Properties

Label 1925.2
Level 1925
Weight 2
Dimension 123222
Nonzero newspaces 84
Sturm bound 576000
Trace bound 12

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 84 \)
Sturm bound: \(576000\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1925))\).

Total New Old
Modular forms 147360 126914 20446
Cusp forms 140641 123222 17419
Eisenstein series 6719 3692 3027

Trace form

\( 123222q - 210q^{2} - 204q^{3} - 186q^{4} - 244q^{5} - 290q^{6} - 238q^{7} - 436q^{8} - 130q^{9} + O(q^{10}) \) \( 123222q - 210q^{2} - 204q^{3} - 186q^{4} - 244q^{5} - 290q^{6} - 238q^{7} - 436q^{8} - 130q^{9} - 204q^{10} - 350q^{11} - 280q^{12} - 134q^{13} - 168q^{14} - 568q^{15} - 190q^{16} - 130q^{17} - 34q^{18} - 158q^{19} - 264q^{20} - 336q^{21} - 510q^{22} - 394q^{23} - 230q^{24} - 308q^{25} - 526q^{26} - 192q^{27} - 320q^{28} - 492q^{29} - 328q^{30} - 316q^{31} - 178q^{32} - 180q^{33} - 424q^{34} - 336q^{35} - 764q^{36} - 104q^{37} - 70q^{38} - 182q^{39} - 468q^{40} - 206q^{41} - 386q^{42} - 608q^{43} - 408q^{44} - 836q^{45} - 466q^{46} - 318q^{47} - 782q^{48} - 260q^{49} - 868q^{50} - 690q^{51} - 742q^{52} - 214q^{53} - 786q^{54} - 436q^{55} - 1102q^{56} - 748q^{57} - 822q^{58} - 400q^{59} - 824q^{60} - 708q^{61} - 694q^{62} - 642q^{63} - 1300q^{64} - 468q^{65} - 778q^{66} - 794q^{67} - 826q^{68} - 494q^{69} - 644q^{70} - 782q^{71} - 1014q^{72} - 288q^{73} - 402q^{74} - 376q^{75} - 936q^{76} - 348q^{77} - 1224q^{78} - 212q^{79} - 516q^{80} - 248q^{81} - 342q^{82} - 276q^{83} - 810q^{84} - 844q^{85} - 298q^{86} - 188q^{87} - 300q^{88} - 618q^{89} - 1020q^{90} - 468q^{91} - 864q^{92} - 626q^{93} - 698q^{94} - 536q^{95} - 1262q^{96} - 768q^{97} - 890q^{98} - 1102q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1925))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1925.2.a \(\chi_{1925}(1, \cdot)\) 1925.2.a.a 1 1
1925.2.a.b 1
1925.2.a.c 1
1925.2.a.d 1
1925.2.a.e 1
1925.2.a.f 1
1925.2.a.g 1
1925.2.a.h 1
1925.2.a.i 1
1925.2.a.j 1
1925.2.a.k 1
1925.2.a.l 1
1925.2.a.m 1
1925.2.a.n 2
1925.2.a.o 2
1925.2.a.p 2
1925.2.a.q 2
1925.2.a.r 2
1925.2.a.s 2
1925.2.a.t 2
1925.2.a.u 3
1925.2.a.v 3
1925.2.a.w 3
1925.2.a.x 4
1925.2.a.y 6
1925.2.a.z 6
1925.2.a.ba 7
1925.2.a.bb 7
1925.2.a.bc 7
1925.2.a.bd 7
1925.2.a.be 8
1925.2.a.bf 8
1925.2.b \(\chi_{1925}(1849, \cdot)\) 1925.2.b.a 2 1
1925.2.b.b 2
1925.2.b.c 2
1925.2.b.d 2
1925.2.b.e 2
1925.2.b.f 2
1925.2.b.g 2
1925.2.b.h 4
1925.2.b.i 4
1925.2.b.j 4
1925.2.b.k 4
1925.2.b.l 4
1925.2.b.m 6
1925.2.b.n 6
1925.2.b.o 6
1925.2.b.p 8
1925.2.b.q 14
1925.2.b.r 14
1925.2.c \(\chi_{1925}(76, \cdot)\) n/a 146 1
1925.2.h \(\chi_{1925}(1924, \cdot)\) n/a 140 1
1925.2.i \(\chi_{1925}(1101, \cdot)\) n/a 252 2
1925.2.j \(\chi_{1925}(1343, \cdot)\) n/a 240 2
1925.2.k \(\chi_{1925}(43, \cdot)\) n/a 216 2
1925.2.n \(\chi_{1925}(246, \cdot)\) n/a 720 4
1925.2.o \(\chi_{1925}(386, \cdot)\) n/a 592 4
1925.2.p \(\chi_{1925}(526, \cdot)\) n/a 456 4
1925.2.q \(\chi_{1925}(141, \cdot)\) n/a 720 4
1925.2.r \(\chi_{1925}(36, \cdot)\) n/a 720 4
1925.2.s \(\chi_{1925}(71, \cdot)\) n/a 720 4
1925.2.t \(\chi_{1925}(549, \cdot)\) n/a 280 2
1925.2.y \(\chi_{1925}(1024, \cdot)\) n/a 240 2
1925.2.z \(\chi_{1925}(626, \cdot)\) n/a 292 2
1925.2.bc \(\chi_{1925}(41, \cdot)\) n/a 944 4
1925.2.bd \(\chi_{1925}(379, \cdot)\) n/a 720 4
1925.2.bg \(\chi_{1925}(1014, \cdot)\) n/a 944 4
