Properties

Label 1925.2.a.ba.1.3
Level $1925$
Weight $2$
Character 1925.1
Self dual yes
Analytic conductor $15.371$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,2,Mod(1,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-1,0,13,0,-1,-7,-6,13,0,-7,21,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3712023891\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 10x^{4} + 47x^{3} - 25x^{2} - 35x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.815390\) of defining polynomial
Character \(\chi\) \(=\) 1925.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.815390 q^{2} -3.26294 q^{3} -1.33514 q^{4} +2.66057 q^{6} -1.00000 q^{7} +2.71944 q^{8} +7.64680 q^{9} -1.00000 q^{11} +4.35648 q^{12} +4.02935 q^{13} +0.815390 q^{14} +0.452875 q^{16} -7.77478 q^{17} -6.23513 q^{18} +6.63172 q^{19} +3.26294 q^{21} +0.815390 q^{22} +1.29268 q^{23} -8.87338 q^{24} -3.28549 q^{26} -15.1623 q^{27} +1.33514 q^{28} -6.31390 q^{29} +6.71702 q^{31} -5.80815 q^{32} +3.26294 q^{33} +6.33948 q^{34} -10.2095 q^{36} -9.84650 q^{37} -5.40744 q^{38} -13.1476 q^{39} -4.73667 q^{41} -2.66057 q^{42} +0.544889 q^{43} +1.33514 q^{44} -1.05404 q^{46} +2.66057 q^{47} -1.47770 q^{48} +1.00000 q^{49} +25.3687 q^{51} -5.37975 q^{52} -3.65910 q^{53} +12.3632 q^{54} -2.71944 q^{56} -21.6389 q^{57} +5.14829 q^{58} +4.02040 q^{59} -5.19496 q^{61} -5.47699 q^{62} -7.64680 q^{63} +3.83016 q^{64} -2.66057 q^{66} +11.8802 q^{67} +10.3804 q^{68} -4.21795 q^{69} -13.4894 q^{71} +20.7950 q^{72} -2.60702 q^{73} +8.02873 q^{74} -8.85428 q^{76} +1.00000 q^{77} +10.7204 q^{78} -8.11865 q^{79} +26.5332 q^{81} +3.86223 q^{82} +5.75966 q^{83} -4.35648 q^{84} -0.444297 q^{86} +20.6019 q^{87} -2.71944 q^{88} +7.73546 q^{89} -4.02935 q^{91} -1.72591 q^{92} -21.9173 q^{93} -2.16940 q^{94} +18.9517 q^{96} +16.9417 q^{97} -0.815390 q^{98} -7.64680 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 13 q^{4} - q^{6} - 7 q^{7} - 6 q^{8} + 13 q^{9} - 7 q^{11} + 21 q^{12} + 3 q^{13} + q^{14} + 29 q^{16} - 14 q^{18} + 18 q^{19} + q^{22} + 7 q^{23} - 22 q^{24} + 13 q^{26} - 6 q^{27} - 13 q^{28}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.815390 −0.576568 −0.288284 0.957545i \(-0.593085\pi\)
−0.288284 + 0.957545i \(0.593085\pi\)
\(3\) −3.26294 −1.88386 −0.941931 0.335807i \(-0.890991\pi\)
−0.941931 + 0.335807i \(0.890991\pi\)
\(4\) −1.33514 −0.667570
\(5\) 0 0
\(6\) 2.66057 1.08617
\(7\) −1.00000 −0.377964
\(8\) 2.71944 0.961467
\(9\) 7.64680 2.54893
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 4.35648 1.25761
\(13\) 4.02935 1.11754 0.558771 0.829322i \(-0.311273\pi\)
0.558771 + 0.829322i \(0.311273\pi\)
\(14\) 0.815390 0.217922
\(15\) 0 0
\(16\) 0.452875 0.113219
\(17\) −7.77478 −1.88566 −0.942831 0.333271i \(-0.891848\pi\)
−0.942831 + 0.333271i \(0.891848\pi\)
\(18\) −6.23513 −1.46963
\(19\) 6.63172 1.52142 0.760711 0.649091i \(-0.224850\pi\)
0.760711 + 0.649091i \(0.224850\pi\)
\(20\) 0 0
\(21\) 3.26294 0.712033
\(22\) 0.815390 0.173842
\(23\) 1.29268 0.269543 0.134771 0.990877i \(-0.456970\pi\)
0.134771 + 0.990877i \(0.456970\pi\)
\(24\) −8.87338 −1.81127
\(25\) 0 0
\(26\) −3.28549 −0.644338
\(27\) −15.1623 −2.91798
\(28\) 1.33514 0.252318
\(29\) −6.31390 −1.17246 −0.586231 0.810144i \(-0.699389\pi\)
−0.586231 + 0.810144i \(0.699389\pi\)
\(30\) 0 0
\(31\) 6.71702 1.20641 0.603207 0.797585i \(-0.293889\pi\)
0.603207 + 0.797585i \(0.293889\pi\)
\(32\) −5.80815 −1.02675
\(33\) 3.26294 0.568006
\(34\) 6.33948 1.08721
\(35\) 0 0
\(36\) −10.2095 −1.70159
\(37\) −9.84650 −1.61875 −0.809377 0.587290i \(-0.800195\pi\)
−0.809377 + 0.587290i \(0.800195\pi\)
\(38\) −5.40744 −0.877203
\(39\) −13.1476 −2.10529
\(40\) 0 0
\(41\) −4.73667 −0.739744 −0.369872 0.929083i \(-0.620598\pi\)
−0.369872 + 0.929083i \(0.620598\pi\)
\(42\) −2.66057 −0.410535
\(43\) 0.544889 0.0830948 0.0415474 0.999137i \(-0.486771\pi\)
0.0415474 + 0.999137i \(0.486771\pi\)
\(44\) 1.33514 0.201280
\(45\) 0 0
\(46\) −1.05404 −0.155410
\(47\) 2.66057 0.388084 0.194042 0.980993i \(-0.437840\pi\)
0.194042 + 0.980993i \(0.437840\pi\)
\(48\) −1.47770 −0.213288
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 25.3687 3.55233
\(52\) −5.37975 −0.746037
\(53\) −3.65910 −0.502616 −0.251308 0.967907i \(-0.580861\pi\)
−0.251308 + 0.967907i \(0.580861\pi\)
\(54\) 12.3632 1.68241
\(55\) 0 0
\(56\) −2.71944 −0.363400
\(57\) −21.6389 −2.86615
\(58\) 5.14829 0.676004
\(59\) 4.02040 0.523411 0.261706 0.965148i \(-0.415715\pi\)
0.261706 + 0.965148i \(0.415715\pi\)
\(60\) 0 0
\(61\) −5.19496 −0.665147 −0.332573 0.943077i \(-0.607917\pi\)
−0.332573 + 0.943077i \(0.607917\pi\)
\(62\) −5.47699 −0.695579
\(63\) −7.64680 −0.963407
\(64\) 3.83016 0.478770
\(65\) 0 0
\(66\) −2.66057 −0.327494
