Properties

Label 1922.4.a.x.1.10
Level $1922$
Weight $4$
Character 1922.1
Self dual yes
Analytic conductor $113.402$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,4,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-64,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.401671031\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 1922.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -5.10931 q^{3} +4.00000 q^{4} -18.4069 q^{5} +10.2186 q^{6} +1.23685 q^{7} -8.00000 q^{8} -0.894964 q^{9} +36.8139 q^{10} +71.5290 q^{11} -20.4372 q^{12} +63.7199 q^{13} -2.47370 q^{14} +94.0467 q^{15} +16.0000 q^{16} +2.24508 q^{17} +1.78993 q^{18} +89.0186 q^{19} -73.6278 q^{20} -6.31944 q^{21} -143.058 q^{22} +48.7918 q^{23} +40.8745 q^{24} +213.815 q^{25} -127.440 q^{26} +142.524 q^{27} +4.94739 q^{28} +204.702 q^{29} -188.093 q^{30} -32.0000 q^{32} -365.464 q^{33} -4.49015 q^{34} -22.7666 q^{35} -3.57986 q^{36} +332.206 q^{37} -178.037 q^{38} -325.565 q^{39} +147.256 q^{40} +121.043 q^{41} +12.6389 q^{42} +527.799 q^{43} +286.116 q^{44} +16.4736 q^{45} -97.5836 q^{46} +75.7410 q^{47} -81.7489 q^{48} -341.470 q^{49} -427.631 q^{50} -11.4708 q^{51} +254.880 q^{52} -203.982 q^{53} -285.048 q^{54} -1316.63 q^{55} -9.89479 q^{56} -454.823 q^{57} -409.404 q^{58} -361.936 q^{59} +376.187 q^{60} +602.325 q^{61} -1.10694 q^{63} +64.0000 q^{64} -1172.89 q^{65} +730.928 q^{66} +192.721 q^{67} +8.98031 q^{68} -249.292 q^{69} +45.5332 q^{70} -226.007 q^{71} +7.15971 q^{72} -274.197 q^{73} -664.411 q^{74} -1092.45 q^{75} +356.074 q^{76} +88.4706 q^{77} +651.129 q^{78} -381.937 q^{79} -294.511 q^{80} -704.035 q^{81} -242.087 q^{82} +453.354 q^{83} -25.2778 q^{84} -41.3250 q^{85} -1055.60 q^{86} -1045.89 q^{87} -572.232 q^{88} +881.158 q^{89} -32.9471 q^{90} +78.8119 q^{91} +195.167 q^{92} -151.482 q^{94} -1638.56 q^{95} +163.498 q^{96} -132.635 q^{97} +682.940 q^{98} -64.0159 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{2} + 128 q^{4} + 112 q^{7} - 256 q^{8} + 288 q^{9} - 224 q^{14} + 512 q^{16} - 576 q^{18} + 304 q^{19} + 1200 q^{25} + 448 q^{28} - 1024 q^{32} - 272 q^{33} + 1152 q^{36} - 608 q^{38} + 1616 q^{39}+ \cdots - 6176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −5.10931 −0.983287 −0.491643 0.870797i \(-0.663604\pi\)
−0.491643 + 0.870797i \(0.663604\pi\)
\(4\) 4.00000 0.500000
\(5\) −18.4069 −1.64637 −0.823183 0.567776i \(-0.807804\pi\)
−0.823183 + 0.567776i \(0.807804\pi\)
\(6\) 10.2186 0.695289
\(7\) 1.23685 0.0667835 0.0333918 0.999442i \(-0.489369\pi\)
0.0333918 + 0.999442i \(0.489369\pi\)
\(8\) −8.00000 −0.353553
\(9\) −0.894964 −0.0331468
\(10\) 36.8139 1.16416
\(11\) 71.5290 1.96062 0.980310 0.197466i \(-0.0632712\pi\)
0.980310 + 0.197466i \(0.0632712\pi\)
\(12\) −20.4372 −0.491643
\(13\) 63.7199 1.35944 0.679720 0.733471i \(-0.262101\pi\)
0.679720 + 0.733471i \(0.262101\pi\)
\(14\) −2.47370 −0.0472231
\(15\) 94.0467 1.61885
\(16\) 16.0000 0.250000
\(17\) 2.24508 0.0320301 0.0160150 0.999872i \(-0.494902\pi\)
0.0160150 + 0.999872i \(0.494902\pi\)
\(18\) 1.78993 0.0234383
\(19\) 89.0186 1.07486 0.537428 0.843310i \(-0.319396\pi\)
0.537428 + 0.843310i \(0.319396\pi\)
\(20\) −73.6278 −0.823183
\(21\) −6.31944 −0.0656674
\(22\) −143.058 −1.38637
\(23\) 48.7918 0.442339 0.221170 0.975235i \(-0.429013\pi\)
0.221170 + 0.975235i \(0.429013\pi\)
\(24\) 40.8745 0.347644
\(25\) 213.815 1.71052
\(26\) −127.440 −0.961270
\(27\) 142.524 1.01588
\(28\) 4.94739 0.0333918
\(29\) 204.702 1.31077 0.655383 0.755297i \(-0.272507\pi\)
0.655383 + 0.755297i \(0.272507\pi\)
\(30\) −188.093 −1.14470
\(31\) 0 0
\(32\) −32.0000 −0.176777
\(33\) −365.464 −1.92785
\(34\) −4.49015 −0.0226487
\(35\) −22.7666 −0.109950
\(36\) −3.57986 −0.0165734
\(37\) 332.206 1.47606 0.738031 0.674767i \(-0.235756\pi\)
0.738031 + 0.674767i \(0.235756\pi\)
\(38\) −178.037 −0.760038
\(39\) −325.565 −1.33672
\(40\) 147.256 0.582079
\(41\) 121.043 0.461068 0.230534 0.973064i \(-0.425953\pi\)
0.230534 + 0.973064i \(0.425953\pi\)
\(42\) 12.6389 0.0464338
\(43\) 527.799 1.87183 0.935913 0.352230i \(-0.114577\pi\)
0.935913 + 0.352230i \(0.114577\pi\)
\(44\) 286.116 0.980310
\(45\) 16.4736 0.0545718
\(46\) −97.5836 −0.312781
\(47\) 75.7410 0.235063 0.117531 0.993069i \(-0.462502\pi\)
0.117531 + 0.993069i \(0.462502\pi\)
\(48\) −81.7489 −0.245822
\(49\) −341.470 −0.995540
\(50\) −427.631 −1.20952
\(51\) −11.4708 −0.0314947
\(52\) 254.880 0.679720
\(53\) −203.982 −0.528661 −0.264331 0.964432i \(-0.585151\pi\)
−0.264331 + 0.964432i \(0.585151\pi\)
\(54\) −285.048 −0.718335
\(55\) −1316.63 −3.22790
\(56\) −9.89479 −0.0236115
\(57\) −454.823 −1.05689
\(58\) −409.404 −0.926852
\(59\) −361.936 −0.798646 −0.399323 0.916810i \(-0.630755\pi\)
−0.399323 + 0.916810i \(0.630755\pi\)
\(60\) 376.187 0.809426
\(61\) 602.325 1.26426 0.632129 0.774863i \(-0.282181\pi\)
0.632129 + 0.774863i \(0.282181\pi\)
\(62\) 0 0
\(63\) −1.10694 −0.00221366
\(64\) 64.0000 0.125000
\(65\) −1172.89 −2.23814
\(66\) 730.928 1.36320
\(67\) 192.721 0.351411 0.175706 0.984443i \(-0.443779\pi\)
