Properties

Label 176.4.m.e.97.3
Level $176$
Weight $4$
Character 176.97
Analytic conductor $10.384$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [176,4,Mod(49,176)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(176, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("176.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 60 x^{14} - 83 x^{13} + 1685 x^{12} - 14618 x^{11} + 106543 x^{10} - 521269 x^{9} + \cdots + 2025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 97.3
Root \(3.98665 + 2.89647i\) of defining polynomial
Character \(\chi\) \(=\) 176.97
Dual form 176.4.m.e.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.87500 - 1.36227i) q^{3} +(1.88546 + 5.80286i) q^{5} +(3.69974 + 2.68802i) q^{7} +(-6.68360 + 20.5700i) q^{9} +(32.6966 - 16.1844i) q^{11} +(-14.6799 + 45.1799i) q^{13} +(11.4403 + 8.31187i) q^{15} +(19.6589 + 60.5038i) q^{17} +(14.9266 - 10.8448i) q^{19} +10.5988 q^{21} +51.9123 q^{23} +(71.0089 - 51.5910i) q^{25} +(34.8272 + 107.187i) q^{27} +(62.4357 + 45.3622i) q^{29} +(-33.7328 + 103.819i) q^{31} +(39.2586 - 74.8873i) q^{33} +(-8.62246 + 26.5372i) q^{35} +(113.250 + 82.2810i) q^{37} +(34.0225 + 104.710i) q^{39} +(128.134 - 93.0948i) q^{41} +26.9236 q^{43} -131.967 q^{45} +(-208.809 + 151.708i) q^{47} +(-99.5302 - 306.322i) q^{49} +(119.283 + 86.6641i) q^{51} +(-45.7633 + 140.845i) q^{53} +(155.564 + 159.218i) q^{55} +(13.2138 - 40.6680i) q^{57} +(-587.040 - 426.510i) q^{59} +(149.089 + 458.849i) q^{61} +(-80.0201 + 58.1380i) q^{63} -289.851 q^{65} +464.330 q^{67} +(97.3358 - 70.7186i) q^{69} +(-281.867 - 867.498i) q^{71} +(-742.094 - 539.163i) q^{73} +(62.8611 - 193.467i) q^{75} +(164.473 + 28.0108i) q^{77} +(234.747 - 722.475i) q^{79} +(-261.125 - 189.718i) q^{81} +(-215.908 - 664.495i) q^{83} +(-314.029 + 228.155i) q^{85} +178.863 q^{87} -564.403 q^{89} +(-175.756 + 127.694i) q^{91} +(78.1801 + 240.613i) q^{93} +(91.0743 + 66.1694i) q^{95} +(360.762 - 1110.31i) q^{97} +(114.383 + 780.739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{3} - q^{5} + 13 q^{7} + 7 q^{9} - 83 q^{11} + 69 q^{13} - 93 q^{15} - 217 q^{17} - 126 q^{19} + 34 q^{21} + 92 q^{23} + 307 q^{25} - 158 q^{27} - 553 q^{29} - 205 q^{31} - 198 q^{33} - 7 q^{35}+ \cdots + 3265 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.87500 1.36227i 0.360844 0.262169i −0.392560 0.919726i \(-0.628410\pi\)
0.753404 + 0.657558i \(0.228410\pi\)
\(4\) 0 0
\(5\) 1.88546 + 5.80286i 0.168641 + 0.519023i 0.999286 0.0377786i \(-0.0120282\pi\)
−0.830645 + 0.556802i \(0.812028\pi\)
\(6\) 0 0
\(7\) 3.69974 + 2.68802i 0.199767 + 0.145139i 0.683172 0.730258i \(-0.260600\pi\)
−0.483405 + 0.875397i \(0.660600\pi\)
\(8\) 0 0
\(9\) −6.68360 + 20.5700i −0.247541 + 0.761852i
\(10\) 0 0
\(11\) 32.6966 16.1844i 0.896217 0.443617i
\(12\) 0 0
\(13\) −14.6799 + 45.1799i −0.313189 + 0.963897i 0.663304 + 0.748350i \(0.269153\pi\)
−0.976493 + 0.215547i \(0.930847\pi\)
\(14\) 0 0
\(15\) 11.4403 + 8.31187i 0.196925 + 0.143074i
\(16\) 0 0
\(17\) 19.6589 + 60.5038i 0.280469 + 0.863196i 0.987720 + 0.156233i \(0.0499352\pi\)
−0.707251 + 0.706963i \(0.750065\pi\)
\(18\) 0 0
\(19\) 14.9266 10.8448i 0.180231 0.130946i −0.494012 0.869455i \(-0.664470\pi\)
0.674243 + 0.738510i \(0.264470\pi\)
\(20\) 0 0
\(21\) 10.5988 0.110136
\(22\) 0 0
\(23\) 51.9123 0.470629 0.235315 0.971919i \(-0.424388\pi\)
0.235315 + 0.971919i \(0.424388\pi\)
\(24\) 0 0
\(25\) 71.0089 51.5910i 0.568071 0.412728i
\(26\) 0 0
\(27\) 34.8272 + 107.187i 0.248240 + 0.764006i
\(28\) 0 0
\(29\) 62.4357 + 45.3622i 0.399794 + 0.290467i 0.769457 0.638699i \(-0.220527\pi\)
−0.369663 + 0.929166i \(0.620527\pi\)
\(30\) 0 0
\(31\) −33.7328 + 103.819i −0.195438 + 0.601497i 0.804533 + 0.593908i \(0.202416\pi\)
−0.999971 + 0.00758885i \(0.997584\pi\)
\(32\) 0 0
\(33\) 39.2586 74.8873i 0.207092 0.395037i
\(34\) 0 0
\(35\) −8.62246 + 26.5372i −0.0416418 + 0.128160i
\(36\) 0 0
\(37\) 113.250 + 82.2810i 0.503195 + 0.365592i 0.810236 0.586104i \(-0.199339\pi\)
−0.307041 + 0.951696i \(0.599339\pi\)
\(38\) 0 0
\(39\) 34.0225 + 104.710i 0.139691 + 0.429925i
\(40\) 0 0
\(41\) 128.134 93.0948i 0.488077 0.354609i −0.316367 0.948637i \(-0.602463\pi\)
0.804444 + 0.594028i \(0.202463\pi\)
\(42\) 0 0
\(43\) 26.9236 0.0954838 0.0477419 0.998860i \(-0.484797\pi\)
0.0477419 + 0.998860i \(0.484797\pi\)
\(44\) 0 0
\(45\) −131.967 −0.437165
\(46\) 0 0
\(47\) −208.809 + 151.708i −0.648040 + 0.470828i −0.862603 0.505882i \(-0.831167\pi\)
0.214563 + 0.976710i \(0.431167\pi\)
\(48\) 0 0
\(49\) −99.5302 306.322i −0.290176 0.893068i
\(50\) 0 0
\(51\) 119.283 + 86.6641i 0.327509 + 0.237949i
\(52\) 0 0
\(53\) −45.7633 + 140.845i −0.118605 + 0.365029i −0.992682 0.120759i \(-0.961467\pi\)
0.874077 + 0.485788i \(0.161467\pi\)
\(54\) 0 0
\(55\) 155.564 + 159.218i 0.381386 + 0.390345i
\(56\) 0 0
\(57\) 13.2138 40.6680i 0.0307056 0.0945020i
\(58\) 0 0
\(59\) −587.040 426.510i −1.29536 0.941133i −0.295459 0.955355i \(-0.595473\pi\)
−0.999899 + 0.0142226i \(0.995473\pi\)
\(60\) 0 0
\(61\) 149.089 + 458.849i 0.312933 + 0.963108i 0.976597 + 0.215077i \(0.0690004\pi\)
−0.663664 + 0.748031i \(0.731000\pi\)
\(62\) 0 0
\(63\) −80.0201 + 58.1380i −0.160025 + 0.116265i
\(64\) 0 0
\(65\) −289.851 −0.553102
\(66\) 0 0
\(67\) 464.330 0.846671 0.423335 0.905973i \(-0.360859\pi\)
0.423335 + 0.905973i \(0.360859\pi\)
\(68\) 0 0
\(69\) 97.3358 70.7186i 0.169824 0.123384i