\(67\) 11.8802 1.45140 0.725701 0.688010i \(-0.241516\pi\)
0.725701 + 0.688010i \(0.241516\pi\)
\(68\) 10.3804 1.25881
\(69\) −4.21795 −0.507782
\(70\) 0 0
\(71\) −13.4894 −1.60090 −0.800448 0.599402i \(-0.795405\pi\)
−0.800448 + 0.599402i \(0.795405\pi\)
\(72\) 20.7950 2.45072
\(73\) −2.60702 −0.305129 −0.152565 0.988294i \(-0.548753\pi\)
−0.152565 + 0.988294i \(0.548753\pi\)
\(74\) 8.02873 0.933321
\(75\) 0 0
\(76\) −8.85428 −1.01566
\(77\) 1.00000 0.113961
\(78\) 10.7204 1.21384
\(79\) −8.11865 −0.913420 −0.456710 0.889616i \(-0.650972\pi\)
−0.456710 + 0.889616i \(0.650972\pi\)
\(80\) 0 0
\(81\) 26.5332 2.94813
\(82\) 3.86223 0.426512
\(83\) 5.75966 0.632205 0.316102 0.948725i \(-0.397626\pi\)
0.316102 + 0.948725i \(0.397626\pi\)
\(84\) −4.35648 −0.475331
\(85\) 0 0
\(86\) −0.444297 −0.0479098
\(87\) 20.6019 2.20876
\(88\) −2.71944 −0.289893
\(89\) 7.73546 0.819958 0.409979 0.912095i \(-0.365536\pi\)
0.409979 + 0.912095i \(0.365536\pi\)
\(90\) 0 0
\(91\) −4.02935 −0.422391
\(92\) −1.72591 −0.179939
\(93\) −21.9173 −2.27272
\(94\) −2.16940 −0.223757
\(95\) 0 0
\(96\) 18.9517 1.93425
\(97\) 16.9417 1.72017 0.860085 0.510151i \(-0.170411\pi\)
0.860085 + 0.510151i \(0.170411\pi\)
\(98\) −0.815390 −0.0823668
\(99\) −7.64680 −0.768533
\(100\) 0 0
\(101\) 1.54184 0.153419 0.0767093 0.997053i \(-0.475559\pi\)
0.0767093 + 0.997053i \(0.475559\pi\)
\(102\) −20.6854 −2.04816
\(103\) −6.39290 −0.629911 −0.314956 0.949106i \(-0.601990\pi\)
−0.314956 + 0.949106i \(0.601990\pi\)
\(104\) 10.9576 1.07448
\(105\) 0 0
\(106\) 2.98359 0.289792
\(107\) −0.521233 −0.0503895 −0.0251948 0.999683i \(-0.508021\pi\)
−0.0251948 + 0.999683i \(0.508021\pi\)
\(108\) 20.2437 1.94795
\(109\) −10.7962 −1.03409 −0.517043 0.855959i \(-0.672967\pi\)
−0.517043 + 0.855959i \(0.672967\pi\)
\(110\) 0 0
\(111\) 32.1286 3.04951
\(112\) −0.452875 −0.0427926
\(113\) 19.1949 1.80570 0.902852 0.429952i \(-0.141470\pi\)
0.902852 + 0.429952i \(0.141470\pi\)
\(114\) 17.6442 1.65253
\(115\) 0 0
\(116\) 8.42994 0.782700
\(117\) 30.8117 2.84854
\(118\) −3.27819 −0.301782
\(119\) 7.77478 0.712713
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 4.23592 0.383502
\(123\) 15.4555 1.39357
\(124\) −8.96816 −0.805365
\(125\) 0 0
\(126\) 6.23513 0.555469
\(127\) 5.93032 0.526231 0.263116 0.964764i \(-0.415250\pi\)
0.263116 + 0.964764i \(0.415250\pi\)
\(128\) 8.49322 0.750702
\(129\) −1.77794 −0.156539
\(130\) 0 0
\(131\) 5.49332 0.479953 0.239977 0.970779i \(-0.422860\pi\)
0.239977 + 0.970779i \(0.422860\pi\)
\(132\) −4.35648 −0.379183
\(133\) −6.63172 −0.575043
\(134\) −9.68703 −0.836832
\(135\) 0 0
\(136\) −21.1431 −1.81300
\(137\) −12.3717 −1.05698 −0.528491 0.848939i \(-0.677242\pi\)
−0.528491 + 0.848939i \(0.677242\pi\)
\(138\) 3.43928 0.292771
\(139\) 20.7319 1.75846 0.879230 0.476397i \(-0.158058\pi\)
0.879230 + 0.476397i \(0.158058\pi\)
\(140\) 0 0
\(141\) −8.68130 −0.731097
\(142\) 10.9991 0.923026
\(143\) −4.02935 −0.336951
\(144\) 3.46304 0.288587
\(145\) 0 0
\(146\) 2.12574 0.175928
\(147\) −3.26294 −0.269123
\(148\) 13.1464 1.08063
\(149\) −20.5472 −1.68329 −0.841644 0.540032i \(-0.818412\pi\)
−0.841644 + 0.540032i \(0.818412\pi\)
\(150\) 0 0
\(151\) 2.12945 0.173292 0.0866461 0.996239i \(-0.472385\pi\)
0.0866461 + 0.996239i \(0.472385\pi\)
\(152\) 18.0346 1.46280
\(153\) −59.4523 −4.80643
\(154\) −0.815390 −0.0657060
\(155\) 0 0
\(156\) 17.5538 1.40543
\(157\) −11.7630 −0.938793 −0.469397 0.882987i \(-0.655529\pi\)
−0.469397 + 0.882987i \(0.655529\pi\)
\(158\) 6.61987 0.526648
\(159\) 11.9394 0.946859
\(160\) 0 0
\(161\) −1.29268 −0.101878
\(162\) −21.6349 −1.69980
\(163\) 11.8065 0.924754 0.462377 0.886684i \(-0.346997\pi\)
0.462377 + 0.886684i \(0.346997\pi\)
\(164\) 6.32411 0.493830
\(165\) 0 0
\(166\) −4.69637 −0.364509
\(167\) 7.12202 0.551118 0.275559 0.961284i \(-0.411137\pi\)
0.275559 + 0.961284i \(0.411137\pi\)
\(168\) 8.87338 0.684596
\(169\) 3.23568 0.248899
\(170\) 0 0
\(171\) 50.7115 3.87801
\(172\) −0.727503 −0.0554716
\(173\) 6.62215 0.503473 0.251736 0.967796i \(-0.418998\pi\)
0.251736 + 0.967796i \(0.418998\pi\)
\(174\) −16.7986 −1.27350
\(175\) 0 0
\(176\) −0.452875 −0.0341367
\(177\) −13.1183 −0.986035
\(178\) −6.30742 −0.472761
\(179\) −0.219295 −0.0163908 −0.00819542 0.999966i \(-0.502609\pi\)
−0.00819542 + 0.999966i \(0.502609\pi\)
\(180\) 0 0
\(181\) 0.735466 0.0546667 0.0273334 0.999626i \(-0.491298\pi\)
0.0273334 + 0.999626i \(0.491298\pi\)
\(182\) 3.28549 0.243537
\(183\) 16.9509 1.25304
\(184\) 3.51537 0.259157
\(185\) 0 0
\(186\) 17.8711 1.31037
\(187\) 7.77478 0.568549
\(188\) −3.55223 −0.259073
\(189\) 15.1623 1.10289
\(190\) 0 0
\(191\) 10.7645 0.778894 0.389447 0.921049i \(-0.372666\pi\)
0.389447 + 0.921049i \(0.372666\pi\)
\(192\) −12.4976 −0.901936
