185 + 0.998728i \(0.516055\pi\)
\(642\) 0 0
\(643\) 30330.6 1.86022 0.930110 0.367282i \(-0.119712\pi\)
0.930110 + 0.367282i \(0.119712\pi\)
\(644\) 0 0
\(645\) 380.726 0.0232420
\(646\) 0 0
\(647\) 1203.77 0.0731455 0.0365727 0.999331i \(-0.488356\pi\)
0.0365727 + 0.999331i \(0.488356\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1156.98 0.0696555
\(652\) 0 0
\(653\) −19170.8 −1.14887 −0.574435 0.818550i \(-0.694778\pi\)
−0.574435 + 0.818550i \(0.694778\pi\)
\(654\) 0 0
\(655\) 780.832 0.0465796
\(656\) 0 0
\(657\) 19839.4 1.17810
\(658\) 0 0
\(659\) −2265.97 −0.133945 −0.0669723 0.997755i \(-0.521334\pi\)
−0.0669723 + 0.997755i \(0.521334\pi\)
\(660\) 0 0
\(661\) 9959.70 0.586063 0.293031 0.956103i \(-0.405336\pi\)
0.293031 + 0.956103i \(0.405336\pi\)
\(662\) 0 0
\(663\) 7004.22 0.410289
\(664\) 0 0
\(665\) 514.815 0.0300206
\(666\) 0 0
\(667\) 4006.33 0.232572
\(668\) 0 0
\(669\) 2215.12 0.128014
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 6240.28 0.357422 0.178711 0.983902i \(-0.442807\pi\)
0.178711 + 0.983902i \(0.442807\pi\)
\(674\) 0 0
\(675\) −9892.16 −0.564073
\(676\) 0 0
\(677\) −15884.6 −0.901765 −0.450882 0.892583i \(-0.648891\pi\)
−0.450882 + 0.892583i \(0.648891\pi\)
\(678\) 0 0
\(679\) 5338.90 0.301750
\(680\) 0 0
\(681\) −4777.14 −0.268811
\(682\) 0 0
\(683\) 8537.29 0.478288 0.239144 0.970984i \(-0.423133\pi\)
0.239144 + 0.970984i \(0.423133\pi\)
\(684\) 0 0
\(685\) 2619.09 0.146088
\(686\) 0 0
\(687\) −9485.78 −0.526791
\(688\) 0 0
\(689\) −7035.17 −0.388996
\(690\) 0 0
\(691\) −14166.2 −0.779897 −0.389949 0.920837i \(-0.627507\pi\)
−0.389949 + 0.920837i \(0.627507\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14872.7 0.811732
\(696\) 0 0
\(697\) −10075.9 −0.547563
\(698\) 0 0
\(699\) 6109.19 0.330573
\(700\) 0 0
\(701\) 17384.2 0.936648 0.468324 0.883557i \(-0.344858\pi\)
0.468324 + 0.883557i \(0.344858\pi\)
\(702\) 0 0
\(703\) −2582.76 −0.138564
\(704\) 0 0
\(705\) −3649.81 −0.194979
\(706\) 0 0
\(707\) 6790.67 0.361230
\(708\) 0 0
\(709\) −5210.69 −0.276011 −0.138005 0.990431i \(-0.544069\pi\)
−0.138005 + 0.990431i \(0.544069\pi\)
\(710\) 0 0
\(711\) 16430.3 0.866644
\(712\) 0 0
\(713\) −5666.83 −0.297650
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15354.5 0.799754
\(718\) 0 0
\(719\) 25865.1 1.34159 0.670795 0.741643i \(-0.265953\pi\)
0.670795 + 0.741643i \(0.265953\pi\)
\(720\) 0 0
\(721\) 4471.39 0.230961
\(722\) 0 0
\(723\) 44.7484 0.00230181
\(724\) 0 0
\(725\) −6773.78 −0.346996
\(726\) 0 0
\(727\) 29046.8 1.48182 0.740911 0.671603i \(-0.234394\pi\)
0.740911 + 0.671603i \(0.234394\pi\)
\(728\) 0 0
\(729\) 71.5012 0.00363264
\(730\) 0 0
\(731\) 1712.81 0.0866628
\(732\) 0 0
\(733\) 15552.9 0.783712 0.391856 0.920027i \(-0.371833\pi\)
0.391856 + 0.920027i \(0.371833\pi\)
