Newspace parameters
Level: | \( N \) | \(=\) | \( 1922 = 2 \cdot 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1922.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(113.401671031\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.00000 | −10.0428 | 4.00000 | 1.39037 | 20.0856 | −6.92491 | −8.00000 | 73.8576 | −2.78073 | ||||||||||||||||||
1.2 | −2.00000 | −9.30256 | 4.00000 | 18.9675 | 18.6051 | 21.8384 | −8.00000 | 59.5377 | −37.9350 | ||||||||||||||||||
1.3 | −2.00000 | −8.73949 | 4.00000 | 11.3839 | 17.4790 | 32.2218 | −8.00000 | 49.3787 | −22.7678 | ||||||||||||||||||
1.4 | −2.00000 | −7.83585 | 4.00000 | −13.9902 | 15.6717 | −28.2462 | −8.00000 | 34.4006 | 27.9805 | ||||||||||||||||||
1.5 | −2.00000 | −7.26205 | 4.00000 | 2.99959 | 14.5241 | 27.7754 | −8.00000 | 25.7374 | −5.99919 | ||||||||||||||||||
1.6 | −2.00000 | −7.23390 | 4.00000 | −20.3377 | 14.4678 | 31.7504 | −8.00000 | 25.3293 | 40.6754 | ||||||||||||||||||
1.7 | −2.00000 | −6.24968 | 4.00000 | −9.30955 | 12.4994 | −9.12649 | −8.00000 | 12.0585 | 18.6191 | ||||||||||||||||||
1.8 | −2.00000 | −5.36518 | 4.00000 | 14.2606 | 10.7304 | −3.03268 | −8.00000 | 1.78511 | −28.5211 | ||||||||||||||||||
1.9 | −2.00000 | −5.13962 | 4.00000 | 6.34276 | 10.2792 | 33.0781 | −8.00000 | −0.584326 | −12.6855 | ||||||||||||||||||
1.10 | −2.00000 | −5.10931 | 4.00000 | −18.4069 | 10.2186 | 1.23685 | −8.00000 | −0.894964 | 36.8139 | ||||||||||||||||||
1.11 | −2.00000 | −3.78891 | 4.00000 | −7.04778 | 7.57782 | −19.1757 | −8.00000 | −12.6441 | 14.0956 | ||||||||||||||||||
1.12 | −2.00000 | −2.73675 | 4.00000 | 20.6657 | 5.47349 | −27.1083 | −8.00000 | −19.5102 | −41.3315 | ||||||||||||||||||
1.13 | −2.00000 | −1.21735 | 4.00000 | 9.21122 | 2.43469 | −15.9940 | −8.00000 | −25.5181 | −18.4224 | ||||||||||||||||||
1.14 | −2.00000 | −1.02445 | 4.00000 | −8.88463 | 2.04891 | 2.25055 | −8.00000 | −25.9505 | 17.7693 | ||||||||||||||||||
1.15 | −2.00000 | −0.915774 | 4.00000 | 5.16716 | 1.83155 | −2.76909 | −8.00000 | −26.1614 | −10.3343 | ||||||||||||||||||
1.16 | −2.00000 | −0.422597 | 4.00000 | −12.4119 | 0.845194 | 18.2258 | −8.00000 | −26.8214 | 24.8239 | ||||||||||||||||||
1.17 | −2.00000 | 0.422597 | 4.00000 | −12.4119 | −0.845194 | 18.2258 | −8.00000 | −26.8214 | 24.8239 | ||||||||||||||||||
1.18 | −2.00000 | 0.915774 | 4.00000 | 5.16716 | −1.83155 | −2.76909 | −8.00000 | −26.1614 | −10.3343 | ||||||||||||||||||
1.19 | −2.00000 | 1.02445 | 4.00000 | −8.88463 | −2.04891 | 2.25055 | −8.00000 | −25.9505 | 17.7693 | ||||||||||||||||||
1.20 | −2.00000 | 1.21735 | 4.00000 | 9.21122 | −2.43469 | −15.9940 | −8.00000 | −25.5181 | −18.4224 | ||||||||||||||||||
See all 32 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( +1 \) |
\(31\) | \( +1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1922.4.a.x | ✓ | 32 |
31.b | odd | 2 | 1 | inner | 1922.4.a.x | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1922.4.a.x | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
1922.4.a.x | ✓ | 32 | 31.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{32} - 576 T_{3}^{30} + 147496 T_{3}^{28} - 22178064 T_{3}^{26} + 2178533848 T_{3}^{24} + \cdots + 21\!\cdots\!24 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1922))\).