0.175706 + 0.984443i \(0.443779\pi\)
\(68\) 8.98031 0.0160150
\(69\) −249.292 −0.434946
\(70\) 45.5332 0.0777465
\(71\) −226.007 −0.377776 −0.188888 0.981999i \(-0.560488\pi\)
−0.188888 + 0.981999i \(0.560488\pi\)
\(72\) 7.15971 0.0117192
\(73\) −274.197 −0.439622 −0.219811 0.975543i \(-0.570544\pi\)
−0.219811 + 0.975543i \(0.570544\pi\)
\(74\) −664.411 −1.04373
\(75\) −1092.45 −1.68194
\(76\) 356.074 0.537428
\(77\) 88.4706 0.130937
\(78\) 651.129 0.945204
\(79\) −381.937 −0.543940 −0.271970 0.962306i \(-0.587675\pi\)
−0.271970 + 0.962306i \(0.587675\pi\)
\(80\) −294.511 −0.411592
\(81\) −704.035 −0.965754
\(82\) −242.087 −0.326024
\(83\) 453.354 0.599543 0.299771 0.954011i \(-0.403090\pi\)
0.299771 + 0.954011i \(0.403090\pi\)
\(84\) −25.2778 −0.0328337
\(85\) −41.3250 −0.0527332
\(86\) −1055.60 −1.32358
\(87\) −1045.89 −1.28886
\(88\) −572.232 −0.693184
\(89\) 881.158 1.04947 0.524733 0.851267i \(-0.324165\pi\)
0.524733 + 0.851267i \(0.324165\pi\)
\(90\) −32.9471 −0.0385881
\(91\) 78.8119 0.0907882
\(92\) 195.167 0.221170
\(93\) 0 0
\(94\) −151.482 −0.166215
\(95\) −1638.56 −1.76961
\(96\) 163.498 0.173822
\(97\) −132.635 −0.138835 −0.0694177 0.997588i \(-0.522114\pi\)
−0.0694177 + 0.997588i \(0.522114\pi\)
\(98\) 682.940 0.703953
\(99\) −64.0159 −0.0649883
\(100\) 855.262 0.855262
\(101\) 1291.89 1.27275 0.636373 0.771381i \(-0.280434\pi\)
0.636373 + 0.771381i \(0.280434\pi\)
\(102\) 22.9416 0.0222702
\(103\) 1505.29 1.44001 0.720005 0.693969i \(-0.244140\pi\)
0.720005 + 0.693969i \(0.244140\pi\)
\(104\) −509.759 −0.480635
\(105\) 116.322 0.108113
\(106\) 407.963 0.373820
\(107\) −299.084 −0.270220 −0.135110 0.990831i \(-0.543139\pi\)
−0.135110 + 0.990831i \(0.543139\pi\)
\(108\) 570.096 0.507940
\(109\) 345.139 0.303288 0.151644 0.988435i \(-0.451543\pi\)
0.151644 + 0.988435i \(0.451543\pi\)
\(110\) 2633.26 2.28247
\(111\) −1697.34 −1.45139
\(112\) 19.7896 0.0166959
\(113\) −1760.17 −1.46533 −0.732666 0.680588i \(-0.761724\pi\)
−0.732666 + 0.680588i \(0.761724\pi\)
\(114\) 909.647 0.747335
\(115\) −898.108 −0.728252
\(116\) 818.808 0.655383
\(117\) −57.0271 −0.0450611
\(118\) 723.873 0.564728
\(119\) 2.77682 0.00213908
\(120\) −752.374 −0.572350
\(121\) 3785.40 2.84403
\(122\) −1204.65 −0.893966
\(123\) −618.448 −0.453362
\(124\) 0 0
\(125\) −1634.82 −1.16978
\(126\) 2.21387 0.00156530
\(127\) −1880.64 −1.31402 −0.657009 0.753883i \(-0.728179\pi\)
−0.657009 + 0.753883i \(0.728179\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2696.69 −1.84054
\(130\) 2345.78 1.58260
\(131\) 776.264 0.517729 0.258864 0.965914i \(-0.416652\pi\)
0.258864 + 0.965914i \(0.416652\pi\)
\(132\) −1461.86 −0.963926
\(133\) 110.102 0.0717827
\(134\) −385.441 −0.248485
\(135\) −2623.43 −1.67251
\(136\) −17.9606 −0.0113243
\(137\) 1012.18 0.631214 0.315607 0.948890i \(-0.397792\pi\)
0.315607 + 0.948890i \(0.397792\pi\)
\(138\) 498.585 0.307553
\(139\) 936.821 0.571656 0.285828 0.958281i \(-0.407731\pi\)
0.285828 + 0.958281i \(0.407731\pi\)
\(140\) −91.0664 −0.0549751
\(141\) −386.984 −0.231134
\(142\) 452.013 0.267128
\(143\) 4557.82 2.66535
\(144\) −14.3194 −0.00828671
\(145\) −3767.94 −2.15800
\(146\) 548.395 0.310860
\(147\) 1744.68 0.978901
\(148\) 1328.82 0.738031
\(149\) −681.426 −0.374661 −0.187331 0.982297i \(-0.559984\pi\)
−0.187331 + 0.982297i \(0.559984\pi\)
\(150\) 2184.90 1.18931
\(151\) −2081.94 −1.12202 −0.561012 0.827808i \(-0.689588\pi\)
−0.561012 + 0.827808i \(0.689588\pi\)
\(152\) −712.149 −0.380019
\(153\) −2.00926 −0.00106170
\(154\) −176.941 −0.0925865
\(155\) 0 0
\(156\) −1302.26 −0.668360
\(157\) 3733.66 1.89795 0.948976 0.315347i \(-0.102121\pi\)
0.948976 + 0.315347i \(0.102121\pi\)
\(158\) 763.875 0.384624
\(159\) 1042.21 0.519826
\(160\) 589.022 0.291039
\(161\) 60.3481 0.0295410
\(162\) 1408.07 0.682892
\(163\) 712.093 0.342181 0.171090 0.985255i \(-0.445271\pi\)
0.171090 + 0.985255i \(0.445271\pi\)
\(164\) 484.173 0.230534
\(165\) 6727.07 3.17395
\(166\) −906.708 −0.423941
\(167\) 890.833 0.412783 0.206391 0.978470i \(-0.433828\pi\)
0.206391 + 0.978470i \(0.433828\pi\)
\(168\) 50.5555 0.0232169
\(169\) 1863.23 0.848078
\(170\) 82.6500 0.0372880
\(171\) −79.6684 −0.0356281
\(172\) 2111.19 0.935913
\(173\) −3468.61 −1.52436 −0.762178 0.647368i \(-0.775870\pi\)
−0.762178 + 0.647368i \(0.775870\pi\)
\(174\) 2091.77 0.911361
\(175\) 264.457 0.114235
\(176\) 1144.46 0.490155
\(177\) 1849.24 0.785298
\(178\) −1762.32 −0.742085
\(179\) −188.106 −0.0785457 −0.0392728 0.999229i \(-0.512504\pi\)
−0.0392728 + 0.999229i \(0.512504\pi\)
\(180\) 65.8942 0.0272859
\(181\) 2769.88 1.13748 0.568738 0.822519i \(-0.307432\pi\)
0.568738 + 0.822519i \(0.307432\pi\)
\(182\) −157.624 −0.0641970
\(183\) −3077.46 −1.24313
\(184\) −390.335 −0.156390
\(185\) −6114.89 −2.43014
\(186\) 0 0
\(187\) 160.588 0.0627988
\(188\) 302.964 0.117531
\(189\) 176.281 0.0678440
\(190\) 3277.12 1.25130
\(191\) −1238.47 −0.469175 −0.234588 0.972095i \(-0.575374\pi\)
−0.234588 + 0.972095i \(0.575374\pi\)
\(192\) −326.996 −0.122911
\(193\) 2844.01 1.06070 0.530352 0.847777i \(-0.322060\pi\)