\(193\) 6.79618 0.489200 0.244600 0.969624i \(-0.421343\pi\)
0.244600 + 0.969624i \(0.421343\pi\)
\(194\) −13.8141 −0.991794
\(195\) 0 0
\(196\) −1.33514 −0.0953671
\(197\) −4.56293 −0.325095 −0.162548 0.986701i \(-0.551971\pi\)
−0.162548 + 0.986701i \(0.551971\pi\)
\(198\) 6.23513 0.443111
\(199\) −15.8062 −1.12047 −0.560236 0.828333i \(-0.689290\pi\)
−0.560236 + 0.828333i \(0.689290\pi\)
\(200\) 0 0
\(201\) −38.7645 −2.73424
\(202\) −1.25720 −0.0884562
\(203\) 6.31390 0.443149
\(204\) −33.8707 −2.37143
\(205\) 0 0
\(206\) 5.21271 0.363187
\(207\) 9.88489 0.687047
\(208\) 1.82479 0.126527
\(209\) −6.63172 −0.458726
\(210\) 0 0
\(211\) −2.19451 −0.151076 −0.0755381 0.997143i \(-0.524067\pi\)
−0.0755381 + 0.997143i \(0.524067\pi\)
\(212\) 4.88541 0.335531
\(213\) 44.0151 3.01587
\(214\) 0.425008 0.0290530
\(215\) 0 0
\(216\) −41.2329 −2.80554
\(217\) −6.71702 −0.455981
\(218\) 8.80310 0.596221
\(219\) 8.50657 0.574821
\(220\) 0 0
\(221\) −31.3273 −2.10731
\(222\) −26.1973 −1.75825
\(223\) −16.0124 −1.07227 −0.536134 0.844133i \(-0.680116\pi\)
−0.536134 + 0.844133i \(0.680116\pi\)
\(224\) 5.80815 0.388073
\(225\) 0 0
\(226\) −15.6513 −1.04111
\(227\) 9.72207 0.645277 0.322638 0.946522i \(-0.395430\pi\)
0.322638 + 0.946522i \(0.395430\pi\)
\(228\) 28.8910 1.91335
\(229\) 0.871601 0.0575970 0.0287985 0.999585i \(-0.490832\pi\)
0.0287985 + 0.999585i \(0.490832\pi\)
\(230\) 0 0
\(231\) −3.26294 −0.214686
\(232\) −17.1703 −1.12728
\(233\) 12.7523 0.835431 0.417715 0.908578i \(-0.362831\pi\)
0.417715 + 0.908578i \(0.362831\pi\)
\(234\) −25.1235 −1.64238
\(235\) 0 0
\(236\) −5.36779 −0.349413
\(237\) 26.4907 1.72076
\(238\) −6.33948 −0.410928
\(239\) −15.9745 −1.03330 −0.516652 0.856196i \(-0.672822\pi\)
−0.516652 + 0.856196i \(0.672822\pi\)
\(240\) 0 0
\(241\) 10.3643 0.667624 0.333812 0.942640i \(-0.391665\pi\)
0.333812 + 0.942640i \(0.391665\pi\)
\(242\) −0.815390 −0.0524153
\(243\) −41.0896 −2.63590
\(244\) 6.93600 0.444032
\(245\) 0 0
\(246\) −12.6023 −0.803490
\(247\) 26.7216 1.70025
\(248\) 18.2665 1.15993
\(249\) −18.7934 −1.19099
\(250\) 0 0
\(251\) 21.0924 1.33134 0.665670 0.746246i \(-0.268146\pi\)
0.665670 + 0.746246i \(0.268146\pi\)
\(252\) 10.2095 0.643141
\(253\) −1.29268 −0.0812703
\(254\) −4.83553 −0.303408
\(255\) 0 0
\(256\) −14.5856 −0.911600
\(257\) −21.8799 −1.36483 −0.682415 0.730965i \(-0.739070\pi\)
−0.682415 + 0.730965i \(0.739070\pi\)
\(258\) 1.44972 0.0902554
\(259\) 9.84650 0.611831
\(260\) 0 0
\(261\) −48.2812 −2.98853
\(262\) −4.47920 −0.276726
\(263\) −0.267493 −0.0164943 −0.00824716 0.999966i \(-0.502625\pi\)
−0.00824716 + 0.999966i \(0.502625\pi\)
\(264\) 8.87338 0.546119
\(265\) 0 0
\(266\) 5.40744 0.331552
\(267\) −25.2404 −1.54469
\(268\) −15.8618 −0.968912
\(269\) 13.5421 0.825678 0.412839 0.910804i \(-0.364537\pi\)
0.412839 + 0.910804i \(0.364537\pi\)
\(270\) 0 0
\(271\) −2.52073 −0.153123 −0.0765616 0.997065i \(-0.524394\pi\)
−0.0765616 + 0.997065i \(0.524394\pi\)
\(272\) −3.52100 −0.213492
\(273\) 13.1476 0.795726
\(274\) 10.0877 0.609422
\(275\) 0 0
\(276\) 5.63155 0.338980
\(277\) 20.2545 1.21697 0.608487 0.793564i \(-0.291777\pi\)
0.608487 + 0.793564i \(0.291777\pi\)
\(278\) −16.9046 −1.01387
\(279\) 51.3638 3.07507
\(280\) 0 0
\(281\) 2.64588 0.157840 0.0789199 0.996881i \(-0.474853\pi\)
0.0789199 + 0.996881i \(0.474853\pi\)
\(282\) 7.07864 0.421527
\(283\) 9.86395 0.586351 0.293176 0.956059i \(-0.405288\pi\)
0.293176 + 0.956059i \(0.405288\pi\)
\(284\) 18.0102 1.06871
\(285\) 0 0
\(286\) 3.28549 0.194275
\(287\) 4.73667 0.279597
\(288\) −44.4138 −2.61711
\(289\) 43.4473 2.55572
\(290\) 0 0
\(291\) −55.2798 −3.24056
\(292\) 3.48074 0.203695
\(293\) 29.0419 1.69664 0.848322 0.529481i \(-0.177613\pi\)
0.848322 + 0.529481i \(0.177613\pi\)
\(294\) 2.66057 0.155168
\(295\) 0 0
\(296\) −26.7769 −1.55638
\(297\) 15.1623 0.879804
\(298\) 16.7539 0.970530
\(299\) 5.20867 0.301225
\(300\) 0 0
\(301\) −0.544889 −0.0314069
\(302\) −1.73633 −0.0999147
\(303\) −5.03093 −0.289019
\(304\) 3.00334 0.172253
\(305\) 0 0
\(306\) 48.4768 2.77123
\(307\) 5.33047 0.304226 0.152113 0.988363i \(-0.451392\pi\)
0.152113 + 0.988363i \(0.451392\pi\)
\(308\) −1.33514 −0.0760766
\(309\) 20.8597 1.18667
\(310\) 0 0
\(311\) −10.1987 −0.578314 −0.289157 0.957282i \(-0.593375\pi\)
−0.289157 + 0.957282i \(0.593375\pi\)
\(312\) −35.7540 −2.02417
\(313\) −19.2336 −1.08715 −0.543574 0.839361i \(-0.682929\pi\)
−0.543574 + 0.839361i \(0.682929\pi\)
\(314\) 9.59147 0.541278
\(315\) 0 0
\(316\) 10.8395 0.609771
\(317\) −1.10991 −0.0623389 −0.0311694 0.999514i \(-0.509923\pi\)
−0.0311694 + 0.999514i \(0.509923\pi\)
\(318\) −9.73530 −0.545929
\(319\) 6.31390 0.353511
\(320\) 0 0
\(321\) 1.70075 0.0949269
\(322\) 1.05404 0.0587394