\(734\) 0 0
\(735\) 4554.62 0.228571
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −38184.8 −1.90074 −0.950372 0.311114i \(-0.899298\pi\)
−0.950372 + 0.311114i \(0.899298\pi\)
\(740\) 0 0
\(741\) −2031.36 −0.100707
\(742\) 0 0
\(743\) 17912.9 0.884470 0.442235 0.896899i \(-0.354186\pi\)
0.442235 + 0.896899i \(0.354186\pi\)
\(744\) 0 0
\(745\) −17007.1 −0.836366
\(746\) 0 0
\(747\) −15111.7 −0.740172
\(748\) 0 0
\(749\) −5589.07 −0.272657
\(750\) 0 0
\(751\) 40384.2 1.96224 0.981119 0.193407i \(-0.0619537\pi\)
0.981119 + 0.193407i \(0.0619537\pi\)
\(752\) 0 0
\(753\) 2117.53 0.102480
\(754\) 0 0
\(755\) 7769.99 0.374542
\(756\) 0 0
\(757\) −27904.1 −1.33975 −0.669876 0.742473i \(-0.733653\pi\)
−0.669876 + 0.742473i \(0.733653\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20312.6 0.967583 0.483791 0.875183i \(-0.339259\pi\)
0.483791 + 0.875183i \(0.339259\pi\)
\(762\) 0 0
\(763\) 1145.98 0.0543739
\(764\) 0 0
\(765\) 8395.38 0.396779
\(766\) 0 0
\(767\) 34470.7 1.62277
\(768\) 0 0
\(769\) 19314.1 0.905701 0.452850 0.891587i \(-0.350407\pi\)
0.452850 + 0.891587i \(0.350407\pi\)
\(770\) 0 0
\(771\) −7009.47 −0.327419
\(772\) 0 0
\(773\) 4864.29 0.226334 0.113167 0.993576i \(-0.463900\pi\)
0.113167 + 0.993576i \(0.463900\pi\)
\(774\) 0 0
\(775\) 9581.31 0.444091
\(776\) 0 0
\(777\) 1483.67 0.0685026
\(778\) 0 0
\(779\) 2922.20 0.134401
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 8697.84 0.396980
\(784\) 0 0
\(785\) −22279.2 −1.01297
\(786\) 0 0
\(787\) 16349.1 0.740511 0.370255 0.928930i \(-0.379270\pi\)
0.370255 + 0.928930i \(0.379270\pi\)
\(788\) 0 0
\(789\) −701.299 −0.0316437
\(790\) 0 0
\(791\) −9839.42 −0.442288
\(792\) 0 0
\(793\) −22919.4 −1.02634
\(794\) 0 0
\(795\) 2094.19 0.0934253
\(796\) 0 0
\(797\) 4999.44 0.222195 0.111097 0.993810i \(-0.464563\pi\)
0.111097 + 0.993810i \(0.464563\pi\)
\(798\) 0 0
\(799\) −16419.8 −0.727021
\(800\) 0 0
\(801\) 12207.2 0.538479
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1448.50 0.0634199
\(806\) 0 0
\(807\) 12583.3 0.548887
\(808\) 0 0
\(809\) 3239.69 0.140793 0.0703964 0.997519i \(-0.477574\pi\)
0.0703964 + 0.997519i \(0.477574\pi\)
\(810\) 0 0
\(811\) 16989.9 0.735629 0.367814 0.929899i \(-0.380106\pi\)
0.367814 + 0.929899i \(0.380106\pi\)
\(812\) 0 0
\(813\) 9278.15 0.400245
\(814\) 0 0
\(815\) 10303.0 0.442820
\(816\) 0 0
\(817\) −496.747 −0.0212717
\(818\) 0 0
\(819\) −4698.73 −0.200473
\(820\) 0 0
\(821\) −34839.6 −1.48101 −0.740506 0.672049i \(-0.765414\pi\)
−0.740506 + 0.672049i \(0.765414\pi\)
\(822\) 0 0
\(823\) 2766.92 0.117192 0.0585958 0.998282i \(-0.481338\pi\)
0.0585958 + 0.998282i \(0.481338\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33074.5 −1.39070 −0.695352 0.718670i \(-0.744751\pi\)
−0.695352 + 0.718670i \(0.744751\pi\)