0.530352 + 0.847777i \(0.322060\pi\)
\(194\) 265.270 0.0981714
\(195\) 5992.65 2.20073
\(196\) −1365.88 −0.497770
\(197\) −395.753 −0.143128 −0.0715641 0.997436i \(-0.522799\pi\)
−0.0715641 + 0.997436i \(0.522799\pi\)
\(198\) 128.032 0.0459537
\(199\) −4306.58 −1.53410 −0.767049 0.641588i \(-0.778276\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(200\) −1710.52 −0.604762
\(201\) −984.669 −0.345538
\(202\) −2583.77 −0.899967
\(203\) 253.185 0.0875376
\(204\) −45.8832 −0.0157474
\(205\) −2228.04 −0.759087
\(206\) −3010.59 −1.01824
\(207\) −43.6669 −0.0146621
\(208\) 1019.52 0.339860
\(209\) 6367.41 2.10738
\(210\) −232.643 −0.0764472
\(211\) −5420.99 −1.76870 −0.884352 0.466821i \(-0.845399\pi\)
−0.884352 + 0.466821i \(0.845399\pi\)
\(212\) −815.927 −0.264331
\(213\) 1154.74 0.371462
\(214\) 598.167 0.191074
\(215\) −9715.16 −3.08171
\(216\) −1140.19 −0.359168
\(217\) 0 0
\(218\) −690.279 −0.214457
\(219\) 1400.96 0.432274
\(220\) −5266.52 −1.61395
\(221\) 143.056 0.0435430
\(222\) 3394.68 1.02629
\(223\) −1946.15 −0.584412 −0.292206 0.956355i \(-0.594389\pi\)
−0.292206 + 0.956355i \(0.594389\pi\)
\(224\) −39.5791 −0.0118058
\(225\) −191.357 −0.0566984
\(226\) 3520.33 1.03615
\(227\) −3880.84 −1.13471 −0.567357 0.823472i \(-0.692034\pi\)
−0.567357 + 0.823472i \(0.692034\pi\)
\(228\) −1819.29 −0.528446
\(229\) 4754.47 1.37198 0.685992 0.727609i \(-0.259368\pi\)
0.685992 + 0.727609i \(0.259368\pi\)
\(230\) 1796.22 0.514952
\(231\) −452.023 −0.128749
\(232\) −1637.62 −0.463426
\(233\) 4420.49 1.24290 0.621451 0.783453i \(-0.286543\pi\)
0.621451 + 0.783453i \(0.286543\pi\)
\(234\) 114.054 0.0318630
\(235\) −1394.16 −0.387000
\(236\) −1447.75 −0.399323
\(237\) 1951.44 0.534850
\(238\) −5.55364 −0.00151256
\(239\) 646.725 0.175034 0.0875170 0.996163i \(-0.472107\pi\)
0.0875170 + 0.996163i \(0.472107\pi\)
\(240\) 1504.75 0.404713
\(241\) −4657.70 −1.24493 −0.622466 0.782647i \(-0.713869\pi\)
−0.622466 + 0.782647i \(0.713869\pi\)
\(242\) −7570.80 −2.01103
\(243\) −251.015 −0.0662660
\(244\) 2409.30 0.632129
\(245\) 6285.42 1.63902
\(246\) 1236.90 0.320576
\(247\) 5672.26 1.46120
\(248\) 0 0
\(249\) −2316.33 −0.589523
\(250\) 3269.64 0.827161
\(251\) 4592.00 1.15476 0.577380 0.816476i \(-0.304075\pi\)
0.577380 + 0.816476i \(0.304075\pi\)
\(252\) −4.42774 −0.00110683
\(253\) 3490.03 0.867258
\(254\) 3761.29 0.929151
\(255\) 211.142 0.0518519
\(256\) 256.000 0.0625000
\(257\) −4467.72 −1.08439 −0.542196 0.840252i \(-0.682407\pi\)
−0.542196 + 0.840252i \(0.682407\pi\)
\(258\) 5393.37 1.30146
\(259\) 410.888 0.0985766
\(260\) −4691.56 −1.11907
\(261\) −183.201 −0.0434477
\(262\) −1552.53 −0.366090
\(263\) 1539.53 0.360957 0.180478 0.983579i \(-0.442235\pi\)
0.180478 + 0.983579i \(0.442235\pi\)
\(264\) 2923.71 0.681598
\(265\) 3754.68 0.870370
\(266\) −220.205 −0.0507580
\(267\) −4502.11 −1.03193
\(268\) 770.882 0.175706
\(269\) −1025.30 −0.232393 −0.116196 0.993226i \(-0.537070\pi\)
−0.116196 + 0.993226i \(0.537070\pi\)
\(270\) 5246.86 1.18264
\(271\) 6618.60 1.48358 0.741792 0.670629i \(-0.233976\pi\)
0.741792 + 0.670629i \(0.233976\pi\)
\(272\) 35.9212 0.00800752
\(273\) −402.674 −0.0892709
\(274\) −2024.36 −0.446336
\(275\) 15294.0 3.35369
\(276\) −997.170 −0.217473
\(277\) 1304.22 0.282899 0.141450 0.989945i \(-0.454824\pi\)
0.141450 + 0.989945i \(0.454824\pi\)
\(278\) −1873.64 −0.404222
\(279\) 0 0
\(280\) 182.133 0.0388733
\(281\) 4630.87 0.983112 0.491556 0.870846i \(-0.336428\pi\)
0.491556 + 0.870846i \(0.336428\pi\)
\(282\) 773.968 0.163437
\(283\) 8131.30 1.70797 0.853985 0.520297i \(-0.174179\pi\)
0.853985 + 0.520297i \(0.174179\pi\)
\(284\) −904.027 −0.188888
\(285\) 8371.91 1.74003
\(286\) −9115.65 −1.88468
\(287\) 149.712 0.0307918
\(288\) 28.6389 0.00585959
\(289\) −4907.96 −0.998974
\(290\) 7535.88 1.52594
\(291\) 677.673 0.136515
\(292\) −1096.79 −0.219811
\(293\) 4682.90 0.933714 0.466857 0.884333i \(-0.345386\pi\)
0.466857 + 0.884333i \(0.345386\pi\)
\(294\) −3489.35 −0.692188
\(295\) 6662.14 1.31486
\(296\) −2657.64 −0.521866
\(297\) 10194.6 1.99175
\(298\) 1362.85 0.264926
\(299\) 3109.01 0.601334
\(300\) −4369.80 −0.840968
\(301\) 652.807 0.125007
\(302\) 4163.87 0.793391
\(303\) −6600.64 −1.25147
\(304\) 1424.30 0.268714
\(305\) −11087.0 −2.08143
\(306\) 4.01853 0.000750732 0
\(307\) −4529.99 −0.842151 −0.421075 0.907026i \(-0.638347\pi\)
−0.421075 + 0.907026i \(0.638347\pi\)
\(308\) 353.882 0.0654686
\(309\) −7691.01 −1.41594
\(310\) 0 0
\(311\) −8767.73 −1.59862 −0.799312 0.600916i \(-0.794803\pi\)
−0.799312 + 0.600916i \(0.794803\pi\)
\(312\) 2604.52 0.472602
\(313\) 1047.24 0.189116 0.0945580 0.995519i \(-0.469856\pi\)
0.0945580 + 0.995519i \(0.469856\pi\)
\(314\) −7467.32 −1.34206
\(315\) 20.3753 0.00364450
\(316\) −1527.75 −0.271970
\(317\) 1178.92 0.208878 0.104439 0.994531i \(-0.466695\pi\)
0.104439 + 0.994531i \(0.466695\pi\)
\(318\) −2084.41 −0.367572
\(319\) 14642.1 2.56991
\(320\) −1178.04 −0.205796
\(321\) 1528.11 0.265703
\(322\) −120.696 −0.0208886
\(323\) 199.854 0.0344277
\(324\) −2816.14 −0.482877