\(70\) 0 0
\(71\) −281.867 867.498i −0.471148 1.45004i −0.851083 0.525031i \(-0.824054\pi\)
0.379935 0.925013i \(-0.375946\pi\)
\(72\) 0 0
\(73\) −742.094 539.163i −1.18980 0.864442i −0.196559 0.980492i \(-0.562977\pi\)
−0.993243 + 0.116050i \(0.962977\pi\)
\(74\) 0 0
\(75\) 62.8611 193.467i 0.0967810 0.297861i
\(76\) 0 0
\(77\) 164.473 + 28.0108i 0.243421 + 0.0414562i
\(78\) 0 0
\(79\) 234.747 722.475i 0.334317 1.02892i −0.632740 0.774364i \(-0.718070\pi\)
0.967057 0.254558i \(-0.0819300\pi\)
\(80\) 0 0
\(81\) −261.125 189.718i −0.358196 0.260244i
\(82\) 0 0
\(83\) −215.908 664.495i −0.285529 0.878769i −0.986239 0.165323i \(-0.947133\pi\)
0.700710 0.713446i \(-0.252867\pi\)
\(84\) 0 0
\(85\) −314.029 + 228.155i −0.400720 + 0.291140i
\(86\) 0 0
\(87\) 178.863 0.220415
\(88\) 0 0
\(89\) −564.403 −0.672209 −0.336104 0.941825i \(-0.609109\pi\)
−0.336104 + 0.941825i \(0.609109\pi\)
\(90\) 0 0
\(91\) −175.756 + 127.694i −0.202464 + 0.147099i
\(92\) 0 0
\(93\) 78.1801 + 240.613i 0.0871709 + 0.268284i
\(94\) 0 0
\(95\) 91.0743 + 66.1694i 0.0983582 + 0.0714614i
\(96\) 0 0
\(97\) 360.762 1110.31i 0.377627 1.16222i −0.564062 0.825732i \(-0.690762\pi\)
0.941689 0.336484i \(-0.109238\pi\)
\(98\) 0 0
\(99\) 114.383 + 780.739i 0.116120 + 0.792598i
\(100\) 0 0
\(101\) −458.862 + 1412.23i −0.452064 + 1.39131i 0.422484 + 0.906370i \(0.361158\pi\)
−0.874548 + 0.484939i \(0.838842\pi\)
\(102\) 0 0
\(103\) −791.019 574.709i −0.756712 0.549784i 0.141188 0.989983i \(-0.454908\pi\)
−0.897900 + 0.440199i \(0.854908\pi\)
\(104\) 0 0
\(105\) 19.9837 + 61.5034i 0.0185734 + 0.0571631i
\(106\) 0 0
\(107\) −988.744 + 718.364i −0.893322 + 0.649037i −0.936742 0.350020i \(-0.886175\pi\)
0.0434200 + 0.999057i \(0.486175\pi\)
\(108\) 0 0
\(109\) −250.590 −0.220203 −0.110102 0.993920i \(-0.535118\pi\)
−0.110102 + 0.993920i \(0.535118\pi\)
\(110\) 0 0
\(111\) 324.433 0.277422
\(112\) 0 0
\(113\) 1740.66 1264.66i 1.44909 1.05283i 0.463051 0.886332i \(-0.346755\pi\)
0.986042 0.166496i \(-0.0532452\pi\)
\(114\) 0 0
\(115\) 97.8788 + 301.240i 0.0793673 + 0.244268i
\(116\) 0 0
\(117\) −831.237 603.929i −0.656820 0.477208i
\(118\) 0 0
\(119\) −89.9026 + 276.692i −0.0692551 + 0.213145i
\(120\) 0 0
\(121\) 807.129 1058.35i 0.606408 0.795154i
\(122\) 0 0
\(123\) 113.431 349.106i 0.0831526 0.255917i
\(124\) 0 0
\(125\) 1050.29 + 763.077i 0.751523 + 0.546014i
\(126\) 0 0
\(127\) 551.691 + 1697.93i 0.385470 + 1.18635i 0.936139 + 0.351630i \(0.114372\pi\)
−0.550670 + 0.834723i \(0.685628\pi\)
\(128\) 0 0
\(129\) 50.4817 36.6771i 0.0344548 0.0250329i
\(130\) 0 0
\(131\) −127.974 −0.0853522 −0.0426761 0.999089i \(-0.513588\pi\)
−0.0426761 + 0.999089i \(0.513588\pi\)
\(132\) 0 0
\(133\) 84.3754 0.0550096
\(134\) 0 0
\(135\) −556.326 + 404.194i −0.354673 + 0.257685i
\(136\) 0 0
\(137\) 132.647 + 408.245i 0.0827211 + 0.254589i 0.983860 0.178942i \(-0.0572674\pi\)
−0.901139 + 0.433531i \(0.857267\pi\)
\(138\) 0 0
\(139\) 1972.02 + 1432.76i 1.20334 + 0.874281i 0.994610 0.103692i \(-0.0330655\pi\)
0.208735 + 0.977972i \(0.433065\pi\)
\(140\) 0 0
\(141\) −184.849 + 568.907i −0.110405 + 0.339791i
\(142\) 0 0
\(143\) 251.231 + 1714.81i 0.146916 + 1.00280i
\(144\) 0 0
\(145\) −145.510 + 447.835i −0.0833377 + 0.256487i
\(146\) 0 0
\(147\) −603.913 438.768i −0.338843 0.246184i
\(148\) 0 0
\(149\) 861.346 + 2650.95i 0.473585 + 1.45755i 0.847856 + 0.530226i \(0.177893\pi\)
−0.374271 + 0.927319i \(0.622107\pi\)
\(150\) 0 0
\(151\) 1030.25 748.520i 0.555235 0.403402i −0.274477 0.961594i \(-0.588505\pi\)
0.829712 + 0.558192i \(0.188505\pi\)
\(152\) 0 0
\(153\) −1375.96 −0.727055
\(154\) 0 0
\(155\) −666.047 −0.345150
\(156\) 0 0
\(157\) 2954.08 2146.26i 1.50166 1.09102i 0.531949 0.846777i \(-0.321460\pi\)
0.969714 0.244245i \(-0.0785401\pi\)
\(158\) 0 0
\(159\) 106.062 + 326.427i 0.0529013 + 0.162813i
\(160\) 0 0
\(161\) 192.062 + 139.541i 0.0940162 + 0.0683068i
\(162\) 0 0
\(163\) 521.808 1605.96i 0.250743 0.771708i −0.743895 0.668296i \(-0.767024\pi\)
0.994639 0.103412i \(-0.0329761\pi\)
\(164\) 0 0
\(165\) 508.581 + 86.6147i 0.239958 + 0.0408663i
\(166\) 0 0
\(167\) 606.706 1867.25i 0.281128 0.865222i −0.706405 0.707808i \(-0.749684\pi\)
0.987533 0.157414i \(-0.0503158\pi\)
\(168\) 0 0
\(169\) −48.3183 35.1053i −0.0219929 0.0159787i
\(170\) 0 0
\(171\) 123.314 + 379.522i 0.0551466 + 0.169724i
\(172\) 0 0
\(173\) −2008.03 + 1458.92i −0.882474 + 0.641155i −0.933905 0.357522i \(-0.883622\pi\)
0.0514311 + 0.998677i \(0.483622\pi\)
\(174\) 0 0
\(175\) 401.392 0.173385
\(176\) 0 0
\(177\) −1681.72 −0.714158
\(178\) 0 0
\(179\) 360.289 261.765i 0.150443 0.109303i −0.510018 0.860164i \(-0.670361\pi\)
0.660460 + 0.750861i \(0.270361\pi\)
\(180\) 0 0
\(181\) 428.842 + 1319.84i 0.176108 + 0.542005i 0.999682 0.0252033i \(-0.00802332\pi\)
−0.823574 + 0.567209i \(0.808023\pi\)
\(182\) 0 0
\(183\) 904.618 + 657.243i 0.365417 + 0.265491i
\(184\) 0 0
\(185\) −263.936 + 812.312i −0.104892 + 0.322824i
\(186\) 0 0
\(187\) 1622.00 + 1660.10i 0.634290 + 0.649190i
\(188\) 0 0
\(189\) −159.269 + 490.180i −0.0612969 + 0.188653i
\(190\) 0 0
\(191\) −3494.94 2539.22i −1.32401 0.961946i −0.999873 0.0159345i \(-0.994928\pi\)
−0.324132 0.946012i \(-0.605072\pi\)
\(192\) 0 0
\(193\) 565.914 + 1741.70i 0.211064 + 0.649589i 0.999410 + 0.0343560i \(0.0109380\pi\)
−0.788345 + 0.615233i \(0.789062\pi\)
\(194\) 0 0
\(195\) −543.472 + 394.855i −0.199584 + 0.145006i
