Properties

Label 1922.2.a.r.1.4
Level $1922$
Weight $2$
Character 1922.1
Self dual yes
Analytic conductor $15.347$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,2,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,3,4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3472472685\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4525.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.06842\) of defining polynomial
Character \(\chi\) \(=\) 1922.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.06842 q^{3} +1.00000 q^{4} -3.34677 q^{5} +3.06842 q^{6} +2.51880 q^{7} +1.00000 q^{8} +6.41519 q^{9} -3.34677 q^{10} +1.72165 q^{11} +3.06842 q^{12} +2.33968 q^{13} +2.51880 q^{14} -10.2693 q^{15} +1.00000 q^{16} -0.790065 q^{17} +6.41519 q^{18} +0.403718 q^{19} -3.34677 q^{20} +7.72874 q^{21} +1.72165 q^{22} -5.06842 q^{23} +3.06842 q^{24} +6.20087 q^{25} +2.33968 q^{26} +10.4792 q^{27} +2.51880 q^{28} -5.20087 q^{29} -10.2693 q^{30} +1.00000 q^{32} +5.28273 q^{33} -0.790065 q^{34} -8.42985 q^{35} +6.41519 q^{36} +5.88930 q^{37} +0.403718 q^{38} +7.17912 q^{39} -3.34677 q^{40} +7.75758 q^{41} +7.72874 q^{42} +7.64688 q^{43} +1.72165 q^{44} -21.4702 q^{45} -5.06842 q^{46} -4.83944 q^{47} +3.06842 q^{48} -0.655638 q^{49} +6.20087 q^{50} -2.42425 q^{51} +2.33968 q^{52} -2.62950 q^{53} +10.4792 q^{54} -5.76196 q^{55} +2.51880 q^{56} +1.23878 q^{57} -5.20087 q^{58} -4.36581 q^{59} -10.2693 q^{60} +9.60897 q^{61} +16.1586 q^{63} +1.00000 q^{64} -7.83038 q^{65} +5.28273 q^{66} -8.86119 q^{67} -0.790065 q^{68} -15.5520 q^{69} -8.42985 q^{70} -11.8944 q^{71} +6.41519 q^{72} +7.84653 q^{73} +5.88930 q^{74} +19.0269 q^{75} +0.403718 q^{76} +4.33649 q^{77} +7.17912 q^{78} -2.09485 q^{79} -3.34677 q^{80} +12.9091 q^{81} +7.75758 q^{82} -12.2558 q^{83} +7.72874 q^{84} +2.64417 q^{85} +7.64688 q^{86} -15.9584 q^{87} +1.72165 q^{88} +14.6442 q^{89} -21.4702 q^{90} +5.89319 q^{91} -5.06842 q^{92} -4.83944 q^{94} -1.35115 q^{95} +3.06842 q^{96} -18.7837 q^{97} -0.655638 q^{98} +11.0447 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} + 4 q^{4} - 2 q^{5} + 3 q^{6} - 4 q^{7} + 4 q^{8} + 5 q^{9} - 2 q^{10} + 9 q^{11} + 3 q^{12} + 7 q^{13} - 4 q^{14} - 7 q^{15} + 4 q^{16} + 4 q^{17} + 5 q^{18} - 7 q^{19} - 2 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.06842 1.77155 0.885776 0.464113i \(-0.153627\pi\)
0.885776 + 0.464113i \(0.153627\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.34677 −1.49672 −0.748361 0.663292i \(-0.769159\pi\)
−0.748361 + 0.663292i \(0.769159\pi\)
\(6\) 3.06842 1.25268
\(7\) 2.51880 0.952018 0.476009 0.879441i \(-0.342083\pi\)
0.476009 + 0.879441i \(0.342083\pi\)
\(8\) 1.00000 0.353553
\(9\) 6.41519 2.13840
\(10\) −3.34677 −1.05834
\(11\) 1.72165 0.519096 0.259548 0.965730i \(-0.416426\pi\)
0.259548 + 0.965730i \(0.416426\pi\)
\(12\) 3.06842 0.885776
\(13\) 2.33968 0.648911 0.324455 0.945901i \(-0.394819\pi\)
0.324455 + 0.945901i \(0.394819\pi\)
\(14\) 2.51880 0.673178
\(15\) −10.2693 −2.65152
\(16\) 1.00000 0.250000
\(17\) −0.790065 −0.191619 −0.0958095 0.995400i \(-0.530544\pi\)
−0.0958095 + 0.995400i \(0.530544\pi\)
\(18\) 6.41519 1.51207
\(19\) 0.403718 0.0926193 0.0463096 0.998927i \(-0.485254\pi\)
0.0463096 + 0.998927i \(0.485254\pi\)
\(20\) −3.34677 −0.748361
\(21\) 7.72874 1.68655
\(22\) 1.72165 0.367056
\(23\) −5.06842 −1.05684 −0.528419 0.848984i \(-0.677215\pi\)
−0.528419 + 0.848984i \(0.677215\pi\)
\(24\) 3.06842 0.626338