\(325\) 13624.3 2.32536
\(326\) −1424.19 −0.241958
\(327\) −1763.42 −0.298219
\(328\) −968.347 −0.163012
\(329\) 93.6801 0.0156983
\(330\) −13454.1 −2.24432
\(331\) −5731.90 −0.951824 −0.475912 0.879493i \(-0.657882\pi\)
−0.475912 + 0.879493i \(0.657882\pi\)
\(332\) 1813.42 0.299771
\(333\) −297.312 −0.0489267
\(334\) −1781.67 −0.291881
\(335\) −3547.40 −0.578552
\(336\) −101.111 −0.0164168
\(337\) 4664.98 0.754058 0.377029 0.926202i \(-0.376946\pi\)
0.377029 + 0.926202i \(0.376946\pi\)
\(338\) −3726.46 −0.599682
\(339\) 8993.24 1.44084
\(340\) −165.300 −0.0263666
\(341\) 0 0
\(342\) 159.337 0.0251928
\(343\) −846.586 −0.133269
\(344\) −4222.39 −0.661791
\(345\) 4588.71 0.716081
\(346\) 6937.22 1.07788
\(347\) 8392.08 1.29830 0.649151 0.760660i \(-0.275125\pi\)
0.649151 + 0.760660i \(0.275125\pi\)
\(348\) −4183.54 −0.644430
\(349\) −8479.95 −1.30063 −0.650317 0.759663i \(-0.725364\pi\)
−0.650317 + 0.759663i \(0.725364\pi\)
\(350\) −528.915 −0.0807762
\(351\) 9081.62 1.38103
\(352\) −2288.93 −0.346592
\(353\) 6235.61 0.940192 0.470096 0.882615i \(-0.344219\pi\)
0.470096 + 0.882615i \(0.344219\pi\)
\(354\) −3698.49 −0.555290
\(355\) 4160.09 0.621957
\(356\) 3524.63 0.524733
\(357\) −14.1876 −0.00210333
\(358\) 376.211 0.0555402
\(359\) −629.361 −0.0925248 −0.0462624 0.998929i \(-0.514731\pi\)
−0.0462624 + 0.998929i \(0.514731\pi\)
\(360\) −131.788 −0.0192941
\(361\) 1065.31 0.155315
\(362\) −5539.75 −0.804317
\(363\) −19340.8 −2.79650
\(364\) 315.248 0.0453941
\(365\) 5047.14 0.723779
\(366\) 6154.93 0.879025
\(367\) 2297.01 0.326711 0.163355 0.986567i \(-0.447768\pi\)
0.163355 + 0.986567i \(0.447768\pi\)
\(368\) 780.669 0.110585
\(369\) −108.329 −0.0152829
\(370\) 12229.8 1.71837
\(371\) −252.294 −0.0353059
\(372\) 0 0
\(373\) −4276.42 −0.593631 −0.296816 0.954935i \(-0.595925\pi\)
−0.296816 + 0.954935i \(0.595925\pi\)
\(374\) −321.176 −0.0444054
\(375\) 8352.81 1.15023
\(376\) −605.928 −0.0831073
\(377\) 13043.6 1.78191
\(378\) −352.561 −0.0479730
\(379\) 5508.18 0.746533 0.373267 0.927724i \(-0.378238\pi\)
0.373267 + 0.927724i \(0.378238\pi\)
\(380\) −6554.24 −0.884803
\(381\) 9608.79 1.29206
\(382\) 2476.94 0.331757
\(383\) 640.346 0.0854312 0.0427156 0.999087i \(-0.486399\pi\)
0.0427156 + 0.999087i \(0.486399\pi\)
\(384\) 653.992 0.0869111
\(385\) −1628.47 −0.215571
\(386\) −5688.01 −0.750031
\(387\) −472.361 −0.0620451
\(388\) −530.540 −0.0694177
\(389\) −13343.2 −1.73914 −0.869570 0.493810i \(-0.835604\pi\)
−0.869570 + 0.493810i \(0.835604\pi\)
\(390\) −11985.3 −1.55615
\(391\) 109.541 0.0141681
\(392\) 2731.76 0.351977
\(393\) −3966.17 −0.509076
\(394\) 791.507 0.101207
\(395\) 7030.30 0.895526
\(396\) −256.064 −0.0324942
\(397\) 11908.3 1.50544 0.752719 0.658342i \(-0.228742\pi\)
0.752719 + 0.658342i \(0.228742\pi\)
\(398\) 8613.17 1.08477
\(399\) −562.548 −0.0705830
\(400\) 3421.05 0.427631
\(401\) −12382.1 −1.54197 −0.770986 0.636852i \(-0.780236\pi\)
−0.770986 + 0.636852i \(0.780236\pi\)
\(402\) 1969.34 0.244332
\(403\) 0 0
\(404\) 5167.54 0.636373
\(405\) 12959.1 1.58999
\(406\) −506.371 −0.0618984
\(407\) 23762.3 2.89399
\(408\) 91.7663 0.0111351
\(409\) 676.452 0.0817809 0.0408905 0.999164i \(-0.486981\pi\)
0.0408905 + 0.999164i \(0.486981\pi\)
\(410\) 4456.08 0.536756
\(411\) −5171.54 −0.620664
\(412\) 6021.18 0.720005
\(413\) −447.660 −0.0533364
\(414\) 87.3339 0.0103677
\(415\) −8344.86 −0.987068
\(416\) −2039.04 −0.240317
\(417\) −4786.51 −0.562102
\(418\) −12734.8 −1.49014
\(419\) −5986.69 −0.698016 −0.349008 0.937120i \(-0.613481\pi\)
−0.349008 + 0.937120i \(0.613481\pi\)
\(420\) 465.286 0.0540563
\(421\) 9008.56 1.04287 0.521437 0.853290i \(-0.325396\pi\)
0.521437 + 0.853290i \(0.325396\pi\)
\(422\) 10842.0 1.25066
\(423\) −67.7855 −0.00779159
\(424\) 1631.85 0.186910
\(425\) 480.032 0.0547882
\(426\) −2309.48 −0.262663
\(427\) 744.984 0.0844317
\(428\) −1196.33 −0.135110
\(429\) −23287.3 −2.62080
\(430\) 19430.3 2.17910
\(431\) −12819.1 −1.43265 −0.716325 0.697767i \(-0.754177\pi\)
−0.716325 + 0.697767i \(0.754177\pi\)
\(432\) 2280.38 0.253970
\(433\) 2431.51 0.269864 0.134932 0.990855i \(-0.456918\pi\)
0.134932 + 0.990855i \(0.456918\pi\)
\(434\) 0 0
\(435\) 19251.6 2.12194
\(436\) 1380.56 0.151644
\(437\) 4343.38 0.475451
\(438\) −2801.92 −0.305664
\(439\) −2759.91 −0.300053 −0.150026 0.988682i \(-0.547936\pi\)
−0.150026 + 0.988682i \(0.547936\pi\)
\(440\) 10533.0 1.14123
\(441\) 305.604 0.0329990
\(442\) −286.112 −0.0307895
\(443\) −16807.9 −1.80264 −0.901319 0.433156i \(-0.857400\pi\)
−0.901319 + 0.433156i \(0.857400\pi\)
\(444\) −6789.36 −0.725696
\(445\) −16219.4 −1.72781
\(446\) 3892.30 0.413242
\(447\) 3481.61 0.368400
\(448\) 79.1583 0.00834794
\(449\) −8669.89 −0.911264 −0.455632 0.890168i \(-0.650587\pi\)
−0.455632 + 0.890168i \(0.650587\pi\)
\(450\) 382.714 0.0400919
\(451\) 8658.11 0.903979
\(452\) −7040.67 −0.732666
\(453\) 10637.3 1.10327
\(454\) 7761.67 0.802364
\(455\) −1450.69 −0.149471
\(456\) 3638.59 0.373668
\(457\) 1671.03 0.171045 0.0855223 0.996336i \(-0.472744\pi\)
0.0855223 + 0.996336i \(0.472744\pi\)
