Properties

Label 2-1922-1.1-c3-0-64
Degree $2$
Conductor $1922$
Sign $1$
Analytic cond. $113.401$
Root an. cond. $10.6490$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2.73·3-s + 4·4-s + 20.6·5-s + 5.47·6-s − 27.1·7-s − 8·8-s − 19.5·9-s − 41.3·10-s + 27.4·11-s − 10.9·12-s + 64.9·13-s + 54.2·14-s − 56.5·15-s + 16·16-s − 38.8·17-s + 39.0·18-s + 57.8·19-s + 82.6·20-s + 74.1·21-s − 54.9·22-s + 80.7·23-s + 21.8·24-s + 302.·25-s − 129.·26-s + 127.·27-s − 108.·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.526·3-s + 0.5·4-s + 1.84·5-s + 0.372·6-s − 1.46·7-s − 0.353·8-s − 0.722·9-s − 1.30·10-s + 0.753·11-s − 0.263·12-s + 1.38·13-s + 1.03·14-s − 0.973·15-s + 0.250·16-s − 0.554·17-s + 0.510·18-s + 0.698·19-s + 0.924·20-s + 0.770·21-s − 0.532·22-s + 0.732·23-s + 0.186·24-s + 2.41·25-s − 0.979·26-s + 0.907·27-s − 0.731·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1922\)    =    \(2 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(113.401\)
Root analytic conductor: \(10.6490\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1922,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.588997003\)
\(L(\frac12)\) \(\approx\) \(1.588997003\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
31 \( 1 \)
good3 \( 1 + 2.73T + 27T^{2} \)
5 \( 1 - 20.6T + 125T^{2} \)
7 \( 1 + 27.1T + 343T^{2} \)
11 \( 1 - 27.4T + 1.33e3T^{2} \)
13 \( 1 - 64.9T + 2.19e3T^{2} \)
17 \( 1 + 38.8T + 4.91e3T^{2} \)
19 \( 1 - 57.8T + 6.85e3T^{2} \)
23 \( 1 - 80.7T + 1.21e4T^{2} \)
29 \( 1 + 198.T + 2.43e4T^{2} \)
37 \( 1 - 306.T + 5.06e4T^{2} \)
41 \( 1 + 323.T + 6.89e4T^{2} \)
43 \( 1 + 163.T + 7.95e4T^{2} \)
47 \( 1 - 71.0T + 1.03e5T^{2} \)
53 \( 1 + 706.T + 1.48e5T^{2} \)
59 \( 1 - 653.T + 2.05e5T^{2} \)
61 \( 1 + 139.T + 2.26e5T^{2} \)
67 \( 1 - 372.T + 3.00e5T^{2} \)
71 \( 1 - 832.T + 3.57e5T^{2} \)
73 \( 1 - 438.T + 3.89e5T^{2} \)
79 \( 1 - 350.T + 4.93e5T^{2} \)
83 \( 1 + 1.24e3T + 5.71e5T^{2} \)
89 \( 1 - 255.T + 7.04e5T^{2} \)
97 \( 1 + 555.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.194290038170652398494709442913, −8.381663996928330490045888264250, −6.84405901887744931201961901344, −6.44406589410483441381275909461, −5.93537778975929162287226853544, −5.23966377760300977544821744743, −3.55875406171885341635751257891, −2.76060714502974006013835096373, −1.64287178888254869162142396504, −0.68707690396649883597675310660, 0.68707690396649883597675310660, 1.64287178888254869162142396504, 2.76060714502974006013835096373, 3.55875406171885341635751257891, 5.23966377760300977544821744743, 5.93537778975929162287226853544, 6.44406589410483441381275909461, 6.84405901887744931201961901344, 8.381663996928330490045888264250, 9.194290038170652398494709442913

Graph of the $Z$-function along the critical line