1925.2.bh \(\chi_{1925}(384, \cdot)\) n/a 944 4
1925.2.bi \(\chi_{1925}(349, \cdot)\) n/a 560 4
1925.2.bj \(\chi_{1925}(314, \cdot)\) n/a 944 4
1925.2.bs \(\chi_{1925}(629, \cdot)\) n/a 944 4
1925.2.bt \(\chi_{1925}(1114, \cdot)\) n/a 720 4
1925.2.bu \(\chi_{1925}(6, \cdot)\) n/a 944 4
1925.2.cd \(\chi_{1925}(426, \cdot)\) n/a 584 4
1925.2.ce \(\chi_{1925}(449, \cdot)\) n/a 432 4
1925.2.cf \(\chi_{1925}(461, \cdot)\) n/a 944 4
1925.2.cg \(\chi_{1925}(391, \cdot)\) n/a 944 4
1925.2.ch \(\chi_{1925}(309, \cdot)\) n/a 608 4
1925.2.ci \(\chi_{1925}(64, \cdot)\) n/a 720 4
1925.2.cj \(\chi_{1925}(1091, \cdot)\) n/a 944 4
1925.2.ck \(\chi_{1925}(169, \cdot)\) n/a 720 4
1925.2.cn \(\chi_{1925}(139, \cdot)\) n/a 944 4
1925.2.cq \(\chi_{1925}(32, \cdot)\) n/a 560 4
1925.2.cr \(\chi_{1925}(243, \cdot)\) n/a 480 4
1925.2.cu \(\chi_{1925}(366, \cdot)\) n/a 1888 8
1925.2.cv \(\chi_{1925}(191, \cdot)\) n/a 1888 8
1925.2.cw \(\chi_{1925}(401, \cdot)\) n/a 1168 8
1925.2.cx \(\chi_{1925}(221, \cdot)\) n/a 1600 8
1925.2.cy \(\chi_{1925}(16, \cdot)\) n/a 1888 8
1925.2.cz \(\chi_{1925}(81, \cdot)\) n/a 1888 8
1925.2.dc \(\chi_{1925}(162, \cdot)\) n/a 1440 8
1925.2.dd \(\chi_{1925}(48, \cdot)\) n/a 1888 8
1925.2.de \(\chi_{1925}(127, \cdot)\) n/a 1440 8
1925.2.df \(\chi_{1925}(27, \cdot)\) n/a 1888 8
1925.2.do \(\chi_{1925}(337, \cdot)\) n/a 1440 8
1925.2.dp \(\chi_{1925}(97, \cdot)\) n/a 1888 8
1925.2.dq \(\chi_{1925}(57, \cdot)\) n/a 864 8
1925.2.dr \(\chi_{1925}(8, \cdot)\) n/a 1440 8
1925.2.ds \(\chi_{1925}(412, \cdot)\) n/a 1888 8
1925.2.dt \(\chi_{1925}(482, \cdot)\) n/a 1120 8
1925.2.du \(\chi_{1925}(188, \cdot)\) n/a 1600 8
1925.2.dv \(\chi_{1925}(197, \cdot)\) n/a 1440 8
1925.2.ea \(\chi_{1925}(479, \cdot)\) n/a 1888 8
1925.2.ed \(\chi_{1925}(206, \cdot)\) n/a 1888 8
1925.2.ee \(\chi_{1925}(131, \cdot)\) n/a 1888 8
1925.2.ef \(\chi_{1925}(4, \cdot)\) n/a 1888 8
1925.2.eg \(\chi_{1925}(144, \cdot)\) n/a 1600 8
1925.2.eh \(\chi_{1925}(101, \cdot)\) n/a 1168 8
1925.2.ei \(\chi_{1925}(324, \cdot)\) n/a 1120 8
1925.2.ej \(\chi_{1925}(61, \cdot)\) n/a 1888 8
1925.2.ek \(\chi_{1925}(9, \cdot)\) n/a 1888 8
1925.2.et \(\chi_{1925}(289, \cdot)\) n/a 1888 8
1925.2.eu \(\chi_{1925}(556, \cdot)\) n/a 1888 8
1925.2.ev \(\chi_{1925}(94, \cdot)\) n/a 1888 8
1925.2.fe \(\chi_{1925}(24, \cdot)\) n/a 1120 8
1925.2.ff \(\chi_{1925}(54, \cdot)\) n/a 1888 8
1925.2.fg \(\chi_{1925}(19, \cdot)\) n/a 1888 8
1925.2.fh \(\chi_{1925}(129, \cdot)\) n/a 1888 8
1925.2.fk \(\chi_{1925}(171, \cdot)\) n/a 1888 8
1925.2.fl \(\chi_{1925}(114, \cdot)\) n/a 1888 8
1925.2.fo \(\chi_{1925}(3, \cdot)\) n/a 3776 16
1925.2.fp \(\chi_{1925}(228, \cdot)\) n/a 3776 16
1925.2.fy \(\chi_{1925}(142, \cdot)\) n/a 3776 16
1925.2.fz \(\chi_{1925}(12, \cdot)\) n/a 3200 16
1925.2.ga \(\chi_{1925}(82, \cdot)\) n/a 2240 16
1925.2.gb \(\chi_{1925}(38, \cdot)\) n/a 3776 16
1925.2.gc \(\chi_{1925}(2, \cdot)\) n/a 3776 16
1925.2.gd \(\chi_{1925}(18, \cdot)\) n/a 2240 16
1925.2.ge \(\chi_{1925}(192, \cdot)\) n/a 3776 16
1925.2.gf \(\chi_{1925}(513, \cdot)\) n/a 3776 16
1925.2.gk \(\chi_{1925}(108, \cdot)\) n/a 3776 16
1925.2.gl \(\chi_{1925}(72, \cdot)\) n/a 3776 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1925))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1925)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(385))\)\(^{\oplus 2}\)