\(458\) −9508.94 −0.970139
\(459\) 319.977 0.0325387
\(460\) −3592.43 −0.364126
\(461\) −6412.34 −0.647836 −0.323918 0.946085i \(-0.605000\pi\)
−0.323918 + 0.946085i \(0.605000\pi\)
\(462\) 904.047 0.0910391
\(463\) 10321.2 1.03600 0.517999 0.855381i \(-0.326677\pi\)
0.517999 + 0.855381i \(0.326677\pi\)
\(464\) 3275.23 0.327692
\(465\) 0 0
\(466\) −8840.99 −0.878865
\(467\) −3577.10 −0.354450 −0.177225 0.984170i \(-0.556712\pi\)
−0.177225 + 0.984170i \(0.556712\pi\)
\(468\) −228.108 −0.0225306
\(469\) 238.366 0.0234685
\(470\) 2788.32 0.273650
\(471\) −19076.4 −1.86623
\(472\) 2895.49 0.282364
\(473\) 37752.9 3.66994
\(474\) −3902.87 −0.378196
\(475\) 19033.5 1.83857
\(476\) 11.1073 0.00106954
\(477\) 182.556 0.0175234
\(478\) −1293.45 −0.123768
\(479\) 9330.82 0.890055 0.445027 0.895517i \(-0.353194\pi\)
0.445027 + 0.895517i \(0.353194\pi\)
\(480\) −3009.50 −0.286175
\(481\) 21168.1 2.00662
\(482\) 9315.40 0.880300
\(483\) −308.337 −0.0290472
\(484\) 15141.6 1.42201
\(485\) 2441.40 0.228574
\(486\) 502.031 0.0468572
\(487\) 6943.54 0.646082 0.323041 0.946385i \(-0.395295\pi\)
0.323041 + 0.946385i \(0.395295\pi\)
\(488\) −4818.60 −0.446983
\(489\) −3638.30 −0.336462
\(490\) −12570.8 −1.15896
\(491\) 13671.8 1.25662 0.628309 0.777964i \(-0.283747\pi\)
0.628309 + 0.777964i \(0.283747\pi\)
\(492\) −2473.79 −0.226681
\(493\) 459.572 0.0419839
\(494\) −11344.5 −1.03323
\(495\) 1178.34 0.106995
\(496\) 0 0
\(497\) −279.536 −0.0252292
\(498\) 4632.65 0.416856
\(499\) −4233.11 −0.379759 −0.189880 0.981807i \(-0.560810\pi\)
−0.189880 + 0.981807i \(0.560810\pi\)
\(500\) −6539.29 −0.584891
\(501\) −4551.54 −0.405884
\(502\) −9184.00 −0.816538
\(503\) 4147.64 0.367662 0.183831 0.982958i \(-0.441150\pi\)
0.183831 + 0.982958i \(0.441150\pi\)
\(504\) 8.85548 0.000782648 0
\(505\) −23779.7 −2.09541
\(506\) −6980.06 −0.613244
\(507\) −9519.81 −0.833904
\(508\) −7522.58 −0.657009
\(509\) −9551.88 −0.831788 −0.415894 0.909413i \(-0.636531\pi\)
−0.415894 + 0.909413i \(0.636531\pi\)
\(510\) −422.284 −0.0366648
\(511\) −339.141 −0.0293595
\(512\) −512.000 −0.0441942
\(513\) 12687.3 1.09192
\(514\) 8935.44 0.766781
\(515\) −27707.9 −2.37078
\(516\) −10786.7 −0.920271
\(517\) 5417.68 0.460869
\(518\) −821.776 −0.0697042
\(519\) 17722.2 1.49888
\(520\) 9383.11 0.791301
\(521\) −13773.6 −1.15822 −0.579109 0.815250i \(-0.696599\pi\)
−0.579109 + 0.815250i \(0.696599\pi\)
\(522\) 366.402 0.0307222
\(523\) −2980.62 −0.249203 −0.124602 0.992207i \(-0.539765\pi\)
−0.124602 + 0.992207i \(0.539765\pi\)
\(524\) 3105.06 0.258864
\(525\) −1351.19 −0.112326
\(526\) −3079.06 −0.255235
\(527\) 0 0
\(528\) −5847.42 −0.481963
\(529\) −9786.36 −0.804336
\(530\) −7509.36 −0.615445
\(531\) 323.920 0.0264726
\(532\) 440.410 0.0358913
\(533\) 7712.87 0.626795
\(534\) 9004.22 0.729683
\(535\) 5505.21 0.444881
\(536\) −1541.76 −0.124243
\(537\) 961.090 0.0772330
\(538\) 2050.60 0.164326
\(539\) −24425.0 −1.95188
\(540\) −10493.7 −0.836255
\(541\) −3572.56 −0.283912 −0.141956 0.989873i \(-0.545339\pi\)
−0.141956 + 0.989873i \(0.545339\pi\)
\(542\) −13237.2 −1.04905
\(543\) −14152.1 −1.11847
\(544\) −71.8425 −0.00566217
\(545\) −6352.96 −0.499323
\(546\) 805.348 0.0631241
\(547\) 5705.27 0.445960 0.222980 0.974823i \(-0.428422\pi\)
0.222980 + 0.974823i \(0.428422\pi\)
\(548\) 4048.72 0.315607
\(549\) −539.059 −0.0419062
\(550\) −30588.0 −2.37141
\(551\) 18222.3 1.40888
\(552\) 1994.34 0.153777
\(553\) −472.398 −0.0363263
\(554\) −2608.44 −0.200040
\(555\) 31242.9 2.38952
\(556\) 3747.29 0.285828
\(557\) −15504.7 −1.17945 −0.589725 0.807604i \(-0.700764\pi\)
−0.589725 + 0.807604i \(0.700764\pi\)
\(558\) 0 0
\(559\) 33631.3 2.54464
\(560\) −364.266 −0.0274876
\(561\) −820.495 −0.0617492
\(562\) −9261.74 −0.695165
\(563\) −1416.77 −0.106056 −0.0530282 0.998593i \(-0.516887\pi\)
−0.0530282 + 0.998593i \(0.516887\pi\)
\(564\) −1547.94 −0.115567
\(565\) 32399.3 2.41248
\(566\) −16262.6 −1.20772
\(567\) −870.785 −0.0644965
\(568\) 1808.05 0.133564
\(569\) −16258.7 −1.19789 −0.598947 0.800789i \(-0.704414\pi\)
−0.598947 + 0.800789i \(0.704414\pi\)
\(570\) −16743.8 −1.23039
\(571\) 1165.77 0.0854393 0.0427196 0.999087i \(-0.486398\pi\)
0.0427196 + 0.999087i \(0.486398\pi\)
\(572\) 18231.3 1.33267
\(573\) 6327.72 0.461334
\(574\) −299.425 −0.0217731
\(575\) 10432.4 0.756631
\(576\) −57.2777 −0.00414335
\(577\) 9831.75 0.709361 0.354680 0.934988i \(-0.384590\pi\)
0.354680 + 0.934988i \(0.384590\pi\)
\(578\) 9815.92 0.706381
\(579\) −14530.9 −1.04298
\(580\) −15071.8 −1.07900
\(581\) 560.730 0.0400396
\(582\) −1355.35 −0.0965307
\(583\) −14590.6 −1.03650
\(584\) 2193.58 0.155430
\(585\) 1049.69 0.0741872
\(586\) −9365.81 −0.660235
\(587\) 14252.7 1.00217 0.501083 0.865399i \(-0.332935\pi\)
0.501083 + 0.865399i \(0.332935\pi\)
\(588\) 6978.71 0.489451
\(589\) 0 0
\(590\) −13324.3 −0.929749
\(591\) 2022.03 0.140736
\(592\) 5315.29 0.369015
\(593\) −15398.3 −1.06633 −0.533163 0.846013i \(-0.678997\pi\)
−0.533163 + 0.846013i \(0.678997\pi\)
\(594\) −20389.2 −1.40838
\(595\) −51.1128 −0.00352171