\(196\) 0 0
\(197\) −720.368 −0.260529 −0.130264 0.991479i \(-0.541583\pi\)
−0.130264 + 0.991479i \(0.541583\pi\)
\(198\) 0 0
\(199\) 1848.51 0.658478 0.329239 0.944247i \(-0.393208\pi\)
0.329239 + 0.944247i \(0.393208\pi\)
\(200\) 0 0
\(201\) 870.620 632.543i 0.305516 0.221971i
\(202\) 0 0
\(203\) 109.061 + 335.657i 0.0377075 + 0.116052i
\(204\) 0 0
\(205\) 781.808 + 568.017i 0.266360 + 0.193522i
\(206\) 0 0
\(207\) −346.961 + 1067.84i −0.116500 + 0.358550i
\(208\) 0 0
\(209\) 312.531 596.165i 0.103436 0.197309i
\(210\) 0 0
\(211\) 1798.41 5534.93i 0.586766 1.80588i −0.00529453 0.999986i \(-0.501685\pi\)
0.592060 0.805894i \(-0.298315\pi\)
\(212\) 0 0
\(213\) −1710.27 1242.58i −0.550167 0.399720i
\(214\) 0 0
\(215\) 50.7634 + 156.234i 0.0161025 + 0.0495583i
\(216\) 0 0
\(217\) −403.869 + 293.428i −0.126343 + 0.0917935i
\(218\) 0 0
\(219\) −2125.91 −0.655963
\(220\) 0 0
\(221\) −3022.15 −0.919872
\(222\) 0 0
\(223\) 773.235 561.788i 0.232196 0.168700i −0.465604 0.884993i \(-0.654163\pi\)
0.697799 + 0.716293i \(0.254163\pi\)
\(224\) 0 0
\(225\) 586.632 + 1805.47i 0.173817 + 0.534953i
\(226\) 0 0
\(227\) 1667.56 + 1211.55i 0.487576 + 0.354245i 0.804251 0.594289i \(-0.202567\pi\)
−0.316675 + 0.948534i \(0.602567\pi\)
\(228\) 0 0
\(229\) 1264.77 3892.56i 0.364971 1.12326i −0.585029 0.811013i \(-0.698917\pi\)
0.949999 0.312252i \(-0.101083\pi\)
\(230\) 0 0
\(231\) 346.545 171.536i 0.0987055 0.0488581i
\(232\) 0 0
\(233\) 814.557 2506.95i 0.229028 0.704874i −0.768830 0.639453i \(-0.779161\pi\)
0.997858 0.0654213i \(-0.0208391\pi\)
\(234\) 0 0
\(235\) −1274.04 925.646i −0.353657 0.256947i
\(236\) 0 0
\(237\) −544.056 1674.43i −0.149115 0.458928i
\(238\) 0 0
\(239\) −5359.80 + 3894.12i −1.45061 + 1.05393i −0.464926 + 0.885349i \(0.653919\pi\)
−0.985687 + 0.168583i \(0.946081\pi\)
\(240\) 0 0
\(241\) 19.3078 0.00516069 0.00258034 0.999997i \(-0.499179\pi\)
0.00258034 + 0.999997i \(0.499179\pi\)
\(242\) 0 0
\(243\) −3791.04 −1.00080
\(244\) 0 0
\(245\) 1589.89 1155.12i 0.414588 0.301216i
\(246\) 0 0
\(247\) 270.847 + 833.582i 0.0697716 + 0.214735i
\(248\) 0 0
\(249\) −1310.05 951.806i −0.333417 0.242242i
\(250\) 0 0
\(251\) −282.337 + 868.944i −0.0709998 + 0.218515i −0.980260 0.197714i \(-0.936648\pi\)
0.909260 + 0.416229i \(0.136648\pi\)
\(252\) 0 0
\(253\) 1697.35 840.171i 0.421786 0.208779i
\(254\) 0 0
\(255\) −277.996 + 855.584i −0.0682698 + 0.210113i
\(256\) 0 0
\(257\) −2446.80 1777.71i −0.593880 0.431479i 0.249821 0.968292i \(-0.419628\pi\)
−0.843701 + 0.536813i \(0.819628\pi\)
\(258\) 0 0
\(259\) 197.823 + 608.836i 0.0474599 + 0.146067i
\(260\) 0 0
\(261\) −1350.40 + 981.121i −0.320259 + 0.232681i
\(262\) 0 0
\(263\) −302.593 −0.0709456 −0.0354728 0.999371i \(-0.511294\pi\)
−0.0354728 + 0.999371i \(0.511294\pi\)
\(264\) 0 0
\(265\) −903.589 −0.209460
\(266\) 0 0
\(267\) −1058.26 + 768.868i −0.242563 + 0.176232i
\(268\) 0 0
\(269\) −1677.77 5163.63i −0.380279 1.17038i −0.939847 0.341595i \(-0.889033\pi\)
0.559568 0.828785i \(-0.310967\pi\)
\(270\) 0 0
\(271\) −3238.73 2353.08i −0.725974 0.527451i 0.162313 0.986739i \(-0.448104\pi\)
−0.888287 + 0.459288i \(0.848104\pi\)
\(272\) 0 0
\(273\) −155.589 + 478.854i −0.0344933 + 0.106160i
\(274\) 0 0
\(275\) 1486.78 2836.09i 0.326022 0.621900i
\(276\) 0 0
\(277\) 2269.16 6983.77i 0.492205 1.51485i −0.329062 0.944308i \(-0.606733\pi\)
0.821267 0.570544i \(-0.193267\pi\)
\(278\) 0 0
\(279\) −1910.10 1387.77i −0.409873 0.297790i
\(280\) 0 0
\(281\) 2157.75 + 6640.86i 0.458079 + 1.40982i 0.867482 + 0.497469i \(0.165737\pi\)
−0.409402 + 0.912354i \(0.634263\pi\)
\(282\) 0 0
\(283\) −3459.89 + 2513.76i −0.726746 + 0.528012i −0.888532 0.458814i \(-0.848274\pi\)
0.161786 + 0.986826i \(0.448274\pi\)
\(284\) 0 0
\(285\) 260.905 0.0542270
\(286\) 0 0
\(287\) 724.303 0.148969
\(288\) 0 0
\(289\) 700.459 508.914i 0.142573 0.103585i
\(290\) 0 0
\(291\) −836.113 2573.29i −0.168432 0.518381i
\(292\) 0 0
\(293\) −4488.77 3261.28i −0.895006 0.650260i 0.0421722 0.999110i \(-0.486572\pi\)
−0.937178 + 0.348850i \(0.886572\pi\)
\(294\) 0 0
\(295\) 1368.13 4210.68i 0.270020 0.831035i
\(296\) 0 0
\(297\) 2873.49 + 2940.99i 0.561403 + 0.574591i
\(298\) 0 0
\(299\) −762.065 + 2345.40i −0.147396 + 0.453638i
\(300\) 0 0
\(301\) 99.6101 + 72.3710i 0.0190745 + 0.0138585i
\(302\) 0 0
\(303\) 1063.47 + 3273.03i 0.201633 + 0.620563i
\(304\) 0 0
\(305\) −2381.53 + 1730.29i −0.447102 + 0.324839i
\(306\) 0 0
\(307\) 7074.54 1.31520 0.657598 0.753369i \(-0.271572\pi\)
0.657598 + 0.753369i \(0.271572\pi\)
\(308\) 0 0
\(309\) −2266.07 −0.417192
\(310\) 0 0
\(311\) 8602.11 6249.80i 1.56843 1.13953i 0.639786 0.768553i \(-0.279023\pi\)
0.928642 0.370976i \(-0.120977\pi\)
\(312\) 0 0
\(313\) 788.126 + 2425.60i 0.142324 + 0.438029i 0.996657 0.0816969i \(-0.0260339\pi\)
−0.854333 + 0.519726i \(0.826034\pi\)
\(314\) 0 0
\(315\) −488.242 354.728i −0.0873311 0.0634498i
\(316\) 0 0
\(317\) 1211.90 3729.84i 0.214722 0.660847i −0.784451 0.620191i \(-0.787055\pi\)
0.999173 0.0406561i \(-0.0129448\pi\)
\(318\) 0 0
\(319\) 2775.59 + 472.702i 0.487158 + 0.0829663i
\(320\) 0 0
\(321\) −875.291 + 2693.87i −0.152193 + 0.468402i
\(322\) 0 0
\(323\) 949.591 + 689.919i 0.163581 + 0.118849i
\(324\) 0 0
\(325\) 1288.48 + 3965.53i 0.219914 + 0.676824i
\(326\) 0 0
\(327\) −469.857 + 341.371i −0.0794592 + 0.0577305i
\(328\) 0 0
\(329\) −1180.33 −0.197793