\(25\) 6.20087 1.24017
\(26\) 2.33968 0.458849
\(27\) 10.4792 2.01673
\(28\) 2.51880 0.476009
\(29\) −5.20087 −0.965778 −0.482889 0.875682i \(-0.660412\pi\)
−0.482889 + 0.875682i \(0.660412\pi\)
\(30\) −10.2693 −1.87491
\(31\) 0 0
\(32\) 1.00000 0.176777
\(33\) 5.28273 0.919606
\(34\) −0.790065 −0.135495
\(35\) −8.42985 −1.42490
\(36\) 6.41519 1.06920
\(37\) 5.88930 0.968195 0.484097 0.875014i \(-0.339148\pi\)
0.484097 + 0.875014i \(0.339148\pi\)
\(38\) 0.403718 0.0654917
\(39\) 7.17912 1.14958
\(40\) −3.34677 −0.529171
\(41\) 7.75758 1.21153 0.605765 0.795644i \(-0.292867\pi\)
0.605765 + 0.795644i \(0.292867\pi\)
\(42\) 7.72874 1.19257
\(43\) 7.64688 1.16614 0.583069 0.812423i \(-0.301852\pi\)
0.583069 + 0.812423i \(0.301852\pi\)
\(44\) 1.72165 0.259548
\(45\) −21.4702 −3.20058
\(46\) −5.06842 −0.747297
\(47\) −4.83944 −0.705905 −0.352952 0.935641i \(-0.614822\pi\)
−0.352952 + 0.935641i \(0.614822\pi\)
\(48\) 3.06842 0.442888
\(49\) −0.655638 −0.0936625
\(50\) 6.20087 0.876936
\(51\) −2.42425 −0.339463
\(52\) 2.33968 0.324455
\(53\) −2.62950 −0.361190 −0.180595 0.983558i \(-0.557802\pi\)
−0.180595 + 0.983558i \(0.557802\pi\)
\(54\) 10.4792 1.42604
\(55\) −5.76196 −0.776942
\(56\) 2.51880 0.336589
\(57\) 1.23878 0.164080
\(58\) −5.20087 −0.682908
\(59\) −4.36581 −0.568381 −0.284190 0.958768i \(-0.591725\pi\)
−0.284190 + 0.958768i \(0.591725\pi\)
\(60\) −10.2693 −1.32576
\(61\) 9.60897 1.23030 0.615151 0.788409i \(-0.289095\pi\)
0.615151 + 0.788409i \(0.289095\pi\)
\(62\) 0 0
\(63\) 16.1586 2.03579
\(64\) 1.00000 0.125000
\(65\) −7.83038 −0.971239
\(66\) 5.28273 0.650260
\(67\) −8.86119 −1.08257 −0.541283 0.840840i \(-0.682061\pi\)
−0.541283 + 0.840840i \(0.682061\pi\)
\(68\) −0.790065 −0.0958095
\(69\) −15.5520 −1.87224
\(70\) −8.42985 −1.00756
\(71\) −11.8944 −1.41161 −0.705804 0.708408i \(-0.749414\pi\)
−0.705804 + 0.708408i \(0.749414\pi\)
\(72\) 6.41519 0.756037
\(73\) 7.84653 0.918367 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(74\) 5.88930 0.684617
\(75\) 19.0269 2.19703
\(76\) 0.403718 0.0463096
\(77\) 4.33649 0.494189
\(78\) 7.17912 0.812875
\(79\) −2.09485 −0.235689 −0.117845 0.993032i \(-0.537598\pi\)
−0.117845 + 0.993032i \(0.537598\pi\)
\(80\) −3.34677 −0.374180
\(81\) 12.9091 1.43434
\(82\) 7.75758 0.856681
\(83\) −12.2558 −1.34525 −0.672627 0.739982i \(-0.734834\pi\)
−0.672627 + 0.739982i \(0.734834\pi\)
\(84\) 7.72874 0.843274
\(85\) 2.64417 0.286800
\(86\) 7.64688 0.824584
\(87\) −15.9584 −1.71093
\(88\) 1.72165 0.183528
\(89\) 14.6442 1.55228 0.776139 0.630561i \(-0.217175\pi\)
0.776139 + 0.630561i \(0.217175\pi\)
\(90\) −21.4702 −2.26315
\(91\) 5.89319 0.617775
\(92\) −5.06842 −0.528419
\(93\) 0 0
\(94\) −4.83944 −0.499150
\(95\) −1.35115 −0.138625
\(96\) 3.06842 0.313169
\(97\) −18.7837 −1.90720 −0.953598 0.301081i \(-0.902652\pi\)
−0.953598 + 0.301081i \(0.902652\pi\)
\(98\) −0.655638 −0.0662294
\(99\) 11.0447 1.11003
\(100\) 6.20087 0.620087
\(101\) −9.45550 −0.940857 −0.470429 0.882438i \(-0.655901\pi\)
−0.470429 + 0.882438i \(0.655901\pi\)
\(102\) −2.42425 −0.240037
\(103\) −1.30719 −0.128802 −0.0644008 0.997924i \(-0.520514\pi\)
−0.0644008 + 0.997924i \(0.520514\pi\)
\(104\) 2.33968 0.229425
\(105\) −25.8663 −2.52429
\(106\) −2.62950 −0.255400
\(107\) 15.0122 1.45128 0.725642 0.688072i \(-0.241543\pi\)
0.725642 + 0.688072i \(0.241543\pi\)
\(108\) 10.4792 1.00836
\(109\) 7.06206 0.676423 0.338211 0.941070i \(-0.390178\pi\)