\(596\) −2725.70 −0.187331
\(597\) 22003.7 1.50846
\(598\) −6218.02 −0.425207
\(599\) 2382.46 0.162512 0.0812560 0.996693i \(-0.474107\pi\)
0.0812560 + 0.996693i \(0.474107\pi\)
\(600\) 8739.59 0.594654
\(601\) 27262.6 1.85036 0.925180 0.379530i \(-0.123914\pi\)
0.925180 + 0.379530i \(0.123914\pi\)
\(602\) −1305.61 −0.0883934
\(603\) −172.478 −0.0116482
\(604\) −8327.75 −0.561012
\(605\) −69677.7 −4.68231
\(606\) 13201.3 0.884926
\(607\) 6974.72 0.466384 0.233192 0.972431i \(-0.425083\pi\)
0.233192 + 0.972431i \(0.425083\pi\)
\(608\) −2848.59 −0.190009
\(609\) −1293.60 −0.0860746
\(610\) 22173.9 1.47180
\(611\) 4826.21 0.319554
\(612\) −8.03706 −0.000530848 0
\(613\) −25337.5 −1.66945 −0.834726 0.550666i \(-0.814374\pi\)
−0.834726 + 0.550666i \(0.814374\pi\)
\(614\) 9059.99 0.595491
\(615\) 11383.7 0.746401
\(616\) −707.765 −0.0462933
\(617\) −15558.8 −1.01519 −0.507597 0.861594i \(-0.669466\pi\)
−0.507597 + 0.861594i \(0.669466\pi\)
\(618\) 15382.0 1.00122
\(619\) 7290.46 0.473390 0.236695 0.971584i \(-0.423936\pi\)
0.236695 + 0.971584i \(0.423936\pi\)
\(620\) 0 0
\(621\) 6954.00 0.449363
\(622\) 17535.5 1.13040
\(623\) 1089.86 0.0700871
\(624\) −5209.04 −0.334180
\(625\) 3365.13 0.215368
\(626\) −2094.47 −0.133725
\(627\) −32533.1 −2.07216
\(628\) 14934.6 0.948976
\(629\) 745.827 0.0472783
\(630\) −40.7506 −0.00257705
\(631\) −7407.55 −0.467337 −0.233669 0.972316i \(-0.575073\pi\)
−0.233669 + 0.972316i \(0.575073\pi\)
\(632\) 3055.50 0.192312
\(633\) 27697.5 1.73914
\(634\) −2357.83 −0.147699
\(635\) 34616.9 2.16335
\(636\) 4168.82 0.259913
\(637\) −21758.5 −1.35338
\(638\) −29284.3 −1.81720
\(639\) 202.268 0.0125221
\(640\) 2356.09 0.145520
\(641\) 6916.56 0.426190 0.213095 0.977031i \(-0.431646\pi\)
0.213095 + 0.977031i \(0.431646\pi\)
\(642\) −3056.22 −0.187881
\(643\) −3785.50 −0.232170 −0.116085 0.993239i \(-0.537035\pi\)
−0.116085 + 0.993239i \(0.537035\pi\)
\(644\) 241.392 0.0147705
\(645\) 49637.7 3.03021
\(646\) −399.707 −0.0243441
\(647\) −17649.1 −1.07242 −0.536212 0.844083i \(-0.680145\pi\)
−0.536212 + 0.844083i \(0.680145\pi\)
\(648\) 5632.28 0.341446
\(649\) −25889.0 −1.56584
\(650\) −27248.6 −1.64427
\(651\) 0 0
\(652\) 2848.37 0.171090
\(653\) −2285.07 −0.136940 −0.0684699 0.997653i \(-0.521812\pi\)
−0.0684699 + 0.997653i \(0.521812\pi\)
\(654\) 3526.85 0.210873
\(655\) −14288.6 −0.852372
\(656\) 1936.69 0.115267
\(657\) 245.397 0.0145721
\(658\) −187.360 −0.0111004
\(659\) −18327.1 −1.08334 −0.541671 0.840591i \(-0.682208\pi\)
−0.541671 + 0.840591i \(0.682208\pi\)
\(660\) 26908.3 1.58698
\(661\) −5361.10 −0.315465 −0.157733 0.987482i \(-0.550418\pi\)
−0.157733 + 0.987482i \(0.550418\pi\)
\(662\) 11463.8 0.673041
\(663\) −730.918 −0.0428152
\(664\) −3626.83 −0.211970
\(665\) −2026.65 −0.118181
\(666\) 594.624 0.0345964
\(667\) 9987.79 0.579803
\(668\) 3563.33 0.206391
\(669\) 9943.49 0.574645
\(670\) 7094.79 0.409098
\(671\) 43083.7 2.47873
\(672\) 202.222 0.0116085
\(673\) 9549.84 0.546982 0.273491 0.961875i \(-0.411822\pi\)
0.273491 + 0.961875i \(0.411822\pi\)
\(674\) −9329.95 −0.533199
\(675\) 30473.8 1.73769
\(676\) 7452.91 0.424039
\(677\) 4768.08 0.270683 0.135341 0.990799i \(-0.456787\pi\)
0.135341 + 0.990799i \(0.456787\pi\)
\(678\) −17986.5 −1.01883
\(679\) −164.049 −0.00927192
\(680\) 330.600 0.0186440
\(681\) 19828.4 1.11575
\(682\) 0 0
\(683\) −24923.5 −1.39630 −0.698149 0.715952i \(-0.745993\pi\)
−0.698149 + 0.715952i \(0.745993\pi\)
\(684\) −318.674 −0.0178140
\(685\) −18631.1 −1.03921
\(686\) 1693.17 0.0942356
\(687\) −24292.1 −1.34905
\(688\) 8444.78 0.467957
\(689\) −12997.7 −0.718683
\(690\) −9177.42 −0.506346
\(691\) 446.948 0.0246059 0.0123030 0.999924i \(-0.496084\pi\)
0.0123030 + 0.999924i \(0.496084\pi\)
\(692\) −13874.4 −0.762178
\(693\) −79.1780 −0.00434015
\(694\) −16784.2 −0.918037
\(695\) −17244.0 −0.941155
\(696\) 8367.09 0.455681
\(697\) 271.752 0.0147680
\(698\) 16959.9 0.919687
\(699\) −22585.7 −1.22213
\(700\) 1057.83 0.0571174
\(701\) 13677.3 0.736926 0.368463 0.929642i \(-0.379884\pi\)
0.368463 + 0.929642i \(0.379884\pi\)
\(702\) −18163.2 −0.976534
\(703\) 29572.5 1.58655
\(704\) 4577.86 0.245077
\(705\) 7123.19 0.380532
\(706\) −12471.2 −0.664816
\(707\) 1597.87 0.0849985
\(708\) 7396.98 0.392649
\(709\) −33031.4 −1.74967 −0.874837 0.484417i \(-0.839032\pi\)
−0.874837 + 0.484417i \(0.839032\pi\)
\(710\) −8320.19 −0.439790
\(711\) 341.820 0.0180299
\(712\) −7049.26 −0.371043
\(713\) 0 0
\(714\) 28.3753 0.00148728
\(715\) −83895.6 −4.38814
\(716\) −752.423 −0.0392728
\(717\) −3304.32 −0.172109
\(718\) 1258.72 0.0654249
\(719\) 19130.4 0.992271 0.496136 0.868245i \(-0.334752\pi\)
0.496136 + 0.868245i \(0.334752\pi\)
\(720\) 263.577 0.0136430
\(721\) 1861.82 0.0961690
\(722\) −2130.61 −0.109824
\(723\) 23797.6 1.22413
\(724\) 11079.5 0.568738
\(725\) 43768.5 2.24210
\(726\) 38681.6 1.97742
\(727\) −14556.7 −0.742609 −0.371305 0.928511i \(-0.621089\pi\)
−0.371305 + 0.928511i \(0.621089\pi\)
\(728\) −630.495 −0.0320985
\(729\) 20291.5 1.03091
\(730\) −10094.3 −0.511789