\(323\) −51.5602 −2.86889
\(324\) −35.4255 −1.96808
\(325\) 0 0
\(326\) −9.62687 −0.533183
\(327\) 35.2273 1.94808
\(328\) −12.8811 −0.711239
\(329\) −2.66057 −0.146682
\(330\) 0 0
\(331\) 28.5253 1.56789 0.783946 0.620829i \(-0.213204\pi\)
0.783946 + 0.620829i \(0.213204\pi\)
\(332\) −7.68995 −0.422041
\(333\) −75.2942 −4.12610
\(334\) −5.80722 −0.317757
\(335\) 0 0
\(336\) 1.47770 0.0806154
\(337\) −19.3128 −1.05204 −0.526018 0.850473i \(-0.676316\pi\)
−0.526018 + 0.850473i \(0.676316\pi\)
\(338\) −2.63834 −0.143507
\(339\) −62.6319 −3.40170
\(340\) 0 0
\(341\) −6.71702 −0.363747
\(342\) −41.3497 −2.23593
\(343\) −1.00000 −0.0539949
\(344\) 1.48179 0.0798929
\(345\) 0 0
\(346\) −5.39963 −0.290286
\(347\) −4.76310 −0.255696 −0.127848 0.991794i \(-0.540807\pi\)
−0.127848 + 0.991794i \(0.540807\pi\)
\(348\) −27.5064 −1.47450
\(349\) 10.3582 0.554462 0.277231 0.960803i \(-0.410583\pi\)
0.277231 + 0.960803i \(0.410583\pi\)
\(350\) 0 0
\(351\) −61.0941 −3.26096
\(352\) 5.80815 0.309575
\(353\) 1.32582 0.0705661 0.0352831 0.999377i \(-0.488767\pi\)
0.0352831 + 0.999377i \(0.488767\pi\)
\(354\) 10.6966 0.568516
\(355\) 0 0
\(356\) −10.3279 −0.547379
\(357\) −25.3687 −1.34265
\(358\) 0.178811 0.00945043
\(359\) 16.2176 0.855934 0.427967 0.903794i \(-0.359230\pi\)
0.427967 + 0.903794i \(0.359230\pi\)
\(360\) 0 0
\(361\) 24.9798 1.31472
\(362\) −0.599691 −0.0315191
\(363\) −3.26294 −0.171260
\(364\) 5.37975 0.281975
\(365\) 0 0
\(366\) −13.8216 −0.722465
\(367\) 32.3068 1.68640 0.843200 0.537600i \(-0.180669\pi\)
0.843200 + 0.537600i \(0.180669\pi\)
\(368\) 0.585423 0.0305173
\(369\) −36.2204 −1.88556
\(370\) 0 0
\(371\) 3.65910 0.189971
\(372\) 29.2626 1.51720
\(373\) 0.697093 0.0360941 0.0180471 0.999837i \(-0.494255\pi\)
0.0180471 + 0.999837i \(0.494255\pi\)
\(374\) −6.33948 −0.327807
\(375\) 0 0
\(376\) 7.23526 0.373130
\(377\) −25.4409 −1.31028
\(378\) −12.3632 −0.635892
\(379\) −13.8037 −0.709047 −0.354524 0.935047i \(-0.615357\pi\)
−0.354524 + 0.935047i \(0.615357\pi\)
\(380\) 0 0
\(381\) −19.3503 −0.991347
\(382\) −8.77729 −0.449085
\(383\) −10.4300 −0.532948 −0.266474 0.963842i \(-0.585859\pi\)
−0.266474 + 0.963842i \(0.585859\pi\)
\(384\) −27.7129 −1.41422
\(385\) 0 0
\(386\) −5.54154 −0.282057
\(387\) 4.16666 0.211803
\(388\) −22.6195 −1.14833
\(389\) 8.74919 0.443602 0.221801 0.975092i \(-0.428807\pi\)
0.221801 + 0.975092i \(0.428807\pi\)
\(390\) 0 0
\(391\) −10.0503 −0.508267
\(392\) 2.71944 0.137352
\(393\) −17.9244 −0.904166
\(394\) 3.72057 0.187439
\(395\) 0 0
\(396\) 10.2095 0.513049
\(397\) 8.35598 0.419375 0.209687 0.977769i \(-0.432755\pi\)
0.209687 + 0.977769i \(0.432755\pi\)
\(398\) 12.8882 0.646028
\(399\) 21.6389 1.08330
\(400\) 0 0
\(401\) −3.89701 −0.194608 −0.0973038 0.995255i \(-0.531022\pi\)
−0.0973038 + 0.995255i \(0.531022\pi\)
\(402\) 31.6082 1.57647
\(403\) 27.0653 1.34822
\(404\) −2.05857 −0.102418
\(405\) 0 0
\(406\) −5.14829 −0.255505
\(407\) 9.84650 0.488073
\(408\) 68.9886 3.41544
\(409\) 8.74787 0.432554 0.216277 0.976332i \(-0.430608\pi\)
0.216277 + 0.976332i \(0.430608\pi\)
\(410\) 0 0
\(411\) 40.3680 1.99121
\(412\) 8.53541 0.420510
\(413\) −4.02040 −0.197831
\(414\) −8.06004 −0.396129
\(415\) 0 0
\(416\) −23.4031 −1.14743
\(417\) −67.6472 −3.31270
\(418\) 5.40744 0.264487
\(419\) −24.1879 −1.18166 −0.590829 0.806797i \(-0.701199\pi\)
−0.590829 + 0.806797i \(0.701199\pi\)
\(420\) 0 0
\(421\) 32.6675 1.59212 0.796059 0.605219i \(-0.206915\pi\)
0.796059 + 0.605219i \(0.206915\pi\)
\(422\) 1.78938 0.0871057
\(423\) 20.3449 0.989202
\(424\) −9.95070 −0.483249
\(425\) 0 0
\(426\) −35.8895 −1.73885
\(427\) 5.19496 0.251402
\(428\) 0.695919 0.0336385
\(429\) 13.1476 0.634770
\(430\) 0 0
\(431\) −11.9307 −0.574683 −0.287342 0.957828i \(-0.592772\pi\)
−0.287342 + 0.957828i \(0.592772\pi\)
\(432\) −6.86660 −0.330370
\(433\) 15.6872 0.753879 0.376940 0.926238i \(-0.376976\pi\)
0.376940 + 0.926238i \(0.376976\pi\)
\(434\) 5.47699 0.262904
\(435\) 0 0
\(436\) 14.4144 0.690325
\(437\) 8.57272 0.410089
\(438\) −6.93618 −0.331423
\(439\) −9.84516 −0.469884 −0.234942 0.972009i \(-0.575490\pi\)
−0.234942 + 0.972009i \(0.575490\pi\)
\(440\) 0 0
\(441\) 7.64680 0.364134
\(442\) 25.5440 1.21500
\(443\) 29.2874 1.39149 0.695744 0.718290i \(-0.255075\pi\)
0.695744 + 0.718290i \(0.255075\pi\)
\(444\) −42.8961 −2.03576
\(445\) 0 0
\(446\) 13.0563 0.618235
\(447\) 67.0442 3.17108
\(448\) −3.83016 −0.180958
\(449\) 9.18694 0.433559 0.216779 0.976221i \(-0.430445\pi\)
0.216779 + 0.976221i \(0.430445\pi\)
\(450\) 0 0
\(451\) 4.73667 0.223041
\(452\) −25.6278 −1.20543
\(453\) −6.94828 −0.326459
\(454\) −7.92728 −0.372046
\(455\) 0 0
\(456\) −58.8458 −2.75571
\(457\) 35.9831 1.68322 0.841609 0.540087i \(-0.181609\pi\)
0.841609 + 0.540087i \(0.181609\pi\)