\(828\) 0 0
\(829\) −6438.40 −0.269740 −0.134870 0.990863i \(-0.543062\pi\)
−0.134870 + 0.990863i \(0.543062\pi\)
\(830\) 0 0
\(831\) 17018.8 0.710438
\(832\) 0 0
\(833\) 20490.3 0.852279
\(834\) 0 0
\(835\) −11979.3 −0.496480
\(836\) 0 0
\(837\) −12302.8 −0.508062
\(838\) 0 0
\(839\) 27754.6 1.14207 0.571034 0.820926i \(-0.306542\pi\)
0.571034 + 0.820926i \(0.306542\pi\)
\(840\) 0 0
\(841\) −18433.0 −0.755793
\(842\) 0 0
\(843\) 16183.1 0.661181
\(844\) 0 0
\(845\) 364.410 0.0148356
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 9911.72 0.400670
\(850\) 0 0
\(851\) −7266.94 −0.292723
\(852\) 0 0
\(853\) 10427.2 0.418547 0.209274 0.977857i \(-0.432890\pi\)
0.209274 + 0.977857i \(0.432890\pi\)
\(854\) 0 0
\(855\) −2434.82 −0.0973907
\(856\) 0 0
\(857\) −26763.2 −1.06676 −0.533379 0.845876i \(-0.679078\pi\)
−0.533379 + 0.845876i \(0.679078\pi\)
\(858\) 0 0
\(859\) −29313.2 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(860\) 0 0
\(861\) −1678.67 −0.0664446
\(862\) 0 0
\(863\) −46853.5 −1.84810 −0.924052 0.382267i \(-0.875143\pi\)
−0.924052 + 0.382267i \(0.875143\pi\)
\(864\) 0 0
\(865\) −15144.3 −0.595285
\(866\) 0 0
\(867\) 2006.64 0.0786033
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 22058.0 0.858102
\(872\) 0 0
\(873\) −25250.3 −0.978915
\(874\) 0 0
\(875\) −5936.95 −0.229378
\(876\) 0 0
\(877\) 36758.6 1.41534 0.707669 0.706545i \(-0.249747\pi\)
0.707669 + 0.706545i \(0.249747\pi\)
\(878\) 0 0
\(879\) 12859.2 0.493436
\(880\) 0 0
\(881\) 8902.03 0.340428 0.170214 0.985407i \(-0.445554\pi\)
0.170214 + 0.985407i \(0.445554\pi\)
\(882\) 0 0
\(883\) 46557.8 1.77440 0.887199 0.461387i \(-0.152648\pi\)
0.887199 + 0.461387i \(0.152648\pi\)
\(884\) 0 0
\(885\) −10261.0 −0.389740
\(886\) 0 0
\(887\) 17155.9 0.649422 0.324711 0.945813i \(-0.394733\pi\)
0.324711 + 0.945813i \(0.394733\pi\)
\(888\) 0 0
\(889\) −8164.44 −0.308016
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4762.04 0.178450
\(894\) 0 0
\(895\) −2717.24 −0.101483
\(896\) 0 0
\(897\) −5715.50 −0.212748
\(898\) 0 0
\(899\) −8424.52 −0.312540
\(900\) 0 0
\(901\) 9421.32 0.348357
\(902\) 0 0
\(903\) 285.358 0.0105162
\(904\) 0 0
\(905\) 8467.41 0.311013
\(906\) 0 0
\(907\) 19481.7 0.713207 0.356604 0.934256i \(-0.383935\pi\)
0.356604 + 0.934256i \(0.383935\pi\)
\(908\) 0 0
\(909\) −32116.5 −1.17188
\(910\) 0 0
\(911\) −53205.0 −1.93497 −0.967486 0.252925i \(-0.918607\pi\)
−0.967486 + 0.252925i \(0.918607\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 6822.50 0.246497
\(916\) 0 0
\(917\) 585.241 0.0210756
\(918\) 0 0
\(919\) 12297.6 0.441413 0.220707 0.975340i \(-0.429164\pi\)
0.220707 + 0.975340i \(0.429164\pi\)
\(920\) 0 0
\(921\) 16396.2 0.586615
\(922\) 0 0
\(923\) −43331.3 −1.54525
\(924\) 0 0
\(925\) 12286.7 0.436741