0.338211 + 0.941070i \(0.390178\pi\)
\(110\) −5.76196 −0.549381
\(111\) 18.0708 1.71521
\(112\) 2.51880 0.238004
\(113\) 5.42985 0.510797 0.255399 0.966836i \(-0.417793\pi\)
0.255399 + 0.966836i \(0.417793\pi\)
\(114\) 1.23878 0.116022
\(115\) 16.9628 1.58179
\(116\) −5.20087 −0.482889
\(117\) 15.0095 1.38763
\(118\) −4.36581 −0.401906
\(119\) −1.99002 −0.182425
\(120\) −10.2693 −0.937454
\(121\) −8.03593 −0.730539
\(122\) 9.60897 0.869955
\(123\) 23.8035 2.14629
\(124\) 0 0
\(125\) −4.01904 −0.359474
\(126\) 16.1586 1.43952
\(127\) 4.17912 0.370837 0.185418 0.982660i \(-0.440636\pi\)
0.185418 + 0.982660i \(0.440636\pi\)
\(128\) 1.00000 0.0883883
\(129\) 23.4638 2.06587
\(130\) −7.83038 −0.686769
\(131\) 6.92252 0.604823 0.302412 0.953177i \(-0.402208\pi\)
0.302412 + 0.953177i \(0.402208\pi\)
\(132\) 5.28273 0.459803
\(133\) 1.01689 0.0881752
\(134\) −8.86119 −0.765490
\(135\) −35.0716 −3.01848
\(136\) −0.790065 −0.0677475
\(137\) −3.55202 −0.303470 −0.151735 0.988421i \(-0.548486\pi\)
−0.151735 + 0.988421i \(0.548486\pi\)
\(138\) −15.5520 −1.32388
\(139\) −2.46775 −0.209312 −0.104656 0.994508i \(-0.533374\pi\)
−0.104656 + 0.994508i \(0.533374\pi\)
\(140\) −8.42985 −0.712452
\(141\) −14.8494 −1.25055
\(142\) −11.8944 −0.998157
\(143\) 4.02811 0.336847
\(144\) 6.41519 0.534599
\(145\) 17.4061 1.44550
\(146\) 7.84653 0.649383
\(147\) −2.01177 −0.165928
\(148\) 5.88930 0.484097
\(149\) −14.2287 −1.16566 −0.582829 0.812595i \(-0.698054\pi\)
−0.582829 + 0.812595i \(0.698054\pi\)
\(150\) 19.0269 1.55354
\(151\) −4.73583 −0.385396 −0.192698 0.981258i \(-0.561724\pi\)
−0.192698 + 0.981258i \(0.561724\pi\)
\(152\) 0.403718 0.0327459
\(153\) −5.06842 −0.409757
\(154\) 4.33649 0.349444
\(155\) 0 0
\(156\) 7.17912 0.574790
\(157\) −18.3682 −1.46594 −0.732972 0.680259i \(-0.761867\pi\)
−0.732972 + 0.680259i \(0.761867\pi\)
\(158\) −2.09485 −0.166657
\(159\) −8.06842 −0.639867
\(160\) −3.34677 −0.264585
\(161\) −12.7663 −1.00613
\(162\) 12.9091 1.01423
\(163\) −12.6774 −0.992970 −0.496485 0.868045i \(-0.665376\pi\)
−0.496485 + 0.868045i \(0.665376\pi\)
\(164\) 7.75758 0.605765
\(165\) −17.6801 −1.37639
\(166\) −12.2558 −0.951238
\(167\) 23.0716 1.78533 0.892665 0.450720i \(-0.148833\pi\)
0.892665 + 0.450720i \(0.148833\pi\)
\(168\) 7.72874 0.596285
\(169\) −7.52589 −0.578915
\(170\) 2.64417 0.202798
\(171\) 2.58993 0.198057
\(172\) 7.64688 0.583069
\(173\) −20.2515 −1.53969 −0.769845 0.638231i \(-0.779667\pi\)
−0.769845 + 0.638231i \(0.779667\pi\)
\(174\) −15.9584 −1.20981
\(175\) 15.6188 1.18067
\(176\) 1.72165 0.129774
\(177\) −13.3961 −1.00692
\(178\) 14.6442 1.09763
\(179\) −7.93596 −0.593162 −0.296581 0.955008i \(-0.595846\pi\)
−0.296581 + 0.955008i \(0.595846\pi\)
\(180\) −21.4702 −1.60029
\(181\) −24.2847 −1.80507 −0.902533 0.430620i \(-0.858295\pi\)
−0.902533 + 0.430620i \(0.858295\pi\)
\(182\) 5.89319 0.436833
\(183\) 29.4843 2.17955
\(184\) −5.06842 −0.373649
\(185\) −19.7101 −1.44912
\(186\) 0 0
\(187\) −1.36021 −0.0994687
\(188\) −4.83944 −0.352952
\(189\) 26.3951 1.91996
\(190\) −1.35115 −0.0980228
\(191\) 11.3915 0.824257 0.412129 0.911126i \(-0.364785\pi\)
0.412129 + 0.911126i \(0.364785\pi\)
\(192\) 3.06842 0.221444
\(193\) −10.1451 −0.730263 −0.365132 0.930956i \(-0.618976\pi\)
−0.365132 + 0.930956i \(0.618976\pi\)
\(194\) −18.7837 −1.34859
\(195\) −24.0269 −1.72060
\(196\) −0.655638 −0.0468313
\(197\) −2.34087 −0.166780 −0.0833900 0.996517i \(-0.526575\pi\)
