Properties

Label 1925.2.a.ba
Level $1925$
Weight $2$
Character orbit 1925.a
Self dual yes
Analytic conductor $15.371$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,2,Mod(1,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1925.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-1,0,13,0,-1,-7,-6,13,0,-7,21,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3712023891\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 10x^{4} + 47x^{3} - 25x^{2} - 35x + 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{2} q^{3} + (\beta_{3} - \beta_{2} + 2) q^{4} + ( - \beta_{6} - \beta_{4} - \beta_1) q^{6} - q^{7} + (\beta_{5} - \beta_{4} - 2 \beta_1 - 1) q^{8} + (\beta_{5} + \beta_{4} + 2) q^{9}+ \cdots + ( - \beta_{5} - \beta_{4} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 13 q^{4} - q^{6} - 7 q^{7} - 6 q^{8} + 13 q^{9} - 7 q^{11} + 21 q^{12} + 3 q^{13} + q^{14} + 29 q^{16} - 14 q^{18} + 18 q^{19} + q^{22} + 7 q^{23} - 22 q^{24} + 13 q^{26} - 6 q^{27} - 13 q^{28}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 13x^{5} + 10x^{4} + 47x^{3} - 25x^{2} - 35x + 20 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} - 15\nu^{4} - 3\nu^{3} + 60\nu^{2} + 21\nu - 36 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 15\nu^{4} - 3\nu^{3} + 64\nu^{2} + 21\nu - 52 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} - 13\nu^{4} - \nu^{3} + 46\nu^{2} + 7\nu - 30 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 13\nu^{4} - 3\nu^{3} + 46\nu^{2} + 19\nu - 28 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{6} + 2\nu^{5} + 39\nu^{4} - 11\nu^{3} - 138\nu^{2} - 17\nu + 80 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 7\beta_{3} - 9\beta_{2} + \beta _1 + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{6} - 7\beta_{5} + 10\beta_{4} + 40\beta _1 + 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 12\beta_{5} + 3\beta_{4} + 45\beta_{3} - 71\beta_{2} + 12\beta _1 + 159 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.78276
2.47176
0.815390
0.633891
−1.06204
−2.02168
−2.62008
−2.78276 3.17748 5.74378 0 −8.84217 −1.00000 −10.4180 7.09637 0
1.2 −2.47176 −1.33124 4.10959 0 3.29051 −1.00000 −5.21439 −1.22779 0
1.3 −0.815390 −3.26294 −1.33514 0 2.66057 −1.00000 2.71944 7.64680 0
1.4 −0.633891 0.425088 −1.59818 0 −0.269459 −1.00000 2.28085 −2.81930 0
1.5 1.06204 1.17047 −0.872076 0 1.24309 −1.00000 −3.05025 −1.63000 0
1.6 2.02168 −2.31630 2.08720 0 −4.68282 −1.00000 0.176288 2.36524 0
1.7 2.62008 2.13745 4.86484 0 5.60029 −1.00000 7.50611 1.56868 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1925.2.a.ba 7
5.b even 2 1 1925.2.a.bc yes 7
5.c odd 4 2 1925.2.b.q 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1925.2.a.ba 7 1.a even 1 1 trivial
1925.2.a.bc yes 7 5.b even 2 1
1925.2.b.q 14 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1925))\):

\( T_{2}^{7} + T_{2}^{6} - 13T_{2}^{5} - 10T_{2}^{4} + 47T_{2}^{3} + 25T_{2}^{2} - 35T_{2} - 20 \) Copy content Toggle raw display
\( T_{3}^{7} - 17T_{3}^{5} + 2T_{3}^{4} + 77T_{3}^{3} - 20T_{3}^{2} - 85T_{3} + 34 \) Copy content Toggle raw display
\( T_{13}^{7} - 3T_{13}^{6} - 49T_{13}^{5} + 75T_{13}^{4} + 668T_{13}^{3} - 460T_{13}^{2} - 2404T_{13} + 1324 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} + T^{6} + \cdots - 20 \) Copy content Toggle raw display
$3$ \( T^{7} - 17 T^{5} + \cdots + 34 \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( (T + 1)^{7} \) Copy content Toggle raw display
$11$ \( (T + 1)^{7} \) Copy content Toggle raw display
$13$ \( T^{7} - 3 T^{6} + \cdots + 1324 \) Copy content Toggle raw display
$17$ \( T^{7} - 80 T^{5} + \cdots + 509 \) Copy content Toggle raw display
$19$ \( T^{7} - 18 T^{6} + \cdots + 64912 \) Copy content Toggle raw display
$23$ \( T^{7} - 7 T^{6} + \cdots + 9088 \) Copy content Toggle raw display
$29$ \( T^{7} + 2 T^{6} + \cdots - 256 \) Copy content Toggle raw display
$31$ \( T^{7} - 24 T^{6} + \cdots - 9680 \) Copy content Toggle raw display
$37$ \( T^{7} + 21 T^{6} + \cdots + 2092 \) Copy content Toggle raw display
$41$ \( T^{7} + 10 T^{6} + \cdots - 1836 \) Copy content Toggle raw display
$43$ \( T^{7} - 2 T^{6} + \cdots - 3548 \) Copy content Toggle raw display
$47$ \( T^{7} + T^{6} + \cdots + 680 \) Copy content Toggle raw display
$53$ \( T^{7} - 11 T^{6} + \cdots + 101363 \) Copy content Toggle raw display
$59$ \( T^{7} - T^{6} + \cdots + 9112 \) Copy content Toggle raw display
$61$ \( T^{7} - 28 T^{6} + \cdots + 59060 \) Copy content Toggle raw display
$67$ \( T^{7} - 206 T^{5} + \cdots + 128080 \) Copy content Toggle raw display
$71$ \( T^{7} + 10 T^{6} + \cdots - 358928 \) Copy content Toggle raw display
$73$ \( T^{7} - 11 T^{6} + \cdots + 18148 \) Copy content Toggle raw display
$79$ \( T^{7} - 19 T^{6} + \cdots + 777320 \) Copy content Toggle raw display
$83$ \( T^{7} - 19 T^{6} + \cdots + 371072 \) Copy content Toggle raw display
$89$ \( T^{7} + 2 T^{6} + \cdots - 702976 \) Copy content Toggle raw display
$97$ \( T^{7} + 8 T^{6} + \cdots - 131008 \) Copy content Toggle raw display
show more
show less