\(458\) −0.710695 −0.0332086
\(459\) 117.883 5.50232
\(460\) 0 0
\(461\) 32.3468 1.50654 0.753271 0.657711i \(-0.228475\pi\)
0.753271 + 0.657711i \(0.228475\pi\)
\(462\) 2.66057 0.123781
\(463\) −3.43774 −0.159765 −0.0798827 0.996804i \(-0.525455\pi\)
−0.0798827 + 0.996804i \(0.525455\pi\)
\(464\) −2.85941 −0.132745
\(465\) 0 0
\(466\) −10.3981 −0.481683
\(467\) −8.28467 −0.383369 −0.191684 0.981457i \(-0.561395\pi\)
−0.191684 + 0.981457i \(0.561395\pi\)
\(468\) −41.1379 −1.90160
\(469\) −11.8802 −0.548578
\(470\) 0 0
\(471\) 38.3822 1.76856
\(472\) 10.9332 0.503243
\(473\) −0.544889 −0.0250540
\(474\) −21.6003 −0.992133
\(475\) 0 0
\(476\) −10.3804 −0.475786
\(477\) −27.9804 −1.28114
\(478\) 13.0254 0.595770
\(479\) −1.03162 −0.0471360 −0.0235680 0.999722i \(-0.507503\pi\)
−0.0235680 + 0.999722i \(0.507503\pi\)
\(480\) 0 0
\(481\) −39.6750 −1.80902
\(482\) −8.45096 −0.384931
\(483\) 4.21795 0.191923
\(484\) −1.33514 −0.0606881
\(485\) 0 0
\(486\) 33.5040 1.51977
\(487\) −2.77182 −0.125603 −0.0628015 0.998026i \(-0.520003\pi\)
−0.0628015 + 0.998026i \(0.520003\pi\)
\(488\) −14.1274 −0.639517
\(489\) −38.5238 −1.74211
\(490\) 0 0
\(491\) −9.12276 −0.411704 −0.205852 0.978583i \(-0.565997\pi\)
−0.205852 + 0.978583i \(0.565997\pi\)
\(492\) −20.6352 −0.930308
\(493\) 49.0892 2.21087
\(494\) −21.7885 −0.980311
\(495\) 0 0
\(496\) 3.04197 0.136588
\(497\) 13.4894 0.605082
\(498\) 15.3240 0.686684
\(499\) −5.05695 −0.226380 −0.113190 0.993573i \(-0.536107\pi\)
−0.113190 + 0.993573i \(0.536107\pi\)
\(500\) 0 0
\(501\) −23.2387 −1.03823
\(502\) −17.1985 −0.767608
\(503\) 31.9577 1.42492 0.712462 0.701711i \(-0.247580\pi\)
0.712462 + 0.701711i \(0.247580\pi\)
\(504\) −20.7950 −0.926284
\(505\) 0 0
\(506\) 1.05404 0.0468578
\(507\) −10.5579 −0.468891
\(508\) −7.91781 −0.351296
\(509\) 32.6503 1.44720 0.723601 0.690219i \(-0.242486\pi\)
0.723601 + 0.690219i \(0.242486\pi\)
\(510\) 0 0
\(511\) 2.60702 0.115328
\(512\) −5.09349 −0.225103
\(513\) −100.552 −4.43948
\(514\) 17.8407 0.786918
\(515\) 0 0
\(516\) 2.37380 0.104501
\(517\) −2.66057 −0.117012
\(518\) −8.02873 −0.352762
\(519\) −21.6077 −0.948473
\(520\) 0 0
\(521\) 0.00976971 0.000428019 0 0.000214009 1.00000i \(-0.499932\pi\)
0.000214009 1.00000i \(0.499932\pi\)
\(522\) 39.3680 1.72309
\(523\) 16.8422 0.736457 0.368229 0.929735i \(-0.379964\pi\)
0.368229 + 0.929735i \(0.379964\pi\)
\(524\) −7.33434 −0.320402
\(525\) 0 0
\(526\) 0.218111 0.00951009
\(527\) −52.2234 −2.27489
\(528\) 1.47770 0.0643088
\(529\) −21.3290 −0.927347
\(530\) 0 0
\(531\) 30.7432 1.33414
\(532\) 8.85428 0.383882
\(533\) −19.0857 −0.826694
\(534\) 20.5808 0.890617
\(535\) 0 0
\(536\) 32.3076 1.39547
\(537\) 0.715546 0.0308781
\(538\) −11.0421 −0.476059
\(539\) −1.00000 −0.0430730
\(540\) 0 0
\(541\) 34.9770 1.50378 0.751888 0.659290i \(-0.229143\pi\)
0.751888 + 0.659290i \(0.229143\pi\)
\(542\) 2.05538 0.0882859
\(543\) −2.39978 −0.102985
\(544\) 45.1571 1.93609
\(545\) 0 0
\(546\) −10.7204 −0.458790
\(547\) −19.6157 −0.838709 −0.419354 0.907823i \(-0.637744\pi\)
−0.419354 + 0.907823i \(0.637744\pi\)
\(548\) 16.5179 0.705609
\(549\) −39.7249 −1.69542
\(550\) 0 0
\(551\) −41.8721 −1.78381
\(552\) −11.4705 −0.488215
\(553\) 8.11865 0.345240
\(554\) −16.5153 −0.701668
\(555\) 0 0
\(556\) −27.6800 −1.17389
\(557\) 23.0665 0.977360 0.488680 0.872463i \(-0.337479\pi\)
0.488680 + 0.872463i \(0.337479\pi\)
\(558\) −41.8815 −1.77299
\(559\) 2.19555 0.0928619
\(560\) 0 0
\(561\) −25.3687 −1.07107
\(562\) −2.15742 −0.0910053
\(563\) −12.0630 −0.508395 −0.254198 0.967152i \(-0.581811\pi\)
−0.254198 + 0.967152i \(0.581811\pi\)
\(564\) 11.5907 0.488058
\(565\) 0 0
\(566\) −8.04297 −0.338071
\(567\) −26.5332 −1.11429
\(568\) −36.6836 −1.53921
\(569\) −32.6016 −1.36673 −0.683365 0.730077i \(-0.739484\pi\)
−0.683365 + 0.730077i \(0.739484\pi\)
\(570\) 0 0
\(571\) 6.12144 0.256174 0.128087 0.991763i \(-0.459116\pi\)
0.128087 + 0.991763i \(0.459116\pi\)
\(572\) 5.37975 0.224938
\(573\) −35.1241 −1.46733
\(574\) −3.86223 −0.161207
\(575\) 0 0
\(576\) 29.2885 1.22035
\(577\) 34.0884 1.41912 0.709558 0.704647i \(-0.248894\pi\)
0.709558 + 0.704647i \(0.248894\pi\)
\(578\) −35.4265 −1.47355
\(579\) −22.1756 −0.921585
\(580\) 0 0
\(581\) −5.75966 −0.238951
\(582\) 45.0746 1.86840
\(583\) 3.65910 0.151544
\(584\) −7.08964 −0.293372
\(585\) 0 0
\(586\) −23.6804 −0.978230
\(587\) −17.5484 −0.724299 −0.362150 0.932120i \(-0.617957\pi\)
−0.362150 + 0.932120i \(0.617957\pi\)
\(588\) 4.35648 0.179658
\(589\) 44.5455 1.83546
\(590\) 0 0
\(591\) 14.8886 0.612434
\(592\) −4.45923 −0.183273
\(593\) 15.5286 0.637683 0.318842 0.947808i \(-0.396706\pi\)
0.318842 + 0.947808i \(0.396706\pi\)
\(594\) −12.3632 −0.507267
\(595\) 0 0