−0.0833900 + 0.996517i \(0.526575\pi\)
\(198\) 11.0447 0.784912
\(199\) −11.9110 −0.844352 −0.422176 0.906514i \(-0.638734\pi\)
−0.422176 + 0.906514i \(0.638734\pi\)
\(200\) 6.20087 0.438468
\(201\) −27.1898 −1.91782
\(202\) −9.45550 −0.665287
\(203\) −13.1000 −0.919437
\(204\) −2.42425 −0.169731
\(205\) −25.9628 −1.81332
\(206\) −1.30719 −0.0910765
\(207\) −32.5149 −2.25994
\(208\) 2.33968 0.162228
\(209\) 0.695060 0.0480783
\(210\) −25.8663 −1.78494
\(211\) 20.5097 1.41195 0.705974 0.708237i \(-0.250509\pi\)
0.705974 + 0.708237i \(0.250509\pi\)
\(212\) −2.62950 −0.180595
\(213\) −36.4970 −2.50074
\(214\) 15.0122 1.02621
\(215\) −25.5923 −1.74538
\(216\) 10.4792 0.713021
\(217\) 0 0
\(218\) 7.06206 0.478303
\(219\) 24.0764 1.62693
\(220\) −5.76196 −0.388471
\(221\) −1.84850 −0.124344
\(222\) 18.0708 1.21283
\(223\) −3.53346 −0.236618 −0.118309 0.992977i \(-0.537747\pi\)
−0.118309 + 0.992977i \(0.537747\pi\)
\(224\) 2.51880 0.168295
\(225\) 39.7798 2.65198
\(226\) 5.42985 0.361188
\(227\) 0.561086 0.0372406 0.0186203 0.999827i \(-0.494073\pi\)
0.0186203 + 0.999827i \(0.494073\pi\)
\(228\) 1.23878 0.0820399
\(229\) 4.96919 0.328373 0.164187 0.986429i \(-0.447500\pi\)
0.164187 + 0.986429i \(0.447500\pi\)
\(230\) 16.9628 1.11850
\(231\) 13.3062 0.875481
\(232\) −5.20087 −0.341454
\(233\) −9.50049 −0.622398 −0.311199 0.950345i \(-0.600731\pi\)
−0.311199 + 0.950345i \(0.600731\pi\)
\(234\) 15.0095 0.981202
\(235\) 16.1965 1.05654
\(236\) −4.36581 −0.284190
\(237\) −6.42788 −0.417536
\(238\) −1.99002 −0.128994
\(239\) −12.3614 −0.799595 −0.399797 0.916604i \(-0.630919\pi\)
−0.399797 + 0.916604i \(0.630919\pi\)
\(240\) −10.2693 −0.662880
\(241\) 19.9181 1.28304 0.641520 0.767106i \(-0.278304\pi\)
0.641520 + 0.767106i \(0.278304\pi\)
\(242\) −8.03593 −0.516569
\(243\) 8.17277 0.524283
\(244\) 9.60897 0.615151
\(245\) 2.19427 0.140187
\(246\) 23.8035 1.51766
\(247\) 0.944572 0.0601017
\(248\) 0 0
\(249\) −37.6061 −2.38319
\(250\) −4.01904 −0.254187
\(251\) −24.6158 −1.55373 −0.776867 0.629665i \(-0.783192\pi\)
−0.776867 + 0.629665i \(0.783192\pi\)
\(252\) 16.1586 1.01790
\(253\) −8.72603 −0.548601
\(254\) 4.17912 0.262221
\(255\) 8.11341 0.508081
\(256\) 1.00000 0.0625000
\(257\) 20.5027 1.27892 0.639460 0.768824i \(-0.279158\pi\)
0.639460 + 0.768824i \(0.279158\pi\)
\(258\) 23.4638 1.46079
\(259\) 14.8340 0.921738
\(260\) −7.83038 −0.485619
\(261\) −33.3646 −2.06522
\(262\) 6.92252 0.427675
\(263\) 5.06994 0.312626 0.156313 0.987708i \(-0.450039\pi\)
0.156313 + 0.987708i \(0.450039\pi\)
\(264\) 5.28273 0.325130
\(265\) 8.80035 0.540601
\(266\) 1.01689 0.0623493
\(267\) 44.9344 2.74994
\(268\) −8.86119 −0.541283
\(269\) −5.29740 −0.322988 −0.161494 0.986874i \(-0.551631\pi\)
−0.161494 + 0.986874i \(0.551631\pi\)
\(270\) −35.0716 −2.13439
\(271\) −7.81423 −0.474680 −0.237340 0.971427i \(-0.576276\pi\)
−0.237340 + 0.971427i \(0.576276\pi\)
\(272\) −0.790065 −0.0479047
\(273\) 18.0828 1.09442
\(274\) −3.55202 −0.214586
\(275\) 10.6757 0.643770
\(276\) −15.5520 −0.936122
\(277\) −1.03033 −0.0619065 −0.0309532 0.999521i \(-0.509854\pi\)
−0.0309532 + 0.999521i \(0.509854\pi\)
\(278\) −2.46775 −0.148006
\(279\) 0 0
\(280\) −8.42985 −0.503780
\(281\) 7.06252 0.421314 0.210657 0.977560i \(-0.432440\pi\)
0.210657 + 0.977560i \(0.432440\pi\)
\(282\) −14.8494 −0.884270
\(283\) 21.6825 1.28889 0.644446 0.764650i \(-0.277088\pi\)
0.644446 + 0.764650i \(0.277088\pi\)
\(284\) −11.8944 −0.705804