\(330\) 0 0
\(331\) −7694.76 −1.27777 −0.638886 0.769302i \(-0.720604\pi\)
−0.638886 + 0.769302i \(0.720604\pi\)
\(332\) 0 0
\(333\) −2449.44 + 1779.62i −0.403089 + 0.292861i
\(334\) 0 0
\(335\) 875.477 + 2694.44i 0.142783 + 0.439442i
\(336\) 0 0
\(337\) 8937.80 + 6493.69i 1.44473 + 1.04966i 0.987028 + 0.160548i \(0.0513261\pi\)
0.457698 + 0.889107i \(0.348674\pi\)
\(338\) 0 0
\(339\) 1540.93 4742.49i 0.246878 0.759814i
\(340\) 0 0
\(341\) 577.301 + 3940.46i 0.0916792 + 0.625771i
\(342\) 0 0
\(343\) 939.883 2892.66i 0.147956 0.455362i
\(344\) 0 0
\(345\) 593.893 + 431.488i 0.0926786 + 0.0673349i
\(346\) 0 0
\(347\) 3745.17 + 11526.5i 0.579399 + 1.78321i 0.620687 + 0.784058i \(0.286854\pi\)
−0.0412888 + 0.999147i \(0.513146\pi\)
\(348\) 0 0
\(349\) −4899.75 + 3559.87i −0.751511 + 0.546005i −0.896295 0.443458i \(-0.853751\pi\)
0.144784 + 0.989463i \(0.453751\pi\)
\(350\) 0 0
\(351\) −5353.96 −0.814169
\(352\) 0 0
\(353\) −1840.84 −0.277558 −0.138779 0.990323i \(-0.544318\pi\)
−0.138779 + 0.990323i \(0.544318\pi\)
\(354\) 0 0
\(355\) 4502.52 3271.27i 0.673152 0.489074i
\(356\) 0 0
\(357\) 208.361 + 641.269i 0.0308897 + 0.0950688i
\(358\) 0 0
\(359\) −2784.63 2023.15i −0.409379 0.297431i 0.363971 0.931410i \(-0.381421\pi\)
−0.773350 + 0.633979i \(0.781421\pi\)
\(360\) 0 0
\(361\) −2014.35 + 6199.55i −0.293680 + 0.903856i
\(362\) 0 0
\(363\) 71.6124 3083.93i 0.0103545 0.445908i
\(364\) 0 0
\(365\) 1729.50 5322.84i 0.248016 0.763316i
\(366\) 0 0
\(367\) 3954.19 + 2872.89i 0.562418 + 0.408620i 0.832343 0.554261i \(-0.186999\pi\)
−0.269925 + 0.962881i \(0.586999\pi\)
\(368\) 0 0
\(369\) 1058.56 + 3257.93i 0.149341 + 0.459623i
\(370\) 0 0
\(371\) −547.906 + 398.077i −0.0766735 + 0.0557066i
\(372\) 0 0
\(373\) 9784.78 1.35828 0.679138 0.734011i \(-0.262354\pi\)
0.679138 + 0.734011i \(0.262354\pi\)
\(374\) 0 0
\(375\) 3008.81 0.414331
\(376\) 0 0
\(377\) −2966.01 + 2154.93i −0.405192 + 0.294389i
\(378\) 0 0
\(379\) 2552.32 + 7855.25i 0.345921 + 1.06464i 0.961089 + 0.276239i \(0.0890883\pi\)
−0.615168 + 0.788396i \(0.710912\pi\)
\(380\) 0 0
\(381\) 3347.46 + 2432.07i 0.450119 + 0.327031i
\(382\) 0 0
\(383\) −2239.86 + 6893.58i −0.298829 + 0.919701i 0.683079 + 0.730344i \(0.260640\pi\)
−0.981908 + 0.189357i \(0.939360\pi\)
\(384\) 0 0
\(385\) 147.565 + 1007.22i 0.0195340 + 0.133332i
\(386\) 0 0
\(387\) −179.946 + 553.818i −0.0236361 + 0.0727446i
\(388\) 0 0
\(389\) −8903.37 6468.68i −1.16046 0.843123i −0.170623 0.985336i \(-0.554578\pi\)
−0.989836 + 0.142213i \(0.954578\pi\)
\(390\) 0 0
\(391\) 1020.54 + 3140.89i 0.131997 + 0.406245i
\(392\) 0 0
\(393\) −239.952 + 174.335i −0.0307989 + 0.0223767i
\(394\) 0 0
\(395\) 4635.03 0.590414
\(396\) 0 0
\(397\) 7715.18 0.975349 0.487675 0.873025i \(-0.337845\pi\)
0.487675 + 0.873025i \(0.337845\pi\)
\(398\) 0 0
\(399\) 158.204 114.942i 0.0198499 0.0144218i
\(400\) 0 0
\(401\) 762.359 + 2346.30i 0.0949386 + 0.292191i 0.987238 0.159254i \(-0.0509088\pi\)
−0.892299 + 0.451445i \(0.850909\pi\)
\(402\) 0 0
\(403\) −4195.33 3048.09i −0.518572 0.376764i
\(404\) 0 0
\(405\) 608.567 1872.98i 0.0746665 0.229800i
\(406\) 0 0
\(407\) 5034.56 + 857.419i 0.613155 + 0.104424i
\(408\) 0 0
\(409\) 2525.13 7771.56i 0.305281 0.939557i −0.674292 0.738465i \(-0.735551\pi\)
0.979572 0.201092i \(-0.0644491\pi\)
\(410\) 0 0
\(411\) 804.853 + 584.760i 0.0965949 + 0.0701803i
\(412\) 0 0
\(413\) −1025.43 3155.95i −0.122175 0.376015i
\(414\) 0 0
\(415\) 3448.89 2505.76i 0.407950 0.296393i
\(416\) 0 0
\(417\) 5649.35 0.663429
\(418\) 0 0
\(419\) −3563.75 −0.415514 −0.207757 0.978180i \(-0.566616\pi\)
−0.207757 + 0.978180i \(0.566616\pi\)
\(420\) 0 0
\(421\) 1822.46 1324.09i 0.210976 0.153283i −0.477279 0.878752i \(-0.658377\pi\)
0.688255 + 0.725469i \(0.258377\pi\)
\(422\) 0 0
\(423\) −1725.05 5309.15i −0.198285 0.610260i
\(424\) 0 0
\(425\) 4517.41 + 3282.09i 0.515592 + 0.374599i
\(426\) 0 0
\(427\) −681.803 + 2098.37i −0.0772711 + 0.237816i
\(428\) 0 0
\(429\) 2807.09 + 2873.04i 0.315916 + 0.323337i
\(430\) 0 0
\(431\) −3282.25 + 10101.7i −0.366822 + 1.12896i 0.582010 + 0.813181i \(0.302266\pi\)
−0.948832 + 0.315781i \(0.897734\pi\)
\(432\) 0 0
\(433\) −14174.5 10298.4i −1.57318 1.14298i −0.924033 0.382313i \(-0.875128\pi\)
−0.649143 0.760666i \(-0.724872\pi\)
\(434\) 0 0
\(435\) 337.239 + 1037.92i 0.0371710 + 0.114401i
\(436\) 0 0
\(437\) 774.874 562.979i 0.0848220 0.0616268i
\(438\) 0 0
\(439\) −13581.6 −1.47657 −0.738283 0.674491i \(-0.764363\pi\)
−0.738283 + 0.674491i \(0.764363\pi\)
\(440\) 0 0
\(441\) 6966.28 0.752216
\(442\) 0 0
\(443\) −406.616 + 295.424i −0.0436093 + 0.0316840i −0.609376 0.792881i \(-0.708580\pi\)
0.565767 + 0.824565i \(0.308580\pi\)
\(444\) 0 0
\(445\) −1064.16 3275.15i −0.113362 0.348892i
\(446\) 0 0
\(447\) 5226.33 + 3797.15i 0.553013 + 0.401788i
\(448\) 0 0
\(449\) 780.866 2403.26i 0.0820742 0.252599i −0.901596 0.432579i \(-0.857604\pi\)
0.983670 + 0.179981i \(0.0576036\pi\)
\(450\) 0 0
\(451\) 2682.85 5117.65i 0.280112 0.534326i
\(452\) 0 0
\(453\) 912.035 2806.95i 0.0945941 0.291131i
\(454\) 0 0
\(455\) −1072.37 779.125i −0.110491 0.0802767i
\(456\) 0 0
\(457\) −2123.00 6533.92i −0.217308 0.668805i −0.998982 0.0451173i \(-0.985634\pi\)
0.781674 0.623687i \(-0.214366\pi\)
\(458\) 0 0
\(459\) −5800.56 + 4214.35i −0.589863 + 0.428560i
\(460\) 0 0
\(461\) −6760.39 −0.683000 −0.341500 0.939882i \(-0.610935\pi\)