\(596\) 27.4333 1.12371
\(597\) 51.5748 2.11081
\(598\) −4.24710 −0.173677
\(599\) −27.2580 −1.11373 −0.556866 0.830603i \(-0.687996\pi\)
−0.556866 + 0.830603i \(0.687996\pi\)
\(600\) 0 0
\(601\) −16.2109 −0.661257 −0.330628 0.943761i \(-0.607261\pi\)
−0.330628 + 0.943761i \(0.607261\pi\)
\(602\) 0.444297 0.0181082
\(603\) 90.8458 3.69953
\(604\) −2.84311 −0.115685
\(605\) 0 0
\(606\) 4.10217 0.166639
\(607\) 14.0320 0.569541 0.284770 0.958596i \(-0.408083\pi\)
0.284770 + 0.958596i \(0.408083\pi\)
\(608\) −38.5180 −1.56211
\(609\) −20.6019 −0.834832
\(610\) 0 0
\(611\) 10.7204 0.433700
\(612\) 79.3770 3.20863
\(613\) −24.7487 −0.999591 −0.499795 0.866143i \(-0.666591\pi\)
−0.499795 + 0.866143i \(0.666591\pi\)
\(614\) −4.34642 −0.175407
\(615\) 0 0
\(616\) 2.71944 0.109569
\(617\) 44.1300 1.77661 0.888304 0.459255i \(-0.151884\pi\)
0.888304 + 0.459255i \(0.151884\pi\)
\(618\) −17.0088 −0.684193
\(619\) 43.8551 1.76269 0.881343 0.472477i \(-0.156640\pi\)
0.881343 + 0.472477i \(0.156640\pi\)
\(620\) 0 0
\(621\) −19.6000 −0.786521
\(622\) 8.31591 0.333437
\(623\) −7.73546 −0.309915
\(624\) −5.95419 −0.238358
\(625\) 0 0
\(626\) 15.6829 0.626814
\(627\) 21.6389 0.864176
\(628\) 15.7053 0.626710
\(629\) 76.5544 3.05242
\(630\) 0 0
\(631\) 34.3085 1.36580 0.682899 0.730513i \(-0.260719\pi\)
0.682899 + 0.730513i \(0.260719\pi\)
\(632\) −22.0782 −0.878223
\(633\) 7.16056 0.284607
\(634\) 0.905011 0.0359426
\(635\) 0 0
\(636\) −15.9408 −0.632095
\(637\) 4.02935 0.159649
\(638\) −5.14829 −0.203823
\(639\) −103.151 −4.08058
\(640\) 0 0
\(641\) −2.34685 −0.0926951 −0.0463476 0.998925i \(-0.514758\pi\)
−0.0463476 + 0.998925i \(0.514758\pi\)
\(642\) −1.38678 −0.0547318
\(643\) 42.4998 1.67603 0.838013 0.545650i \(-0.183717\pi\)
0.838013 + 0.545650i \(0.183717\pi\)
\(644\) 1.72591 0.0680104
\(645\) 0 0
\(646\) 42.0417 1.65411
\(647\) −24.3230 −0.956235 −0.478117 0.878296i \(-0.658681\pi\)
−0.478117 + 0.878296i \(0.658681\pi\)
\(648\) 72.1555 2.83453
\(649\) −4.02040 −0.157814
\(650\) 0 0
\(651\) 21.9173 0.859006
\(652\) −15.7633 −0.617337
\(653\) −5.06091 −0.198049 −0.0990243 0.995085i \(-0.531572\pi\)
−0.0990243 + 0.995085i \(0.531572\pi\)
\(654\) −28.7240 −1.12320
\(655\) 0 0
\(656\) −2.14512 −0.0837528
\(657\) −19.9354 −0.777754
\(658\) 2.16940 0.0845722
\(659\) 49.1062 1.91291 0.956453 0.291888i \(-0.0942833\pi\)
0.956453 + 0.291888i \(0.0942833\pi\)
\(660\) 0 0
\(661\) 22.7932 0.886555 0.443277 0.896385i \(-0.353816\pi\)
0.443277 + 0.896385i \(0.353816\pi\)
\(662\) −23.2593 −0.903996
\(663\) 102.219 3.96987
\(664\) 15.6630 0.607844
\(665\) 0 0
\(666\) 61.3942 2.37898
\(667\) −8.16187 −0.316029
\(668\) −9.50888 −0.367910
\(669\) 52.2475 2.02001
\(670\) 0 0
\(671\) 5.19496 0.200549
\(672\) −18.9517 −0.731076
\(673\) −27.0906 −1.04426 −0.522132 0.852865i \(-0.674863\pi\)
−0.522132 + 0.852865i \(0.674863\pi\)
\(674\) 15.7475 0.606570
\(675\) 0 0
\(676\) −4.32009 −0.166157
\(677\) 29.0859 1.11786 0.558931 0.829214i \(-0.311212\pi\)
0.558931 + 0.829214i \(0.311212\pi\)
\(678\) 51.0694 1.96131
\(679\) −16.9417 −0.650163
\(680\) 0 0
\(681\) −31.7226 −1.21561
\(682\) 5.47699 0.209725
\(683\) −11.8696 −0.454178 −0.227089 0.973874i \(-0.572921\pi\)
−0.227089 + 0.973874i \(0.572921\pi\)
\(684\) −67.7069 −2.58884
\(685\) 0 0
\(686\) 0.815390 0.0311317
\(687\) −2.84398 −0.108505
\(688\) 0.246766 0.00940788
\(689\) −14.7438 −0.561694
\(690\) 0 0
\(691\) −16.9378 −0.644344 −0.322172 0.946681i \(-0.604413\pi\)
−0.322172 + 0.946681i \(0.604413\pi\)
\(692\) −8.84149 −0.336103
\(693\) 7.64680 0.290478
\(694\) 3.88378 0.147426
\(695\) 0 0
\(696\) 56.0256 2.12365
\(697\) 36.8266 1.39491
\(698\) −8.44598 −0.319685
\(699\) −41.6100 −1.57384
\(700\) 0 0
\(701\) −10.7466 −0.405892 −0.202946 0.979190i \(-0.565052\pi\)
−0.202946 + 0.979190i \(0.565052\pi\)
\(702\) 49.8155 1.88017
\(703\) −65.2992 −2.46281
\(704\) −3.83016 −0.144354
\(705\) 0 0
\(706\) −1.08106 −0.0406862
\(707\) −1.54184 −0.0579868
\(708\) 17.5148 0.658247
\(709\) 24.9141 0.935669 0.467835 0.883816i \(-0.345034\pi\)
0.467835 + 0.883816i \(0.345034\pi\)
\(710\) 0 0
\(711\) −62.0818 −2.32825
\(712\) 21.0361 0.788362
\(713\) 8.68298 0.325180
\(714\) 20.6854 0.774131
\(715\) 0 0
\(716\) 0.292789 0.0109420
\(717\) 52.1239 1.94660
\(718\) −13.2237 −0.493504
\(719\) −16.9111 −0.630677 −0.315338 0.948979i \(-0.602118\pi\)
−0.315338 + 0.948979i \(0.602118\pi\)
\(720\) 0 0
\(721\) 6.39290 0.238084
\(722\) −20.3683 −0.758028
\(723\) −33.8182 −1.25771
\(724\) −0.981949 −0.0364938
\(725\) 0 0
\(726\) 2.66057 0.0987431
\(727\) 19.5713 0.725861 0.362930 0.931816i \(-0.381776\pi\)
0.362930 + 0.931816i \(0.381776\pi\)
\(728\) −10.9576 −0.406115
\(729\) 54.4734 2.01753
\(730\) 0 0
\(731\) −4.23640 −0.156689