\(285\) −4.14590 −0.245582
\(286\) 4.02811 0.238187
\(287\) 19.5398 1.15340
\(288\) 6.41519 0.378019
\(289\) −16.3758 −0.963282
\(290\) 17.4061 1.02212
\(291\) −57.6363 −3.37870
\(292\) 7.84653 0.459183
\(293\) −8.98188 −0.524727 −0.262363 0.964969i \(-0.584502\pi\)
−0.262363 + 0.964969i \(0.584502\pi\)
\(294\) −2.01177 −0.117329
\(295\) 14.6114 0.850707
\(296\) 5.88930 0.342308
\(297\) 18.0415 1.04688
\(298\) −14.2287 −0.824245
\(299\) −11.8585 −0.685794
\(300\) 19.0269 1.09852
\(301\) 19.2610 1.11018
\(302\) −4.73583 −0.272516
\(303\) −29.0134 −1.66678
\(304\) 0.403718 0.0231548
\(305\) −32.1590 −1.84142
\(306\) −5.06842 −0.289742
\(307\) −14.5413 −0.829915 −0.414958 0.909841i \(-0.636204\pi\)
−0.414958 + 0.909841i \(0.636204\pi\)
\(308\) 4.33649 0.247094
\(309\) −4.01102 −0.228179
\(310\) 0 0
\(311\) −10.6398 −0.603327 −0.301663 0.953414i \(-0.597542\pi\)
−0.301663 + 0.953414i \(0.597542\pi\)
\(312\) 7.17912 0.406438
\(313\) 3.37758 0.190912 0.0954562 0.995434i \(-0.469569\pi\)
0.0954562 + 0.995434i \(0.469569\pi\)
\(314\) −18.3682 −1.03658
\(315\) −54.0791 −3.04701
\(316\) −2.09485 −0.117845
\(317\) 6.53736 0.367175 0.183587 0.983003i \(-0.441229\pi\)
0.183587 + 0.983003i \(0.441229\pi\)
\(318\) −8.06842 −0.452454
\(319\) −8.95407 −0.501332
\(320\) −3.34677 −0.187090
\(321\) 46.0637 2.57103
\(322\) −12.7663 −0.711440
\(323\) −0.318964 −0.0177476
\(324\) 12.9091 0.717171
\(325\) 14.5081 0.804763
\(326\) −12.6774 −0.702136
\(327\) 21.6694 1.19832
\(328\) 7.75758 0.428341
\(329\) −12.1896 −0.672034
\(330\) −17.6801 −0.973257
\(331\) 28.0044 1.53926 0.769629 0.638491i \(-0.220441\pi\)
0.769629 + 0.638491i \(0.220441\pi\)
\(332\) −12.2558 −0.672627
\(333\) 37.7810 2.07038
\(334\) 23.0716 1.26242
\(335\) 29.6564 1.62030
\(336\) 7.72874 0.421637
\(337\) 29.7109 1.61845 0.809227 0.587496i \(-0.199886\pi\)
0.809227 + 0.587496i \(0.199886\pi\)
\(338\) −7.52589 −0.409354
\(339\) 16.6611 0.904904
\(340\) 2.64417 0.143400
\(341\) 0 0
\(342\) 2.58993 0.140047
\(343\) −19.2830 −1.04119
\(344\) 7.64688 0.412292
\(345\) 52.0491 2.80223
\(346\) −20.2515 −1.08873
\(347\) −9.82039 −0.527186 −0.263593 0.964634i \(-0.584908\pi\)
−0.263593 + 0.964634i \(0.584908\pi\)
\(348\) −15.9584 −0.855463
\(349\) 1.02613 0.0549277 0.0274638 0.999623i \(-0.491257\pi\)
0.0274638 + 0.999623i \(0.491257\pi\)
\(350\) 15.6188 0.834858
\(351\) 24.5180 1.30868
\(352\) 1.72165 0.0917641
\(353\) 21.0122 1.11837 0.559183 0.829044i \(-0.311115\pi\)
0.559183 + 0.829044i \(0.311115\pi\)
\(354\) −13.3961 −0.711997
\(355\) 39.8079 2.11278
\(356\) 14.6442 0.776139
\(357\) −6.10621 −0.323175
\(358\) −7.93596 −0.419429
\(359\) −30.4196 −1.60548 −0.802742 0.596327i \(-0.796626\pi\)
−0.802742 + 0.596327i \(0.796626\pi\)
\(360\) −21.4702 −1.13158
\(361\) −18.8370 −0.991422
\(362\) −24.2847 −1.27637
\(363\) −24.6576 −1.29419
\(364\) 5.89319 0.308887
\(365\) −26.2605 −1.37454
\(366\) 29.4843 1.54117
\(367\) 25.8054 1.34703 0.673516 0.739172i \(-0.264783\pi\)
0.673516 + 0.739172i \(0.264783\pi\)
\(368\) −5.06842 −0.264210
\(369\) 49.7663 2.59073
\(370\) −19.7101 −1.02468
\(371\) −6.62320 −0.343859
\(372\) 0 0
\(373\) 12.4846 0.646430 0.323215 0.946326i \(-0.395236\pi\)
0.323215 + 0.946326i \(0.395236\pi\)
\(374\) −1.36021 −0.0703350
\(375\) −12.3321 −0.636827
\(376\) −4.83944 −0.249575
\(377\) −12.1684 −0.626704
\(378\) 26.3951 1.35762
\(379\) 1.88418 0.0967839 0.0483920 0.998828i \(-0.484590\pi\)