\(731\) 1184.95 0.0599547
\(732\) −12309.9 −0.621565
\(733\) −19943.5 −1.00495 −0.502475 0.864592i \(-0.667577\pi\)
−0.502475 + 0.864592i \(0.667577\pi\)
\(734\) −4594.02 −0.231019
\(735\) −32114.2 −1.61163
\(736\) −1561.34 −0.0781952
\(737\) 13785.1 0.688984
\(738\) 216.659 0.0108067
\(739\) −13368.6 −0.665457 −0.332728 0.943023i \(-0.607969\pi\)
−0.332728 + 0.943023i \(0.607969\pi\)
\(740\) −24459.6 −1.21507
\(741\) −28981.3 −1.43678
\(742\) 504.589 0.0249650
\(743\) 23187.4 1.14490 0.572452 0.819938i \(-0.305992\pi\)
0.572452 + 0.819938i \(0.305992\pi\)
\(744\) 0 0
\(745\) 12543.0 0.616830
\(746\) 8552.83 0.419761
\(747\) −405.736 −0.0198729
\(748\) 642.353 0.0313994
\(749\) −369.921 −0.0180462
\(750\) −16705.6 −0.813337
\(751\) −5785.58 −0.281117 −0.140558 0.990072i \(-0.544890\pi\)
−0.140558 + 0.990072i \(0.544890\pi\)
\(752\) 1211.86 0.0587657
\(753\) −23462.0 −1.13546
\(754\) −26087.2 −1.26000
\(755\) 38322.1 1.84726
\(756\) 705.122 0.0339220
\(757\) 32841.2 1.57679 0.788397 0.615167i \(-0.210911\pi\)
0.788397 + 0.615167i \(0.210911\pi\)
\(758\) −11016.4 −0.527879
\(759\) −17831.6 −0.852764
\(760\) 13108.5 0.625651
\(761\) −33975.7 −1.61842 −0.809210 0.587520i \(-0.800104\pi\)
−0.809210 + 0.587520i \(0.800104\pi\)
\(762\) −19217.6 −0.913622
\(763\) 426.885 0.0202546
\(764\) −4953.88 −0.234588
\(765\) 36.9844 0.00174794
\(766\) −1280.69 −0.0604090
\(767\) −23062.6 −1.08571
\(768\) −1307.98 −0.0614554
\(769\) −15155.9 −0.710709 −0.355355 0.934732i \(-0.615640\pi\)
−0.355355 + 0.934732i \(0.615640\pi\)
\(770\) 3256.95 0.152431
\(771\) 22827.0 1.06627
\(772\) 11376.0 0.530352
\(773\) −7946.70 −0.369758 −0.184879 0.982761i \(-0.559189\pi\)
−0.184879 + 0.982761i \(0.559189\pi\)
\(774\) 944.722 0.0438725
\(775\) 0 0
\(776\) 1061.08 0.0490857
\(777\) −2099.35 −0.0969291
\(778\) 26686.3 1.22976
\(779\) 10775.1 0.495582
\(780\) 23970.6 1.10037
\(781\) −16166.0 −0.740674
\(782\) −219.083 −0.0100184
\(783\) 29175.0 1.33158
\(784\) −5463.52 −0.248885
\(785\) −68725.3 −3.12473
\(786\) 7932.34 0.359971
\(787\) 26688.8 1.20883 0.604416 0.796669i \(-0.293406\pi\)
0.604416 + 0.796669i \(0.293406\pi\)
\(788\) −1583.01 −0.0715641
\(789\) −7865.94 −0.354924
\(790\) −14060.6 −0.633232
\(791\) −2177.06 −0.0978601
\(792\) 512.127 0.0229768
\(793\) 38380.1 1.71868
\(794\) −23816.5 −1.06451
\(795\) −19183.8 −0.855824
\(796\) −17226.3 −0.767049
\(797\) −4914.80 −0.218433 −0.109217 0.994018i \(-0.534834\pi\)
−0.109217 + 0.994018i \(0.534834\pi\)
\(798\) 1125.10 0.0499097
\(799\) 170.044 0.00752908
\(800\) −6842.10 −0.302381
\(801\) −788.605 −0.0347865
\(802\) 24764.1 1.09034
\(803\) −19613.1 −0.861931
\(804\) −3938.67 −0.172769
\(805\) −1110.82 −0.0486353
\(806\) 0 0
\(807\) 5238.57 0.228509
\(808\) −10335.1 −0.449984
\(809\) −33201.9 −1.44291 −0.721456 0.692460i \(-0.756527\pi\)
−0.721456 + 0.692460i \(0.756527\pi\)
\(810\) −25918.3 −1.12429
\(811\) −10480.4 −0.453781 −0.226891 0.973920i \(-0.572856\pi\)
−0.226891 + 0.973920i \(0.572856\pi\)
\(812\) 1012.74 0.0437688
\(813\) −33816.5 −1.45879
\(814\) −47524.7 −2.04636
\(815\) −13107.5 −0.563355
\(816\) −183.533 −0.00787369
\(817\) 46983.9 2.01194
\(818\) −1352.90 −0.0578278
\(819\) −70.5338 −0.00300934
\(820\) −8912.15 −0.379544
\(821\) 24957.8 1.06094 0.530471 0.847703i \(-0.322015\pi\)
0.530471 + 0.847703i \(0.322015\pi\)
\(822\) 10343.1 0.438876
\(823\) 3465.99 0.146800 0.0734002 0.997303i \(-0.476615\pi\)
0.0734002 + 0.997303i \(0.476615\pi\)
\(824\) −12042.4 −0.509120
\(825\) −78141.8 −3.29764
\(826\) 895.321 0.0377145
\(827\) −6211.01 −0.261158 −0.130579 0.991438i \(-0.541684\pi\)
−0.130579 + 0.991438i \(0.541684\pi\)
\(828\) −174.668 −0.00733107
\(829\) 3808.39 0.159555 0.0797774 0.996813i \(-0.474579\pi\)
0.0797774 + 0.996813i \(0.474579\pi\)
\(830\) 16689.7 0.697962
\(831\) −6663.67 −0.278171
\(832\) 4078.07 0.169930
\(833\) −766.627 −0.0318872
\(834\) 9573.02 0.397466
\(835\) −16397.5 −0.679592
\(836\) 25469.6 1.05369
\(837\) 0 0
\(838\) 11973.4 0.493572
\(839\) −13545.9 −0.557397 −0.278699 0.960379i \(-0.589903\pi\)
−0.278699 + 0.960379i \(0.589903\pi\)
\(840\) −930.573 −0.0382236
\(841\) 17513.9 0.718108
\(842\) −18017.1 −0.737424
\(843\) −23660.5 −0.966682
\(844\) −21684.0 −0.884352
\(845\) −34296.3 −1.39625
\(846\) 135.571 0.00550949
\(847\) 4681.97 0.189934
\(848\) −3263.71 −0.132165
\(849\) −41545.3 −1.67943
\(850\) −960.064 −0.0387411
\(851\) 16208.9 0.652919
\(852\) 4618.95 0.185731
\(853\) −4422.94 −0.177537 −0.0887683 0.996052i \(-0.528293\pi\)
−0.0887683 + 0.996052i \(0.528293\pi\)
\(854\) −1489.97 −0.0597022
\(855\) 1466.45 0.0586569
\(856\) 2392.67 0.0955370
\(857\) 12367.5 0.492958 0.246479 0.969148i \(-0.420726\pi\)
0.246479 + 0.969148i \(0.420726\pi\)
\(858\) 46574.7 1.85318
\(859\) 42773.8 1.69898 0.849490 0.527604i \(-0.176910\pi\)
0.849490 + 0.527604i \(0.176910\pi\)
\(860\) −38860.6 −1.54086
\(861\) −764.926 −0.0302771
\(862\) 25638.1 1.01304
\(863\) −14497.9 −0.571859 −0.285930 0.958251i \(-0.592302\pi\)
−0.285930 + 0.958251i \(0.592302\pi\)
\(864\) −4560.77 −0.179584
\(865\) 63846.5 2.50965