−0.341500 + 0.939882i \(0.610935\pi\)
\(462\) 0 0
\(463\) −12796.6 −1.28447 −0.642236 0.766507i \(-0.721993\pi\)
−0.642236 + 0.766507i \(0.721993\pi\)
\(464\) 0 0
\(465\) −1248.84 + 907.336i −0.124545 + 0.0904875i
\(466\) 0 0
\(467\) 263.829 + 811.982i 0.0261425 + 0.0804583i 0.963277 0.268511i \(-0.0865317\pi\)
−0.937134 + 0.348970i \(0.886532\pi\)
\(468\) 0 0
\(469\) 1717.90 + 1248.13i 0.169137 + 0.122885i
\(470\) 0 0
\(471\) 2615.11 8048.49i 0.255835 0.787378i
\(472\) 0 0
\(473\) 880.308 435.742i 0.0855742 0.0423582i
\(474\) 0 0
\(475\) 500.427 1540.15i 0.0483392 0.148773i
\(476\) 0 0
\(477\) −2591.32 1882.70i −0.248739 0.180719i
\(478\) 0 0
\(479\) 1343.30 + 4134.24i 0.128135 + 0.394360i 0.994459 0.105123i \(-0.0335236\pi\)
−0.866324 + 0.499482i \(0.833524\pi\)
\(480\) 0 0
\(481\) −5379.95 + 3908.76i −0.509989 + 0.370528i
\(482\) 0 0
\(483\) 550.209 0.0518331
\(484\) 0 0
\(485\) 7123.18 0.666901
\(486\) 0 0
\(487\) 9994.13 7261.16i 0.929933 0.675636i −0.0160433 0.999871i \(-0.505107\pi\)
0.945976 + 0.324235i \(0.105107\pi\)
\(488\) 0 0
\(489\) −1209.36 3722.02i −0.111839 0.344204i
\(490\) 0 0
\(491\) −7536.87 5475.86i −0.692738 0.503303i 0.184821 0.982772i \(-0.440829\pi\)
−0.877559 + 0.479469i \(0.840829\pi\)
\(492\) 0 0
\(493\) −1517.17 + 4669.37i −0.138600 + 0.426568i
\(494\) 0 0
\(495\) −4314.85 + 2135.80i −0.391794 + 0.193934i
\(496\) 0 0
\(497\) 1289.01 3967.18i 0.116338 0.358053i
\(498\) 0 0
\(499\) −2367.31 1719.95i −0.212375 0.154300i 0.476512 0.879168i \(-0.341901\pi\)
−0.688888 + 0.724868i \(0.741901\pi\)
\(500\) 0 0
\(501\) −1406.12 4327.59i −0.125391 0.385913i
\(502\) 0 0
\(503\) 9176.67 6667.24i 0.813454 0.591009i −0.101376 0.994848i \(-0.532324\pi\)
0.914830 + 0.403839i \(0.132324\pi\)
\(504\) 0 0
\(505\) −9060.15 −0.798359
\(506\) 0 0
\(507\) −138.420 −0.0121251
\(508\) 0 0
\(509\) −11610.9 + 8435.81i −1.01109 + 0.734599i −0.964437 0.264312i \(-0.914855\pi\)
−0.0466516 + 0.998911i \(0.514855\pi\)
\(510\) 0 0
\(511\) −1296.27 3989.52i −0.112219 0.345374i
\(512\) 0 0
\(513\) 1682.27 + 1222.24i 0.144784 + 0.105192i
\(514\) 0 0
\(515\) 1843.52 5673.76i 0.157738 0.485468i
\(516\) 0 0
\(517\) −4372.01 + 8339.78i −0.371916 + 0.709445i
\(518\) 0 0
\(519\) −1777.62 + 5470.96i −0.150345 + 0.462714i
\(520\) 0 0
\(521\) −2122.27 1541.92i −0.178461 0.129660i 0.494969 0.868911i \(-0.335180\pi\)
−0.673430 + 0.739251i \(0.735180\pi\)
\(522\) 0 0
\(523\) −986.726 3036.83i −0.0824981 0.253903i 0.901296 0.433203i \(-0.142617\pi\)
−0.983794 + 0.179300i \(0.942617\pi\)
\(524\) 0 0
\(525\) 752.611 546.804i 0.0625650 0.0454561i
\(526\) 0 0
\(527\) −6944.58 −0.574024
\(528\) 0 0
\(529\) −9472.11 −0.778508
\(530\) 0 0
\(531\) 12696.9 9224.80i 1.03766 0.753903i
\(532\) 0 0
\(533\) 2325.03 + 7155.70i 0.188946 + 0.581516i
\(534\) 0 0
\(535\) −6032.81 4383.09i −0.487516 0.354201i
\(536\) 0 0
\(537\) 318.948 981.620i 0.0256306 0.0788828i
\(538\) 0 0
\(539\) −8211.95 8404.85i −0.656240 0.671656i
\(540\) 0 0
\(541\) −2489.81 + 7662.84i −0.197865 + 0.608967i 0.802066 + 0.597236i \(0.203734\pi\)
−0.999931 + 0.0117314i \(0.996266\pi\)
\(542\) 0 0
\(543\) 2602.06 + 1890.51i 0.205645 + 0.149409i
\(544\) 0 0
\(545\) −472.478 1454.14i −0.0371353 0.114291i
\(546\) 0 0
\(547\) 1458.12 1059.39i 0.113976 0.0828084i −0.529337 0.848412i \(-0.677559\pi\)
0.643313 + 0.765603i \(0.277559\pi\)
\(548\) 0 0
\(549\) −10435.0 −0.811209
\(550\) 0 0
\(551\) 1423.90 0.110091
\(552\) 0 0
\(553\) 2810.53 2041.97i 0.216122 0.157022i
\(554\) 0 0
\(555\) 611.707 + 1882.64i 0.0467847 + 0.143989i
\(556\) 0 0
\(557\) −694.192 504.360i −0.0528077 0.0383670i 0.561068 0.827770i \(-0.310391\pi\)
−0.613876 + 0.789403i \(0.710391\pi\)
\(558\) 0 0
\(559\) −395.234 + 1216.40i −0.0299045 + 0.0920366i
\(560\) 0 0
\(561\) 5302.75 + 903.093i 0.399077 + 0.0679655i
\(562\) 0 0
\(563\) 3427.69 10549.4i 0.256590 0.789702i −0.736923 0.675977i \(-0.763722\pi\)
0.993512 0.113725i \(-0.0362782\pi\)
\(564\) 0 0
\(565\) 10620.6 + 7716.33i 0.790819 + 0.574563i
\(566\) 0 0
\(567\) −456.127 1403.81i −0.0337840 0.103976i
\(568\) 0 0
\(569\) 11071.9 8044.22i 0.815745 0.592674i −0.0997452 0.995013i \(-0.531803\pi\)
0.915491 + 0.402339i \(0.131803\pi\)
\(570\) 0 0
\(571\) −1193.39 −0.0874637 −0.0437319 0.999043i \(-0.513925\pi\)
−0.0437319 + 0.999043i \(0.513925\pi\)
\(572\) 0 0
\(573\) −10012.1 −0.729952
\(574\) 0 0
\(575\) 3686.24 2678.21i 0.267351 0.194242i
\(576\) 0 0
\(577\) −3796.06 11683.1i −0.273886 0.842934i −0.989512 0.144451i \(-0.953859\pi\)
0.715626 0.698484i \(-0.246141\pi\)
\(578\) 0 0
\(579\) 3433.76 + 2494.77i 0.246463 + 0.179066i
\(580\) 0 0
\(581\) 987.373 3038.82i 0.0705045 0.216991i
\(582\) 0 0
\(583\) 783.192 + 5345.80i 0.0556372 + 0.379761i
\(584\) 0 0
\(585\) 1937.25 5962.24i 0.136915 0.421382i
\(586\) 0 0
\(587\) 13764.1 + 10000.2i 0.967809 + 0.703155i 0.954951 0.296763i \(-0.0959071\pi\)
0.0128580 + 0.999917i \(0.495907\pi\)
\(588\) 0 0
\(589\) 622.378 + 1915.48i 0.0435393 + 0.134000i
\(590\) 0 0
\(591\) −1350.69 + 981.335i −0.0940103 + 0.0683024i
\(592\) 0 0
\(593\) 898.618 0.0622291 0.0311145 0.999516i \(-0.490094\pi\)
0.0311145 + 0.999516i \(0.490094\pi\)
\(594\) 0 0
\(595\) −1775.11 −0.122307
\(596\) 0 0
\(597\) 3465.95 2518.16i 0.237608 0.172632i
\(598\) 0 0
\(599\) −6515.12 20051.5i −0.444409 1.36775i −0.883131 0.469126i \(-0.844569\pi\)
0.438722 0.898623i \(-0.355431\pi\)
\(600\) 0 0
