Properties

Label 2-1922-1.1-c3-0-78
Degree $2$
Conductor $1922$
Sign $1$
Analytic cond. $113.401$
Root an. cond. $10.6490$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 5.10·3-s + 4·4-s − 18.4·5-s + 10.2·6-s + 1.23·7-s − 8·8-s − 0.894·9-s + 36.8·10-s + 71.5·11-s − 20.4·12-s + 63.7·13-s − 2.47·14-s + 94.0·15-s + 16·16-s + 2.24·17-s + 1.78·18-s + 89.0·19-s − 73.6·20-s − 6.31·21-s − 143.·22-s + 48.7·23-s + 40.8·24-s + 213.·25-s − 127.·26-s + 142.·27-s + 4.94·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.983·3-s + 0.5·4-s − 1.64·5-s + 0.695·6-s + 0.0667·7-s − 0.353·8-s − 0.0331·9-s + 1.16·10-s + 1.96·11-s − 0.491·12-s + 1.35·13-s − 0.0472·14-s + 1.61·15-s + 0.250·16-s + 0.0320·17-s + 0.0234·18-s + 1.07·19-s − 0.823·20-s − 0.0656·21-s − 1.38·22-s + 0.442·23-s + 0.347·24-s + 1.71·25-s − 0.961·26-s + 1.01·27-s + 0.0333·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1922\)    =    \(2 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(113.401\)
Root analytic conductor: \(10.6490\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1922,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.108236399\)
\(L(\frac12)\) \(\approx\) \(1.108236399\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
31 \( 1 \)
good3 \( 1 + 5.10T + 27T^{2} \)
5 \( 1 + 18.4T + 125T^{2} \)
7 \( 1 - 1.23T + 343T^{2} \)
11 \( 1 - 71.5T + 1.33e3T^{2} \)
13 \( 1 - 63.7T + 2.19e3T^{2} \)
17 \( 1 - 2.24T + 4.91e3T^{2} \)
19 \( 1 - 89.0T + 6.85e3T^{2} \)
23 \( 1 - 48.7T + 1.21e4T^{2} \)
29 \( 1 - 204.T + 2.43e4T^{2} \)
37 \( 1 - 332.T + 5.06e4T^{2} \)
41 \( 1 - 121.T + 6.89e4T^{2} \)
43 \( 1 - 527.T + 7.95e4T^{2} \)
47 \( 1 - 75.7T + 1.03e5T^{2} \)
53 \( 1 + 203.T + 1.48e5T^{2} \)
59 \( 1 + 361.T + 2.05e5T^{2} \)
61 \( 1 - 602.T + 2.26e5T^{2} \)
67 \( 1 - 192.T + 3.00e5T^{2} \)
71 \( 1 + 226.T + 3.57e5T^{2} \)
73 \( 1 + 274.T + 3.89e5T^{2} \)
79 \( 1 + 381.T + 4.93e5T^{2} \)
83 \( 1 - 453.T + 5.71e5T^{2} \)
89 \( 1 - 881.T + 7.04e5T^{2} \)
97 \( 1 + 132.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.808741812844539627883575855457, −8.105244133875803657200735780424, −7.30455620322055253090049053838, −6.48888487443582204610201844545, −5.97825546542706969547670444682, −4.65722103474084516230658295696, −3.89736506355091640568834025563, −3.08026228985463753627108024265, −1.08178930890848851844597566584, −0.77187764108356126076240130817, 0.77187764108356126076240130817, 1.08178930890848851844597566584, 3.08026228985463753627108024265, 3.89736506355091640568834025563, 4.65722103474084516230658295696, 5.97825546542706969547670444682, 6.48888487443582204610201844545, 7.30455620322055253090049053838, 8.105244133875803657200735780424, 8.808741812844539627883575855457

Graph of the $Z$-function along the critical line