\(732\) −22.6318 −0.836494
\(733\) −33.6072 −1.24131 −0.620654 0.784084i \(-0.713133\pi\)
−0.620654 + 0.784084i \(0.713133\pi\)
\(734\) −26.3426 −0.972324
\(735\) 0 0
\(736\) −7.50809 −0.276752
\(737\) −11.8802 −0.437614
\(738\) 29.5337 1.08715
\(739\) 10.9017 0.401024 0.200512 0.979691i \(-0.435739\pi\)
0.200512 + 0.979691i \(0.435739\pi\)
\(740\) 0 0
\(741\) −87.1910 −3.20304
\(742\) −2.98359 −0.109531
\(743\) 4.54503 0.166741 0.0833705 0.996519i \(-0.473432\pi\)
0.0833705 + 0.996519i \(0.473432\pi\)
\(744\) −59.6027 −2.18514
\(745\) 0 0
\(746\) −0.568403 −0.0208107
\(747\) 44.0430 1.61145
\(748\) −10.3804 −0.379546
\(749\) 0.521233 0.0190454
\(750\) 0 0
\(751\) −2.67127 −0.0974761 −0.0487381 0.998812i \(-0.515520\pi\)
−0.0487381 + 0.998812i \(0.515520\pi\)
\(752\) 1.20491 0.0439384
\(753\) −68.8233 −2.50806
\(754\) 20.7443 0.755462
\(755\) 0 0
\(756\) −20.2437 −0.736257
\(757\) −41.8574 −1.52133 −0.760667 0.649142i \(-0.775128\pi\)
−0.760667 + 0.649142i \(0.775128\pi\)
\(758\) 11.2554 0.408814
\(759\) 4.21795 0.153102
\(760\) 0 0
\(761\) −18.7435 −0.679452 −0.339726 0.940524i \(-0.610334\pi\)
−0.339726 + 0.940524i \(0.610334\pi\)
\(762\) 15.7781 0.571578
\(763\) 10.7962 0.390848
\(764\) −14.3721 −0.519966
\(765\) 0 0
\(766\) 8.50451 0.307280
\(767\) 16.1996 0.584934
\(768\) 47.5920 1.71733
\(769\) 32.5398 1.17342 0.586708 0.809799i \(-0.300424\pi\)
0.586708 + 0.809799i \(0.300424\pi\)
\(770\) 0 0
\(771\) 71.3929 2.57115
\(772\) −9.07385 −0.326575
\(773\) 17.5454 0.631065 0.315532 0.948915i \(-0.397817\pi\)
0.315532 + 0.948915i \(0.397817\pi\)
\(774\) −3.39745 −0.122119
\(775\) 0 0
\(776\) 46.0719 1.65389
\(777\) −32.1286 −1.15261
\(778\) −7.13400 −0.255766
\(779\) −31.4123 −1.12546
\(780\) 0 0
\(781\) 13.4894 0.482689
\(782\) 8.19494 0.293050
\(783\) 95.7331 3.42122
\(784\) 0.452875 0.0161741
\(785\) 0 0
\(786\) 14.6154 0.521313
\(787\) 15.1921 0.541539 0.270770 0.962644i \(-0.412722\pi\)
0.270770 + 0.962644i \(0.412722\pi\)
\(788\) 6.09214 0.217024
\(789\) 0.872814 0.0310730
\(790\) 0 0
\(791\) −19.1949 −0.682492
\(792\) −20.7950 −0.738919
\(793\) −20.9323 −0.743329
\(794\) −6.81338 −0.241798
\(795\) 0 0
\(796\) 21.1035 0.747993
\(797\) 7.73366 0.273940 0.136970 0.990575i \(-0.456264\pi\)
0.136970 + 0.990575i \(0.456264\pi\)
\(798\) −17.6442 −0.624597
\(799\) −20.6854 −0.731796
\(800\) 0 0
\(801\) 59.1516 2.09002
\(802\) 3.17759 0.112204
\(803\) 2.60702 0.0919999
\(804\) 51.7561 1.82530
\(805\) 0 0
\(806\) −22.0687 −0.777338
\(807\) −44.1872 −1.55546
\(808\) 4.19294 0.147507
\(809\) −1.13534 −0.0399163 −0.0199582 0.999801i \(-0.506353\pi\)
−0.0199582 + 0.999801i \(0.506353\pi\)
\(810\) 0 0
\(811\) −55.9646 −1.96518 −0.982592 0.185775i \(-0.940520\pi\)
−0.982592 + 0.185775i \(0.940520\pi\)
\(812\) −8.42994 −0.295833
\(813\) 8.22499 0.288463
\(814\) −8.02873 −0.281407
\(815\) 0 0
\(816\) 11.4888 0.402190
\(817\) 3.61355 0.126422
\(818\) −7.13293 −0.249397
\(819\) −30.8117 −1.07665
\(820\) 0 0
\(821\) −38.9449 −1.35919 −0.679593 0.733590i \(-0.737843\pi\)
−0.679593 + 0.733590i \(0.737843\pi\)
\(822\) −32.9157 −1.14807
\(823\) −30.6608 −1.06877 −0.534385 0.845241i \(-0.679457\pi\)
−0.534385 + 0.845241i \(0.679457\pi\)
\(824\) −17.3851 −0.605639
\(825\) 0 0
\(826\) 3.27819 0.114063
\(827\) −16.4794 −0.573047 −0.286523 0.958073i \(-0.592500\pi\)
−0.286523 + 0.958073i \(0.592500\pi\)
\(828\) −13.1977 −0.458652
\(829\) 24.4987 0.850876 0.425438 0.904988i \(-0.360120\pi\)
0.425438 + 0.904988i \(0.360120\pi\)
\(830\) 0 0
\(831\) −66.0892 −2.29261
\(832\) 15.4331 0.535045
\(833\) −7.77478 −0.269380
\(834\) 55.1588 1.90999
\(835\) 0 0
\(836\) 8.85428 0.306232
\(837\) −101.845 −3.52029
\(838\) 19.7226 0.681306
\(839\) −13.1212 −0.452993 −0.226497 0.974012i \(-0.572727\pi\)
−0.226497 + 0.974012i \(0.572727\pi\)
\(840\) 0 0
\(841\) 10.8654 0.374668
\(842\) −26.6368 −0.917964
\(843\) −8.63335 −0.297348
\(844\) 2.92998 0.100854
\(845\) 0 0
\(846\) −16.5890 −0.570342
\(847\) −1.00000 −0.0343604
\(848\) −1.65711 −0.0569055
\(849\) −32.1855 −1.10460
\(850\) 0 0
\(851\) −12.7284 −0.436324
\(852\) −58.7663 −2.01330
\(853\) 46.6526 1.59736 0.798678 0.601759i \(-0.205533\pi\)
0.798678 + 0.601759i \(0.205533\pi\)
\(854\) −4.23592 −0.144950
\(855\) 0 0
\(856\) −1.41746 −0.0484478
\(857\) 43.3400 1.48046 0.740232 0.672351i \(-0.234716\pi\)
0.740232 + 0.672351i \(0.234716\pi\)
\(858\) −10.7204 −0.365988
\(859\) 38.8066 1.32406 0.662031 0.749476i \(-0.269695\pi\)
0.662031 + 0.749476i \(0.269695\pi\)
\(860\) 0 0
\(861\) −15.4555 −0.526722
\(862\) 9.72821 0.331344
\(863\) 29.3228 0.998159 0.499079 0.866556i \(-0.333672\pi\)
0.499079 + 0.866556i \(0.333672\pi\)
\(864\) 88.0647 2.99602
\(865\) 0 0
\(866\) −12.7912 −0.434663
\(867\) −141.766 −4.81463
\(868\) 8.96816 0.304399