\(866\) −4863.03 −0.190823
\(867\) 25076.3 0.982278
\(868\) 0 0
\(869\) −27319.6 −1.06646
\(870\) −38503.1 −1.50043
\(871\) 12280.1 0.477723
\(872\) −2761.11 −0.107228
\(873\) 118.704 0.00460195
\(874\) −8686.76 −0.336194
\(875\) −2022.03 −0.0781222
\(876\) 5603.84 0.216137
\(877\) −4149.96 −0.159788 −0.0798941 0.996803i \(-0.525458\pi\)
−0.0798941 + 0.996803i \(0.525458\pi\)
\(878\) 5519.82 0.212170
\(879\) −23926.4 −0.918108
\(880\) −21066.1 −0.806975
\(881\) −20067.4 −0.767411 −0.383706 0.923455i \(-0.625352\pi\)
−0.383706 + 0.923455i \(0.625352\pi\)
\(882\) −611.207 −0.0233338
\(883\) 28822.4 1.09847 0.549236 0.835667i \(-0.314919\pi\)
0.549236 + 0.835667i \(0.314919\pi\)
\(884\) 572.225 0.0217715
\(885\) −34038.9 −1.29289
\(886\) 33615.8 1.27466
\(887\) −18786.4 −0.711146 −0.355573 0.934648i \(-0.615714\pi\)
−0.355573 + 0.934648i \(0.615714\pi\)
\(888\) 13578.7 0.513144
\(889\) −2326.07 −0.0877547
\(890\) 32438.8 1.22174
\(891\) −50358.9 −1.89348
\(892\) −7784.61 −0.292206
\(893\) 6742.35 0.252659
\(894\) −6963.23 −0.260498
\(895\) 3462.45 0.129315
\(896\) −158.317 −0.00590289
\(897\) −15884.9 −0.591283
\(898\) 17339.8 0.644361
\(899\) 0 0
\(900\) −765.429 −0.0283492
\(901\) −457.955 −0.0169331
\(902\) −17316.2 −0.639210
\(903\) −3335.39 −0.122918
\(904\) 14081.3 0.518073
\(905\) −50984.9 −1.87270
\(906\) −21274.5 −0.780131
\(907\) −50237.1 −1.83914 −0.919568 0.392931i \(-0.871461\pi\)
−0.919568 + 0.392931i \(0.871461\pi\)
\(908\) −15523.3 −0.567357
\(909\) −1156.19 −0.0421875
\(910\) 2901.37 0.105692
\(911\) 17880.3 0.650276 0.325138 0.945667i \(-0.394589\pi\)
0.325138 + 0.945667i \(0.394589\pi\)
\(912\) −7277.17 −0.264223
\(913\) 32428.0 1.17548
\(914\) −3342.06 −0.120947
\(915\) 56646.7 2.04665
\(916\) 19017.9 0.685992
\(917\) 960.121 0.0345758
\(918\) −639.955 −0.0230083
\(919\) −12674.0 −0.454927 −0.227463 0.973787i \(-0.573043\pi\)
−0.227463 + 0.973787i \(0.573043\pi\)
\(920\) 7184.87 0.257476
\(921\) 23145.1 0.828076
\(922\) 12824.7 0.458089
\(923\) −14401.1 −0.513563
\(924\) −1808.09 −0.0643744
\(925\) 71030.7 2.52484
\(926\) −20642.4 −0.732561
\(927\) −1347.18 −0.0477318
\(928\) −6550.47 −0.231713
\(929\) 11967.2 0.422638 0.211319 0.977417i \(-0.432224\pi\)
0.211319 + 0.977417i \(0.432224\pi\)
\(930\) 0 0
\(931\) −30397.2 −1.07006
\(932\) 17682.0 0.621451
\(933\) 44797.0 1.57191
\(934\) 7154.20 0.250634
\(935\) −2955.94 −0.103390
\(936\) 456.216 0.0159315
\(937\) −3655.73 −0.127457 −0.0637286 0.997967i \(-0.520299\pi\)
−0.0637286 + 0.997967i \(0.520299\pi\)
\(938\) −476.732 −0.0165947
\(939\) −5350.66 −0.185955
\(940\) −5576.64 −0.193500
\(941\) 24742.5 0.857155 0.428578 0.903505i \(-0.359015\pi\)
0.428578 + 0.903505i \(0.359015\pi\)
\(942\) 38152.9 1.31963
\(943\) 5905.92 0.203948
\(944\) −5790.98 −0.199661
\(945\) −3244.79 −0.111696
\(946\) −75505.9 −2.59504
\(947\) −9498.71 −0.325941 −0.162971 0.986631i \(-0.552108\pi\)
−0.162971 + 0.986631i \(0.552108\pi\)
\(948\) 7805.74 0.267425
\(949\) −17471.8 −0.597640
\(950\) −38067.1 −1.30006
\(951\) −6023.44 −0.205387
\(952\) −22.2146 −0.000756279 0
\(953\) −9391.69 −0.319231 −0.159615 0.987179i \(-0.551025\pi\)
−0.159615 + 0.987179i \(0.551025\pi\)
\(954\) −365.113 −0.0123909
\(955\) 22796.4 0.772434
\(956\) 2586.90 0.0875170
\(957\) −74811.2 −2.52696
\(958\) −18661.6 −0.629364
\(959\) 1251.91 0.0421547
\(960\) 6018.99 0.202356
\(961\) 0 0
\(962\) −42336.2 −1.41889
\(963\) 267.669 0.00895692
\(964\) −18630.8 −0.622466
\(965\) −52349.4 −1.74631
\(966\) 616.674 0.0205395
\(967\) −42697.0 −1.41990 −0.709950 0.704252i \(-0.751283\pi\)
−0.709950 + 0.704252i \(0.751283\pi\)
\(968\) −30283.2 −1.00552
\(969\) −1021.11 −0.0338523
\(970\) −4882.81 −0.161626
\(971\) 3512.02 0.116072 0.0580361 0.998314i \(-0.481516\pi\)
0.0580361 + 0.998314i \(0.481516\pi\)
\(972\) −1004.06 −0.0331330
\(973\) 1158.71 0.0381772
\(974\) −13887.1 −0.456849
\(975\) −69610.8 −2.28649
\(976\) 9637.20 0.316065
\(977\) −15209.1 −0.498038 −0.249019 0.968499i \(-0.580108\pi\)
−0.249019 + 0.968499i \(0.580108\pi\)
\(978\) 7276.61 0.237914
\(979\) 63028.4 2.05761
\(980\) 25141.7 0.819512
\(981\) −308.887 −0.0100530
\(982\) −27343.6 −0.888563
\(983\) 13718.6 0.445124 0.222562 0.974919i \(-0.428558\pi\)
0.222562 + 0.974919i \(0.428558\pi\)
\(984\) 4947.58 0.160288
\(985\) 7284.61 0.235641
\(986\) −919.144 −0.0296871
\(987\) −478.641 −0.0154360
\(988\) 22689.0 0.730601
\(989\) 25752.3 0.827982
\(990\) −2356.68 −0.0756566
\(991\) −8851.99 −0.283747 −0.141873 0.989885i \(-0.545313\pi\)
−0.141873 + 0.989885i \(0.545313\pi\)
\(992\) 0 0
\(993\) 29286.0 0.935916
\(994\) 559.072 0.0178397
\(995\) 79271.1 2.52569
\(996\) −9265.30 −0.294761
\(997\) −51719.9 −1.64291 −0.821457 0.570271i \(-0.806838\pi\)
−0.821457 + 0.570271i \(0.806838\pi\)
\(998\) 8466.21 0.268530
\(999\) 47347.3 1.49950
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1922.4.a.x.1.10 32
31.30 odd 2 inner 1922.4.a.x.1.23 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1922.4.a.x.1.10 32 1.1 even 1 trivial
1922.4.a.x.1.23 yes 32 31.30 odd 2 inner