\(601\) −7616.77 5533.91i −0.516963 0.375595i 0.298496 0.954411i \(-0.403515\pi\)
−0.815458 + 0.578816i \(0.803515\pi\)
\(602\) 0 0
\(603\) −3103.40 + 9551.28i −0.209586 + 0.645038i
\(604\) 0 0
\(605\) 7663.26 + 2688.18i 0.514969 + 0.180645i
\(606\) 0 0
\(607\) −7229.88 + 22251.3i −0.483446 + 1.48789i 0.350772 + 0.936461i \(0.385919\pi\)
−0.834219 + 0.551434i \(0.814081\pi\)
\(608\) 0 0
\(609\) 661.745 + 480.786i 0.0440316 + 0.0319909i
\(610\) 0 0
\(611\) −3788.89 11661.0i −0.250871 0.772102i
\(612\) 0 0
\(613\) −9261.58 + 6728.94i −0.610231 + 0.443359i −0.849496 0.527595i \(-0.823094\pi\)
0.239264 + 0.970954i \(0.423094\pi\)
\(614\) 0 0
\(615\) 2239.68 0.146850
\(616\) 0 0
\(617\) 18827.4 1.22847 0.614233 0.789125i \(-0.289465\pi\)
0.614233 + 0.789125i \(0.289465\pi\)
\(618\) 0 0
\(619\) −18126.3 + 13169.5i −1.17699 + 0.855134i −0.991829 0.127574i \(-0.959281\pi\)
−0.185162 + 0.982708i \(0.559281\pi\)
\(620\) 0 0
\(621\) 1807.96 + 5564.33i 0.116829 + 0.359563i
\(622\) 0 0
\(623\) −2088.14 1517.12i −0.134285 0.0975639i
\(624\) 0 0
\(625\) 942.620 2901.09i 0.0603277 0.185669i
\(626\) 0 0
\(627\) −226.141 1543.56i −0.0144039 0.0983157i
\(628\) 0 0
\(629\) −2751.95 + 8469.62i −0.174447 + 0.536893i
\(630\) 0 0
\(631\) 2027.51 + 1473.07i 0.127914 + 0.0929352i 0.649903 0.760017i \(-0.274810\pi\)
−0.521988 + 0.852953i \(0.674810\pi\)
\(632\) 0 0
\(633\) −4168.05 12827.9i −0.261714 0.805473i
\(634\) 0 0
\(635\) −8812.65 + 6402.77i −0.550739 + 0.400135i
\(636\) 0 0
\(637\) 15300.7 0.951706
\(638\) 0 0
\(639\) 19728.3 1.22135
\(640\) 0 0
\(641\) 1323.93 961.890i 0.0815788 0.0592704i −0.546248 0.837623i \(-0.683945\pi\)
0.627827 + 0.778353i \(0.283945\pi\)
\(642\) 0 0
\(643\) 9372.66 + 28846.1i 0.574839 + 1.76917i 0.636725 + 0.771091i \(0.280288\pi\)
−0.0618860 + 0.998083i \(0.519712\pi\)
\(644\) 0 0
\(645\) 308.014 + 223.785i 0.0188031 + 0.0136613i
\(646\) 0 0
\(647\) 371.986 1144.85i 0.0226032 0.0695655i −0.939119 0.343593i \(-0.888356\pi\)
0.961722 + 0.274028i \(0.0883559\pi\)
\(648\) 0 0
\(649\) −26097.0 4444.49i −1.57842 0.268816i
\(650\) 0 0
\(651\) −357.527 + 1100.36i −0.0215247 + 0.0662463i
\(652\) 0 0
\(653\) 15509.5 + 11268.3i 0.929456 + 0.675289i 0.945860 0.324576i \(-0.105222\pi\)
−0.0164038 + 0.999865i \(0.505222\pi\)
\(654\) 0 0
\(655\) −241.290 742.615i −0.0143939 0.0442998i
\(656\) 0 0
\(657\) 16050.5 11661.3i 0.953102 0.692469i
\(658\) 0 0
\(659\) 2265.97 0.133945 0.0669723 0.997755i \(-0.478666\pi\)
0.0669723 + 0.997755i \(0.478666\pi\)
\(660\) 0 0
\(661\) 9959.70 0.586063 0.293031 0.956103i \(-0.405336\pi\)
0.293031 + 0.956103i \(0.405336\pi\)
\(662\) 0 0
\(663\) −5666.54 + 4116.98i −0.331931 + 0.241162i
\(664\) 0 0
\(665\) 159.087 + 489.619i 0.00927687 + 0.0285513i
\(666\) 0 0
\(667\) 3241.19 + 2354.86i 0.188155 + 0.136702i
\(668\) 0 0
\(669\) 684.511 2106.71i 0.0395586 0.121749i
\(670\) 0 0
\(671\) 12300.9 + 12589.9i 0.707706 + 0.724331i
\(672\) 0 0
\(673\) −1928.35 + 5934.85i −0.110449 + 0.339928i −0.990971 0.134078i \(-0.957193\pi\)
0.880521 + 0.474007i \(0.157193\pi\)
\(674\) 0 0
\(675\) 8002.93 + 5814.47i 0.456345 + 0.331554i
\(676\) 0 0
\(677\) 4908.61 + 15107.2i 0.278661 + 0.857629i 0.988228 + 0.152991i \(0.0488906\pi\)
−0.709567 + 0.704638i \(0.751109\pi\)
\(678\) 0 0
\(679\) 4319.26 3138.12i 0.244121 0.177364i
\(680\) 0 0
\(681\) 4777.14 0.268811
\(682\) 0 0
\(683\) 8537.29 0.478288 0.239144 0.970984i \(-0.423133\pi\)
0.239144 + 0.970984i \(0.423133\pi\)
\(684\) 0 0
\(685\) −2118.89 + 1539.46i −0.118188 + 0.0858684i
\(686\) 0 0
\(687\) −2931.27 9021.51i −0.162787 0.501008i
\(688\) 0 0
\(689\) −5691.57 4135.17i −0.314705 0.228646i
\(690\) 0 0
\(691\) −4377.61 + 13472.9i −0.241002 + 0.741727i 0.755267 + 0.655417i \(0.227507\pi\)
−0.996268 + 0.0863091i \(0.972493\pi\)
\(692\) 0 0
\(693\) −1675.45 + 3195.99i −0.0918400 + 0.175189i
\(694\) 0 0
\(695\) −4595.92 + 14144.8i −0.250839 + 0.772003i
\(696\) 0 0
\(697\) 8151.56 + 5922.46i 0.442988 + 0.321849i
\(698\) 0 0
\(699\) −1887.84 5810.18i −0.102153 0.314394i
\(700\) 0 0
\(701\) 14064.1 10218.1i 0.757764 0.550548i −0.140459 0.990086i \(-0.544858\pi\)
0.898224 + 0.439538i \(0.144858\pi\)
\(702\) 0 0
\(703\) 2582.76 0.138564
\(704\) 0 0
\(705\) −3649.81 −0.194979
\(706\) 0 0
\(707\) −5493.77 + 3991.46i −0.292241 + 0.212326i
\(708\) 0 0
\(709\) −1610.19 4955.66i −0.0852920 0.262502i 0.899310 0.437311i \(-0.144069\pi\)
−0.984602 + 0.174809i \(0.944069\pi\)
\(710\) 0 0
\(711\) 13292.4 + 9657.48i 0.701129 + 0.509400i
\(712\) 0 0
\(713\) −1751.15 + 5389.47i −0.0919789 + 0.283082i
\(714\) 0 0
\(715\) −9477.13 + 4691.07i −0.495699 + 0.245365i
\(716\) 0 0
\(717\) −4744.80 + 14603.0i −0.247138 + 0.760611i
\(718\) 0 0
\(719\) −20925.3 15203.1i −1.08537 0.788567i −0.106758 0.994285i \(-0.534047\pi\)
−0.978611 + 0.205718i \(0.934047\pi\)
\(720\) 0 0
\(721\) −1381.73 4252.54i −0.0713710 0.219657i
\(722\) 0 0
\(723\) 36.2022 26.3024i 0.00186220 0.00135297i
\(724\) 0 0
\(725\) 6773.78 0.346996
\(726\) 0 0
\(727\) 29046.8 1.48182 0.740911 0.671603i \(-0.234394\pi\)
0.740911 + 0.671603i \(0.234394\pi\)
\(728\) 0 0
\(729\) −57.8457 + 42.0273i −0.00293887 + 0.00213521i
\(730\) 0 0
\(731\) 529.287 + 1628.98i 0.0267803 + 0.0824213i
\(732\) 0 0
\(733\) 12582.6 + 9141.78i 0.634036 + 0.460654i 0.857796 0.513990i \(-0.171833\pi\)
−0.223760 + 0.974644i \(0.571833\pi\)
\(734\) 0 0
\(735\) 1407.46 4331.70i 0.0706324 0.217384i