0.0483920 + 0.998828i \(0.484590\pi\)
\(380\) −1.35115 −0.0693126
\(381\) 12.8233 0.656957
\(382\) 11.3915 0.582838
\(383\) 13.0368 0.666152 0.333076 0.942900i \(-0.391913\pi\)
0.333076 + 0.942900i \(0.391913\pi\)
\(384\) 3.06842 0.156585
\(385\) −14.5132 −0.739663
\(386\) −10.1451 −0.516374
\(387\) 49.0561 2.49366
\(388\) −18.7837 −0.953598
\(389\) 10.3218 0.523337 0.261669 0.965158i \(-0.415727\pi\)
0.261669 + 0.965158i \(0.415727\pi\)
\(390\) −24.0269 −1.21665
\(391\) 4.00438 0.202510
\(392\) −0.655638 −0.0331147
\(393\) 21.2412 1.07148
\(394\) −2.34087 −0.117931
\(395\) 7.01099 0.352761
\(396\) 11.0447 0.555017
\(397\) 14.8604 0.745824 0.372912 0.927867i \(-0.378359\pi\)
0.372912 + 0.927867i \(0.378359\pi\)
\(398\) −11.9110 −0.597047
\(399\) 3.12023 0.156207
\(400\) 6.20087 0.310044
\(401\) 12.2199 0.610234 0.305117 0.952315i \(-0.401305\pi\)
0.305117 + 0.952315i \(0.401305\pi\)
\(402\) −27.1898 −1.35611
\(403\) 0 0
\(404\) −9.45550 −0.470429
\(405\) −43.2037 −2.14681
\(406\) −13.1000 −0.650140
\(407\) 10.1393 0.502586
\(408\) −2.42425 −0.120018
\(409\) 14.9660 0.740021 0.370010 0.929028i \(-0.379354\pi\)
0.370010 + 0.929028i \(0.379354\pi\)
\(410\) −25.9628 −1.28221
\(411\) −10.8991 −0.537613
\(412\) −1.30719 −0.0644008
\(413\) −10.9966 −0.541108
\(414\) −32.5149 −1.59802
\(415\) 41.0175 2.01347
\(416\) 2.33968 0.114712
\(417\) −7.57210 −0.370807
\(418\) 0.695060 0.0339965
\(419\) 15.2903 0.746978 0.373489 0.927635i \(-0.378161\pi\)
0.373489 + 0.927635i \(0.378161\pi\)
\(420\) −25.8663 −1.26215
\(421\) 21.4454 1.04518 0.522592 0.852583i \(-0.324965\pi\)
0.522592 + 0.852583i \(0.324965\pi\)
\(422\) 20.5097 0.998398
\(423\) −31.0459 −1.50950
\(424\) −2.62950 −0.127700
\(425\) −4.89909 −0.237641
\(426\) −36.4970 −1.76829
\(427\) 24.2031 1.17127
\(428\) 15.0122 0.725642
\(429\) 12.3599 0.596742
\(430\) −25.5923 −1.23417
\(431\) 8.95255 0.431229 0.215615 0.976479i \(-0.430825\pi\)
0.215615 + 0.976479i \(0.430825\pi\)
\(432\) 10.4792 0.504182
\(433\) 5.18109 0.248987 0.124494 0.992220i \(-0.460269\pi\)
0.124494 + 0.992220i \(0.460269\pi\)
\(434\) 0 0
\(435\) 53.4093 2.56078
\(436\) 7.06206 0.338211
\(437\) −2.04621 −0.0978836
\(438\) 24.0764 1.15042
\(439\) −2.26810 −0.108251 −0.0541253 0.998534i \(-0.517237\pi\)
−0.0541253 + 0.998534i \(0.517237\pi\)
\(440\) −5.76196 −0.274691
\(441\) −4.20604 −0.200288
\(442\) −1.84850 −0.0879242
\(443\) −22.1187 −1.05089 −0.525446 0.850827i \(-0.676101\pi\)
−0.525446 + 0.850827i \(0.676101\pi\)
\(444\) 18.0708 0.857603
\(445\) −49.0107 −2.32333
\(446\) −3.53346 −0.167314
\(447\) −43.6595 −2.06503
\(448\) 2.51880 0.119002
\(449\) −16.6105 −0.783896 −0.391948 0.919987i \(-0.628199\pi\)
−0.391948 + 0.919987i \(0.628199\pi\)
\(450\) 39.7798 1.87524
\(451\) 13.3558 0.628901
\(452\) 5.42985 0.255399
\(453\) −14.5315 −0.682749
\(454\) 0.561086 0.0263331
\(455\) −19.7232 −0.924636
\(456\) 1.23878 0.0580110
\(457\) −36.3789 −1.70174 −0.850868 0.525380i \(-0.823923\pi\)
−0.850868 + 0.525380i \(0.823923\pi\)
\(458\) 4.96919 0.232195
\(459\) −8.27927 −0.386443
\(460\) 16.9628 0.790896
\(461\) 3.49237 0.162656 0.0813279 0.996687i \(-0.474084\pi\)
0.0813279 + 0.996687i \(0.474084\pi\)
\(462\) 13.3062 0.619059
\(463\) 6.06601 0.281911 0.140956 0.990016i \(-0.454982\pi\)
0.140956 + 0.990016i \(0.454982\pi\)
\(464\) −5.20087 −0.241444
\(465\) 0 0
\(466\) −9.50049 −0.440102
\(467\) 3.06626 0.141890 0.0709448 0.997480i \(-0.477399\pi\)