\(926\) 0 0
\(927\) −21147.4 −0.749269
\(928\) 0 0
\(929\) 38058.5 1.34409 0.672045 0.740510i \(-0.265416\pi\)
0.672045 + 0.740510i \(0.265416\pi\)
\(930\) 0 0
\(931\) −5942.58 −0.209195
\(932\) 0 0
\(933\) 24642.9 0.864708
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 41777.3 1.45657 0.728285 0.685275i \(-0.240318\pi\)
0.728285 + 0.685275i \(0.240318\pi\)
\(938\) 0 0
\(939\) −5910.95 −0.205428
\(940\) 0 0
\(941\) 32298.5 1.11892 0.559459 0.828858i \(-0.311009\pi\)
0.559459 + 0.828858i \(0.311009\pi\)
\(942\) 0 0
\(943\) 8222.00 0.283929
\(944\) 0 0
\(945\) 3144.74 0.108252
\(946\) 0 0
\(947\) −1027.50 −0.0352579 −0.0176290 0.999845i \(-0.505612\pi\)
−0.0176290 + 0.999845i \(0.505612\pi\)
\(948\) 0 0
\(949\) −43575.3 −1.49053
\(950\) 0 0
\(951\) −9089.24 −0.309925
\(952\) 0 0
\(953\) −36866.8 −1.25313 −0.626565 0.779369i \(-0.715540\pi\)
−0.626565 + 0.779369i \(0.715540\pi\)
\(954\) 0 0
\(955\) 26358.3 0.893126
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1963.04 0.0660998
\(960\) 0 0
\(961\) −17874.8 −0.600006
\(962\) 0 0
\(963\) 26433.5 0.884535
\(964\) 0 0
\(965\) −11173.9 −0.372746
\(966\) 0 0
\(967\) 58557.8 1.94735 0.973677 0.227931i \(-0.0731960\pi\)
0.973677 + 0.227931i \(0.0731960\pi\)
\(968\) 0 0
\(969\) 2720.34 0.0901857
\(970\) 0 0
\(971\) 17765.0 0.587131 0.293566 0.955939i \(-0.405158\pi\)
0.293566 + 0.955939i \(0.405158\pi\)
\(972\) 0 0
\(973\) 11147.2 0.367281
\(974\) 0 0
\(975\) 9663.60 0.317418
\(976\) 0 0
\(977\) −18400.0 −0.602525 −0.301263 0.953541i \(-0.597408\pi\)
−0.301263 + 0.953541i \(0.597408\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −5419.91 −0.176396
\(982\) 0 0
\(983\) −12366.3 −0.401246 −0.200623 0.979668i \(-0.564297\pi\)
−0.200623 + 0.979668i \(0.564297\pi\)
\(984\) 0 0
\(985\) 4395.32 0.142179
\(986\) 0 0
\(987\) −2735.57 −0.0882211
\(988\) 0 0
\(989\) −1397.66 −0.0449375
\(990\) 0 0
\(991\) 54570.4 1.74923 0.874615 0.484818i \(-0.161114\pi\)
0.874615 + 0.484818i \(0.161114\pi\)
\(992\) 0 0
\(993\) 17833.6 0.569922
\(994\) 0 0
\(995\) 11278.6 0.359354
\(996\) 0 0
\(997\) 40839.2 1.29728 0.648641 0.761094i \(-0.275338\pi\)
0.648641 + 0.761094i \(0.275338\pi\)
\(998\) 0 0
\(999\) −15776.7 −0.499653
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.4.a.bv.1.3 8
4.3 odd 2 968.4.a.o.1.6 8
11.7 odd 10 176.4.m.e.49.3 16
11.8 odd 10 176.4.m.e.97.3 16
11.10 odd 2 1936.4.a.bw.1.3 8
44.7 even 10 88.4.i.a.49.2 yes 16
44.19 even 10 88.4.i.a.9.2 16
44.43 even 2 968.4.a.n.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.9.2 16 44.19 even 10
88.4.i.a.49.2 yes 16 44.7 even 10
176.4.m.e.49.3 16 11.7 odd 10
176.4.m.e.97.3 16 11.8 odd 10
968.4.a.n.1.6 8 44.43 even 2
968.4.a.o.1.6 8 4.3 odd 2
1936.4.a.bv.1.3 8 1.1 even 1 trivial
1936.4.a.bw.1.3 8 11.10 odd 2