\(736\) 0 0
\(737\) 15182.0 7514.91i 0.758800 0.375598i
\(738\) 0 0
\(739\) 11799.8 36315.9i 0.587363 1.80772i −0.00220606 0.999998i \(-0.500702\pi\)
0.589569 0.807718i \(-0.299298\pi\)
\(740\) 0 0
\(741\) 1643.40 + 1194.00i 0.0814735 + 0.0591940i
\(742\) 0 0
\(743\) −5535.39 17036.2i −0.273316 0.841181i −0.989660 0.143433i \(-0.954186\pi\)
0.716344 0.697747i \(-0.245814\pi\)
\(744\) 0 0
\(745\) −13759.0 + 9996.53i −0.676634 + 0.491604i
\(746\) 0 0
\(747\) 15111.7 0.740172
\(748\) 0 0
\(749\) −5589.07 −0.272657
\(750\) 0 0
\(751\) −32671.5 + 23737.2i −1.58748 + 1.15337i −0.680060 + 0.733156i \(0.738046\pi\)
−0.907423 + 0.420218i \(0.861954\pi\)
\(752\) 0 0
\(753\) 654.353 + 2013.89i 0.0316679 + 0.0974638i
\(754\) 0 0
\(755\) 6286.05 + 4567.09i 0.303010 + 0.220150i
\(756\) 0 0
\(757\) −8622.85 + 26538.4i −0.414006 + 1.27418i 0.499131 + 0.866527i \(0.333653\pi\)
−0.913137 + 0.407653i \(0.866347\pi\)
\(758\) 0 0
\(759\) 2038.00 3887.58i 0.0974636 0.185916i
\(760\) 0 0
\(761\) −6276.93 + 19318.4i −0.299000 + 0.920226i 0.682849 + 0.730560i \(0.260741\pi\)
−0.981849 + 0.189667i \(0.939259\pi\)
\(762\) 0 0
\(763\) −927.117 673.590i −0.0439894 0.0319602i
\(764\) 0 0
\(765\) −2594.32 7984.48i −0.122611 0.377359i
\(766\) 0 0
\(767\) 27887.3 20261.3i 1.31285 0.953839i
\(768\) 0 0
\(769\) −19314.1 −0.905701 −0.452850 0.891587i \(-0.649593\pi\)
−0.452850 + 0.891587i \(0.649593\pi\)
\(770\) 0 0
\(771\) −7009.47 −0.327419
\(772\) 0 0
\(773\) −3935.29 + 2859.16i −0.183108 + 0.133036i −0.675563 0.737302i \(-0.736100\pi\)
0.492455 + 0.870338i \(0.336100\pi\)
\(774\) 0 0
\(775\) 2960.79 + 9112.36i 0.137232 + 0.422356i
\(776\) 0 0
\(777\) 1200.32 + 872.082i 0.0554198 + 0.0402648i
\(778\) 0 0
\(779\) 903.008 2779.17i 0.0415323 0.127823i
\(780\) 0 0
\(781\) −23256.0 23802.3i −1.06551 1.09054i
\(782\) 0 0
\(783\) −2687.78 + 8272.14i −0.122674 + 0.377551i
\(784\) 0 0
\(785\) 18024.3 + 13095.4i 0.819507 + 0.595407i
\(786\) 0 0
\(787\) −5052.14 15548.9i −0.228830 0.704267i −0.997880 0.0650785i \(-0.979270\pi\)
0.769050 0.639189i \(-0.220730\pi\)
\(788\) 0 0
\(789\) −567.363 + 412.213i −0.0256003 + 0.0185997i
\(790\) 0 0
\(791\) 9839.42 0.442288
\(792\) 0 0
\(793\) −22919.4 −1.02634
\(794\) 0 0
\(795\) −1694.23 + 1230.93i −0.0755826 + 0.0549140i
\(796\) 0 0
\(797\) 1544.91 + 4754.75i 0.0686619 + 0.211320i 0.979500 0.201444i \(-0.0645635\pi\)
−0.910838 + 0.412764i \(0.864563\pi\)
\(798\) 0 0
\(799\) −13283.9 9651.30i −0.588172 0.427332i
\(800\) 0 0
\(801\) 3772.24 11609.8i 0.166399 0.512124i
\(802\) 0 0
\(803\) −32990.0 5618.41i −1.44980 0.246911i
\(804\) 0 0
\(805\) −447.612 + 1377.61i −0.0195978 + 0.0603159i
\(806\) 0 0
\(807\) −10180.1 7396.25i −0.444059 0.322628i
\(808\) 0 0
\(809\) −1001.12 3081.13i −0.0435074 0.133902i 0.926943 0.375201i \(-0.122426\pi\)
−0.970451 + 0.241299i \(0.922426\pi\)
\(810\) 0 0
\(811\) 13745.1 9986.39i 0.595136 0.432392i −0.249013 0.968500i \(-0.580106\pi\)
0.844149 + 0.536109i \(0.180106\pi\)
\(812\) 0 0
\(813\) −9278.15 −0.400245
\(814\) 0 0
\(815\) 10303.0 0.442820
\(816\) 0 0
\(817\) 401.877 291.981i 0.0172092 0.0125032i
\(818\) 0 0
\(819\) −1451.99 4468.76i −0.0619494 0.190661i
\(820\) 0 0
\(821\) −28185.9 20478.2i −1.19816 0.870517i −0.204061 0.978958i \(-0.565414\pi\)
−0.994103 + 0.108441i \(0.965414\pi\)
\(822\) 0 0
\(823\) 855.025 2631.50i 0.0362142 0.111456i −0.931315 0.364214i \(-0.881338\pi\)
0.967530 + 0.252758i \(0.0813377\pi\)
\(824\) 0 0
\(825\) −1075.80 7343.06i −0.0453996 0.309882i
\(826\) 0 0
\(827\) 10220.6 31455.7i 0.429751 1.32264i −0.468620 0.883400i \(-0.655249\pi\)
0.898371 0.439237i \(-0.144751\pi\)
\(828\) 0 0
\(829\) 5208.77 + 3784.39i 0.218225 + 0.158549i 0.691527 0.722351i \(-0.256938\pi\)
−0.473303 + 0.880900i \(0.656938\pi\)
\(830\) 0 0
\(831\) −5259.08 16185.8i −0.219537 0.675667i
\(832\) 0 0
\(833\) 16577.0 12043.9i 0.689508 0.500957i
\(834\) 0 0
\(835\) 11979.3 0.496480
\(836\) 0 0
\(837\) −12302.8 −0.508062
\(838\) 0 0
\(839\) −22453.9 + 16313.7i −0.923953 + 0.671291i −0.944505 0.328498i \(-0.893458\pi\)
0.0205520 + 0.999789i \(0.493458\pi\)
\(840\) 0 0
\(841\) −5696.12 17530.9i −0.233553 0.718802i
\(842\) 0 0
\(843\) 13092.4 + 9512.19i 0.534907 + 0.388633i
\(844\) 0 0
\(845\) 112.609 346.574i 0.00458445 0.0141095i
\(846\) 0 0
\(847\) 5831.03 1746.04i 0.236548 0.0708319i
\(848\) 0 0
\(849\) −3062.89 + 9426.60i −0.123814 + 0.381060i
\(850\) 0 0
\(851\) 5879.08 + 4271.40i 0.236818 + 0.172058i
\(852\) 0 0
\(853\) −3222.19 9916.87i −0.129338 0.398062i 0.865328 0.501206i \(-0.167110\pi\)
−0.994667 + 0.103143i \(0.967110\pi\)
\(854\) 0 0
\(855\) −1969.81 + 1431.15i −0.0787907 + 0.0572448i
\(856\) 0 0
\(857\) 26763.2 1.06676 0.533379 0.845876i \(-0.320922\pi\)
0.533379 + 0.845876i \(0.320922\pi\)
\(858\) 0 0
\(859\) −29313.2 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(860\) 0 0
\(861\) 1358.07 986.695i 0.0537548 0.0390551i
\(862\) 0 0
\(863\) −14478.5 44560.4i −0.571095 1.75765i −0.649106 0.760698i \(-0.724857\pi\)
0.0780101 0.996953i \(-0.475143\pi\)
\(864\) 0 0
\(865\) −12252.0 8901.59i −0.481596 0.349900i
\(866\) 0 0
\(867\) 620.086 1908.43i 0.0242898 0.0747562i
\(868\) 0 0
\(869\) −4017.44 27421.7i −0.156827 1.07045i
\(870\) 0 0
\(871\) −6816.30 + 20978.4i −0.265168 + 0.816104i
\(872\) 0 0
\(873\) 20427.9 + 14841.7i 0.791959 + 0.575392i
\(874\) 0 0
\(875\) 1834.62 + 5646.37i 0.0708816 + 0.218151i