\(869\) 8.11865 0.275406
\(870\) 0 0
\(871\) 47.8697 1.62200
\(872\) −29.3596 −0.994240
\(873\) 129.550 4.38460
\(874\) −6.99011 −0.236444
\(875\) 0 0
\(876\) −11.3575 −0.383733
\(877\) −29.1181 −0.983249 −0.491624 0.870807i \(-0.663597\pi\)
−0.491624 + 0.870807i \(0.663597\pi\)
\(878\) 8.02764 0.270920
\(879\) −94.7620 −3.19624
\(880\) 0 0
\(881\) 40.9563 1.37985 0.689927 0.723879i \(-0.257643\pi\)
0.689927 + 0.723879i \(0.257643\pi\)
\(882\) −6.23513 −0.209948
\(883\) 15.7921 0.531446 0.265723 0.964049i \(-0.414389\pi\)
0.265723 + 0.964049i \(0.414389\pi\)
\(884\) 41.8264 1.40677
\(885\) 0 0
\(886\) −23.8807 −0.802287
\(887\) −0.283468 −0.00951794 −0.00475897 0.999989i \(-0.501515\pi\)
−0.00475897 + 0.999989i \(0.501515\pi\)
\(888\) 87.3717 2.93200
\(889\) −5.93032 −0.198897
\(890\) 0 0
\(891\) −26.5332 −0.888896
\(892\) 21.3788 0.715814
\(893\) 17.6442 0.590440
\(894\) −54.6672 −1.82834
\(895\) 0 0
\(896\) −8.49322 −0.283739
\(897\) −16.9956 −0.567467
\(898\) −7.49094 −0.249976
\(899\) −42.4106 −1.41447
\(900\) 0 0
\(901\) 28.4487 0.947764
\(902\) −3.86223 −0.128598
\(903\) 1.77794 0.0591662
\(904\) 52.1993 1.73612
\(905\) 0 0
\(906\) 5.66556 0.188225
\(907\) 16.4371 0.545784 0.272892 0.962045i \(-0.412020\pi\)
0.272892 + 0.962045i \(0.412020\pi\)
\(908\) −12.9803 −0.430767
\(909\) 11.7901 0.391054
\(910\) 0 0
\(911\) −4.21284 −0.139578 −0.0697888 0.997562i \(-0.522233\pi\)
−0.0697888 + 0.997562i \(0.522233\pi\)
\(912\) −9.79973 −0.324501
\(913\) −5.75966 −0.190617
\(914\) −29.3403 −0.970489
\(915\) 0 0
\(916\) −1.16371 −0.0384500
\(917\) −5.49332 −0.181405
\(918\) −96.1209 −3.17246
\(919\) −28.9593 −0.955281 −0.477640 0.878556i \(-0.658508\pi\)
−0.477640 + 0.878556i \(0.658508\pi\)
\(920\) 0 0
\(921\) −17.3930 −0.573120
\(922\) −26.3753 −0.868623
\(923\) −54.3535 −1.78907
\(924\) 4.35648 0.143318
\(925\) 0 0
\(926\) 2.80310 0.0921156
\(927\) −48.8853 −1.60560
\(928\) 36.6721 1.20382
\(929\) 6.15879 0.202063 0.101032 0.994883i \(-0.467786\pi\)
0.101032 + 0.994883i \(0.467786\pi\)
\(930\) 0 0
\(931\) 6.63172 0.217346
\(932\) −17.0261 −0.557708
\(933\) 33.2777 1.08946
\(934\) 6.75524 0.221038
\(935\) 0 0
\(936\) 83.7905 2.73878
\(937\) −22.0888 −0.721608 −0.360804 0.932642i \(-0.617498\pi\)
−0.360804 + 0.932642i \(0.617498\pi\)
\(938\) 9.68703 0.316293
\(939\) 62.7582 2.04804
\(940\) 0 0
\(941\) −37.6613 −1.22772 −0.613861 0.789414i \(-0.710384\pi\)
−0.613861 + 0.789414i \(0.710384\pi\)
\(942\) −31.2964 −1.01969
\(943\) −6.12301 −0.199393
\(944\) 1.82074 0.0592599
\(945\) 0 0
\(946\) 0.444297 0.0144453
\(947\) 8.68278 0.282153 0.141076 0.989999i \(-0.454944\pi\)
0.141076 + 0.989999i \(0.454944\pi\)
\(948\) −35.3688 −1.14872
\(949\) −10.5046 −0.340994
\(950\) 0 0
\(951\) 3.62158 0.117438
\(952\) 21.1431 0.685250
\(953\) −41.5075 −1.34456 −0.672280 0.740297i \(-0.734685\pi\)
−0.672280 + 0.740297i \(0.734685\pi\)
\(954\) 22.8150 0.738662
\(955\) 0 0
\(956\) 21.3282 0.689802
\(957\) −20.6019 −0.665965
\(958\) 0.841174 0.0271771
\(959\) 12.3717 0.399502
\(960\) 0 0
\(961\) 14.1184 0.455432
\(962\) 32.3506 1.04303
\(963\) −3.98577 −0.128440
\(964\) −13.8378 −0.445685
\(965\) 0 0
\(966\) −3.43928 −0.110657
\(967\) −15.1795 −0.488141 −0.244071 0.969757i \(-0.578483\pi\)
−0.244071 + 0.969757i \(0.578483\pi\)
\(968\) 2.71944 0.0874061
\(969\) 168.238 5.40459
\(970\) 0 0
\(971\) 24.5127 0.786651 0.393326 0.919399i \(-0.371325\pi\)
0.393326 + 0.919399i \(0.371325\pi\)
\(972\) 54.8603 1.75965
\(973\) −20.7319 −0.664636
\(974\) 2.26011 0.0724186
\(975\) 0 0
\(976\) −2.35267 −0.0753070
\(977\) 44.7550 1.43184 0.715920 0.698182i \(-0.246008\pi\)
0.715920 + 0.698182i \(0.246008\pi\)
\(978\) 31.4119 1.00444
\(979\) −7.73546 −0.247227
\(980\) 0 0
\(981\) −82.5563 −2.63582
\(982\) 7.43861 0.237376
\(983\) −45.5363 −1.45238 −0.726191 0.687493i \(-0.758711\pi\)
−0.726191 + 0.687493i \(0.758711\pi\)
\(984\) 42.0303 1.33988
\(985\) 0 0
\(986\) −40.0269 −1.27472
\(987\) 8.68130 0.276329
\(988\) −35.6770 −1.13504
\(989\) 0.704369 0.0223976
\(990\) 0 0
\(991\) 40.2154 1.27749 0.638743 0.769421i \(-0.279455\pi\)
0.638743 + 0.769421i \(0.279455\pi\)
\(992\) −39.0135 −1.23868
\(993\) −93.0765 −2.95369
\(994\) −10.9991 −0.348871
\(995\) 0 0
\(996\) 25.0919 0.795066
\(997\) −60.0595 −1.90210 −0.951051 0.309033i \(-0.899995\pi\)
−0.951051 + 0.309033i \(0.899995\pi\)
\(998\) 4.12339 0.130524
\(999\) 149.295 4.72349
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.2.a.ba.1.3 7
5.2 odd 4 1925.2.b.q.1849.6 14
5.3 odd 4 1925.2.b.q.1849.9 14
5.4 even 2 1925.2.a.bc.1.5 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1925.2.a.ba.1.3 7 1.1 even 1 trivial
1925.2.a.bc.1.5 yes 7 5.4 even 2
1925.2.b.q.1849.6 14 5.2 odd 4
1925.2.b.q.1849.9 14 5.3 odd 4