0.0709448 + 0.997480i \(0.477399\pi\)
\(468\) 15.0095 0.693814
\(469\) −22.3196 −1.03062
\(470\) 16.1965 0.747088
\(471\) −56.3614 −2.59700
\(472\) −4.36581 −0.200953
\(473\) 13.1652 0.605338
\(474\) −6.42788 −0.295242
\(475\) 2.50340 0.114864
\(476\) −1.99002 −0.0912123
\(477\) −16.8688 −0.772368
\(478\) −12.3614 −0.565399
\(479\) 5.25392 0.240058 0.120029 0.992770i \(-0.461701\pi\)
0.120029 + 0.992770i \(0.461701\pi\)
\(480\) −10.2693 −0.468727
\(481\) 13.7791 0.628272
\(482\) 19.9181 0.907246
\(483\) −39.1725 −1.78241
\(484\) −8.03593 −0.365270
\(485\) 62.8648 2.85454
\(486\) 8.17277 0.370724
\(487\) −6.79518 −0.307919 −0.153960 0.988077i \(-0.549203\pi\)
−0.153960 + 0.988077i \(0.549203\pi\)
\(488\) 9.60897 0.434978
\(489\) −38.8995 −1.75910
\(490\) 2.19427 0.0991269
\(491\) 23.1009 1.04253 0.521264 0.853395i \(-0.325461\pi\)
0.521264 + 0.853395i \(0.325461\pi\)
\(492\) 23.8035 1.07314
\(493\) 4.10903 0.185061
\(494\) 0.944572 0.0424983
\(495\) −36.9641 −1.66141
\(496\) 0 0
\(497\) −29.9597 −1.34387
\(498\) −37.6061 −1.68517
\(499\) 25.1701 1.12677 0.563383 0.826196i \(-0.309499\pi\)
0.563383 + 0.826196i \(0.309499\pi\)
\(500\) −4.01904 −0.179737
\(501\) 70.7932 3.16281
\(502\) −24.6158 −1.09866
\(503\) −7.47046 −0.333091 −0.166546 0.986034i \(-0.553261\pi\)
−0.166546 + 0.986034i \(0.553261\pi\)
\(504\) 16.1586 0.719761
\(505\) 31.6454 1.40820
\(506\) −8.72603 −0.387919
\(507\) −23.0926 −1.02558
\(508\) 4.17912 0.185418
\(509\) 34.1956 1.51569 0.757846 0.652434i \(-0.226252\pi\)
0.757846 + 0.652434i \(0.226252\pi\)
\(510\) 8.11341 0.359268
\(511\) 19.7638 0.874301
\(512\) 1.00000 0.0441942
\(513\) 4.23065 0.186788
\(514\) 20.5027 0.904333
\(515\) 4.37488 0.192780
\(516\) 23.4638 1.03294
\(517\) −8.33181 −0.366432
\(518\) 14.8340 0.651767
\(519\) −62.1400 −2.72764
\(520\) −7.83038 −0.343385
\(521\) −6.22092 −0.272543 −0.136272 0.990671i \(-0.543512\pi\)
−0.136272 + 0.990671i \(0.543512\pi\)
\(522\) −33.3646 −1.46033
\(523\) −19.2360 −0.841132 −0.420566 0.907262i \(-0.638169\pi\)
−0.420566 + 0.907262i \(0.638169\pi\)
\(524\) 6.92252 0.302412
\(525\) 47.9249 2.09161
\(526\) 5.06994 0.221060
\(527\) 0 0
\(528\) 5.28273 0.229901
\(529\) 2.68886 0.116907
\(530\) 8.80035 0.382263
\(531\) −28.0075 −1.21542
\(532\) 1.01689 0.0440876
\(533\) 18.1503 0.786175
\(534\) 44.9344 1.94450
\(535\) −50.2424 −2.17217
\(536\) −8.86119 −0.382745
\(537\) −24.3509 −1.05082
\(538\) −5.29740 −0.228387
\(539\) −1.12878 −0.0486199
\(540\) −35.0716 −1.50924
\(541\) 22.7752 0.979182 0.489591 0.871952i \(-0.337146\pi\)
0.489591 + 0.871952i \(0.337146\pi\)
\(542\) −7.81423 −0.335650
\(543\) −74.5156 −3.19777
\(544\) −0.790065 −0.0338738
\(545\) −23.6351 −1.01242
\(546\) 18.0828 0.773872
\(547\) 2.21283 0.0946137 0.0473068 0.998880i \(-0.484936\pi\)
0.0473068 + 0.998880i \(0.484936\pi\)
\(548\) −3.55202 −0.151735
\(549\) 61.6434 2.63087
\(550\) 10.6757 0.455214
\(551\) −2.09969 −0.0894496
\(552\) −15.5520 −0.661938
\(553\) −5.27651 −0.224380
\(554\) −1.03033 −0.0437745
\(555\) −60.4789 −2.56719
\(556\) −2.46775 −0.104656
\(557\) 30.0188 1.27194 0.635969 0.771715i \(-0.280601\pi\)
0.635969 + 0.771715i \(0.280601\pi\)
\(558\) 0 0
\(559\) 17.8913 0.756719
\(560\) −8.42985 −0.356226
\(561\) −4.17370 −0.176214
\(562\) 7.06252 0.297914
\(563\) −4.60946 −0.194265 −0.0971327 0.995271i \(-0.530967\pi\)
−0.0971327 + 0.995271i \(0.530967\pi\)
\(564\) −14.8494 −0.625273
\(565\) −18.1725 −0.764521
\(566\) 21.6825 0.911384