\(876\) 0 0
\(877\) 29738.4 21606.2i 1.14503 0.831914i 0.157219 0.987564i \(-0.449747\pi\)
0.987812 + 0.155649i \(0.0497470\pi\)
\(878\) 0 0
\(879\) −12859.2 −0.493436
\(880\) 0 0
\(881\) 8902.03 0.340428 0.170214 0.985407i \(-0.445554\pi\)
0.170214 + 0.985407i \(0.445554\pi\)
\(882\) 0 0
\(883\) −37666.0 + 27366.0i −1.43552 + 1.04296i −0.446562 + 0.894753i \(0.647352\pi\)
−0.988956 + 0.148212i \(0.952648\pi\)
\(884\) 0 0
\(885\) −3170.83 9758.80i −0.120436 0.370665i
\(886\) 0 0
\(887\) 13879.4 + 10084.0i 0.525393 + 0.381721i 0.818632 0.574319i \(-0.194733\pi\)
−0.293239 + 0.956039i \(0.594733\pi\)
\(888\) 0 0
\(889\) −2522.95 + 7764.84i −0.0951823 + 0.292941i
\(890\) 0 0
\(891\) −11608.4 1976.98i −0.436470 0.0743336i
\(892\) 0 0
\(893\) −1471.55 + 4528.97i −0.0551440 + 0.169716i
\(894\) 0 0
\(895\) 2198.30 + 1597.16i 0.0821016 + 0.0596503i
\(896\) 0 0
\(897\) 1766.19 + 5435.76i 0.0657427 + 0.202335i
\(898\) 0 0
\(899\) −6815.58 + 4951.81i −0.252850 + 0.183706i
\(900\) 0 0
\(901\) −9421.32 −0.348357
\(902\) 0 0
\(903\) 285.358 0.0105162
\(904\) 0 0
\(905\) −6850.28 + 4977.02i −0.251614 + 0.182809i
\(906\) 0 0
\(907\) 6020.17 + 18528.2i 0.220393 + 0.678300i 0.998727 + 0.0504492i \(0.0160653\pi\)
−0.778334 + 0.627851i \(0.783935\pi\)
\(908\) 0 0
\(909\) −25982.8 18877.6i −0.948068 0.688812i
\(910\) 0 0
\(911\) −16441.2 + 50600.9i −0.597939 + 1.84027i −0.0584238 + 0.998292i \(0.518607\pi\)
−0.539515 + 0.841976i \(0.681393\pi\)
\(912\) 0 0
\(913\) −17813.9 18232.4i −0.645733 0.660902i
\(914\) 0 0
\(915\) −2108.27 + 6488.58i −0.0761718 + 0.234433i
\(916\) 0 0
\(917\) −473.470 343.996i −0.0170506 0.0123880i
\(918\) 0 0
\(919\) −3800.15 11695.7i −0.136404 0.419809i 0.859402 0.511301i \(-0.170836\pi\)
−0.995806 + 0.0914922i \(0.970836\pi\)
\(920\) 0 0
\(921\) 13264.8 9637.43i 0.474581 0.344803i
\(922\) 0 0
\(923\) 43331.3 1.54525
\(924\) 0 0
\(925\) 12286.7 0.436741
\(926\) 0 0
\(927\) 17108.6 12430.1i 0.606171 0.440409i
\(928\) 0 0
\(929\) 11760.7 + 36195.8i 0.415347 + 1.27831i 0.911940 + 0.410323i \(0.134584\pi\)
−0.496594 + 0.867983i \(0.665416\pi\)
\(930\) 0 0
\(931\) −4807.65 3492.96i −0.169242 0.122962i
\(932\) 0 0
\(933\) 7615.07 23436.8i 0.267209 0.822386i
\(934\) 0 0
\(935\) −6575.10 + 12542.3i −0.229977 + 0.438691i
\(936\) 0 0
\(937\) −12909.9 + 39732.6i −0.450105 + 1.38528i 0.426683 + 0.904401i \(0.359682\pi\)
−0.876787 + 0.480878i \(0.840318\pi\)
\(938\) 0 0
\(939\) 4782.06 + 3474.37i 0.166195 + 0.120747i
\(940\) 0 0
\(941\) −9980.78 30717.7i −0.345764 1.06415i −0.961173 0.275945i \(-0.911009\pi\)
0.615409 0.788208i \(-0.288991\pi\)
\(942\) 0 0
\(943\) 6651.74 4832.77i 0.229703 0.166889i
\(944\) 0 0
\(945\) −3144.74 −0.108252
\(946\) 0 0
\(947\) −1027.50 −0.0352579 −0.0176290 0.999845i \(-0.505612\pi\)
−0.0176290 + 0.999845i \(0.505612\pi\)
\(948\) 0 0
\(949\) 35253.2 25612.9i 1.20587 0.876113i
\(950\) 0 0
\(951\) −2808.73 8644.38i −0.0957721 0.294756i
\(952\) 0 0
\(953\) −29825.9 21669.8i −1.01380 0.736571i −0.0488000 0.998809i \(-0.515540\pi\)
−0.965003 + 0.262237i \(0.915540\pi\)
\(954\) 0 0
\(955\) 8145.17 25068.3i 0.275991 0.849413i
\(956\) 0 0
\(957\) 5848.19 2894.79i 0.197539 0.0977798i
\(958\) 0 0
\(959\) −606.611 + 1866.96i −0.0204260 + 0.0628647i
\(960\) 0 0
\(961\) 14461.0 + 10506.5i 0.485415 + 0.352674i
\(962\) 0 0
\(963\) −8168.39 25139.7i −0.273336 0.841242i
\(964\) 0 0
\(965\) −9039.86 + 6567.84i −0.301558 + 0.219095i
\(966\) 0 0
\(967\) −58557.8 −1.94735 −0.973677 0.227931i \(-0.926804\pi\)
−0.973677 + 0.227931i \(0.926804\pi\)
\(968\) 0 0
\(969\) 2720.34 0.0901857
\(970\) 0 0
\(971\) −14372.1 + 10442.0i −0.474999 + 0.345107i −0.799386 0.600817i \(-0.794842\pi\)
0.324387 + 0.945924i \(0.394842\pi\)
\(972\) 0 0
\(973\) 3444.69 + 10601.7i 0.113496 + 0.349305i
\(974\) 0 0
\(975\) 7818.01 + 5680.12i 0.256797 + 0.186574i
\(976\) 0 0
\(977\) −5685.90 + 17499.4i −0.186191 + 0.573036i −0.999967 0.00814260i \(-0.997408\pi\)
0.813776 + 0.581178i \(0.197408\pi\)
\(978\) 0 0
\(979\) −18454.0 + 9134.53i −0.602444 + 0.298203i
\(980\) 0 0
\(981\) 1674.84 5154.64i 0.0545093 0.167762i
\(982\) 0 0
\(983\) 10004.6 + 7268.76i 0.324615 + 0.235847i 0.738142 0.674645i \(-0.235703\pi\)
−0.413527 + 0.910492i \(0.635703\pi\)
\(984\) 0 0
\(985\) −1358.23 4180.20i −0.0439358 0.135220i
\(986\) 0 0
\(987\) −2213.12 + 1607.93i −0.0713723 + 0.0518550i
\(988\) 0 0
\(989\) 1397.66 0.0449375
\(990\) 0 0
\(991\) 54570.4 1.74923 0.874615 0.484818i \(-0.161114\pi\)
0.874615 + 0.484818i \(0.161114\pi\)
\(992\) 0 0
\(993\) −14427.7 + 10482.3i −0.461077 + 0.334992i
\(994\) 0 0
\(995\) 3485.29 + 10726.6i 0.111046 + 0.341766i
\(996\) 0 0
\(997\) 33039.6 + 24004.7i 1.04952 + 0.762523i 0.972122 0.234477i \(-0.0753376\pi\)
0.0774017 + 0.997000i \(0.475338\pi\)
\(998\) 0 0
\(999\) −4875.28 + 15004.6i −0.154401 + 0.475199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.e.97.3 16
4.3 odd 2 88.4.i.a.9.2 16
11.4 even 5 1936.4.a.bw.1.3 8
11.5 even 5 inner 176.4.m.e.49.3 16
11.7 odd 10 1936.4.a.bv.1.3 8
44.7 even 10 968.4.a.o.1.6 8
44.15 odd 10 968.4.a.n.1.6 8
44.27 odd 10 88.4.i.a.49.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.i.a.9.2 16 4.3 odd 2
88.4.i.a.49.2 yes 16 44.27 odd 10
176.4.m.e.49.3 16 11.5 even 5 inner
176.4.m.e.97.3 16 1.1 even 1 trivial
968.4.a.n.1.6 8 44.15 odd 10
968.4.a.o.1.6 8 44.7 even 10
1936.4.a.bv.1.3 8 11.7 odd 10
1936.4.a.bw.1.3 8 11.4 even 5