\(567\) 32.5154 1.36552
\(568\) −11.8944 −0.499078
\(569\) 15.5824 0.653246 0.326623 0.945155i \(-0.394089\pi\)
0.326623 + 0.945155i \(0.394089\pi\)
\(570\) −4.14590 −0.173653
\(571\) 1.86661 0.0781151 0.0390575 0.999237i \(-0.487564\pi\)
0.0390575 + 0.999237i \(0.487564\pi\)
\(572\) 4.02811 0.168424
\(573\) 34.9538 1.46021
\(574\) 19.5398 0.815575
\(575\) −31.4286 −1.31066
\(576\) 6.41519 0.267300
\(577\) −30.2432 −1.25904 −0.629520 0.776985i \(-0.716748\pi\)
−0.629520 + 0.776985i \(0.716748\pi\)
\(578\) −16.3758 −0.681143
\(579\) −31.1295 −1.29370
\(580\) 17.4061 0.722750
\(581\) −30.8700 −1.28071
\(582\) −57.6363 −2.38910
\(583\) −4.52708 −0.187492
\(584\) 7.84653 0.324692
\(585\) −50.2333 −2.07689
\(586\) −8.98188 −0.371038
\(587\) 21.1815 0.874255 0.437128 0.899399i \(-0.355996\pi\)
0.437128 + 0.899399i \(0.355996\pi\)
\(588\) −2.01177 −0.0829640
\(589\) 0 0
\(590\) 14.6114 0.601541
\(591\) −7.18277 −0.295460
\(592\) 5.88930 0.242049
\(593\) 41.7520 1.71455 0.857274 0.514861i \(-0.172156\pi\)
0.857274 + 0.514861i \(0.172156\pi\)
\(594\) 18.0415 0.740253
\(595\) 6.66013 0.273039
\(596\) −14.2287 −0.582829
\(597\) −36.5481 −1.49581
\(598\) −11.8585 −0.484929
\(599\) −6.52924 −0.266777 −0.133389 0.991064i \(-0.542586\pi\)
−0.133389 + 0.991064i \(0.542586\pi\)
\(600\) 19.0269 0.776769
\(601\) −5.23531 −0.213553 −0.106776 0.994283i \(-0.534053\pi\)
−0.106776 + 0.994283i \(0.534053\pi\)
\(602\) 19.2610 0.785018
\(603\) −56.8462 −2.31496
\(604\) −4.73583 −0.192698
\(605\) 26.8944 1.09341
\(606\) −29.0134 −1.17859
\(607\) 20.2938 0.823698 0.411849 0.911252i \(-0.364883\pi\)
0.411849 + 0.911252i \(0.364883\pi\)
\(608\) 0.403718 0.0163729
\(609\) −40.1962 −1.62883
\(610\) −32.1590 −1.30208
\(611\) −11.3227 −0.458069
\(612\) −5.06842 −0.204879
\(613\) −1.47725 −0.0596656 −0.0298328 0.999555i \(-0.509497\pi\)
−0.0298328 + 0.999555i \(0.509497\pi\)
\(614\) −14.5413 −0.586839
\(615\) −79.6648 −3.21240
\(616\) 4.33649 0.174722
\(617\) −20.6148 −0.829922 −0.414961 0.909839i \(-0.636205\pi\)
−0.414961 + 0.909839i \(0.636205\pi\)
\(618\) −4.01102 −0.161347
\(619\) −2.74094 −0.110168 −0.0550839 0.998482i \(-0.517543\pi\)
−0.0550839 + 0.998482i \(0.517543\pi\)
\(620\) 0 0
\(621\) −53.1131 −2.13135
\(622\) −10.6398 −0.426617
\(623\) 36.8858 1.47780
\(624\) 7.17912 0.287395
\(625\) −17.5535 −0.702142
\(626\) 3.37758 0.134995
\(627\) 2.13274 0.0851732
\(628\) −18.3682 −0.732972
\(629\) −4.65293 −0.185524
\(630\) −54.0791 −2.15456
\(631\) −41.5150 −1.65269 −0.826344 0.563166i \(-0.809583\pi\)
−0.826344 + 0.563166i \(0.809583\pi\)
\(632\) −2.09485 −0.0833287
\(633\) 62.9325 2.50134
\(634\) 6.53736 0.259632
\(635\) −13.9866 −0.555040
\(636\) −8.06842 −0.319934
\(637\) −1.53398 −0.0607786
\(638\) −8.95407 −0.354495
\(639\) −76.3049 −3.01858
\(640\) −3.34677 −0.132293
\(641\) −9.81133 −0.387524 −0.193762 0.981049i \(-0.562069\pi\)
−0.193762 + 0.981049i \(0.562069\pi\)
\(642\) 46.0637 1.81799
\(643\) 37.9560 1.49684 0.748420 0.663225i \(-0.230813\pi\)
0.748420 + 0.663225i \(0.230813\pi\)
\(644\) −12.7663 −0.503064
\(645\) −78.5280 −3.09204
\(646\) −0.318964 −0.0125495
\(647\) −30.8832 −1.21414 −0.607072 0.794647i \(-0.707656\pi\)
−0.607072 + 0.794647i \(0.707656\pi\)
\(648\) 12.9091 0.507116
\(649\) −7.51639 −0.295044
\(650\) 14.5081 0.569053
\(651\) 0 0
\(652\) −12.6774 −0.496485
\(653\) −3.86753 −0.151348 −0.0756740 0.997133i \(-0.524111\pi\)
−0.0756740 + 0.997133i \(0.524111\pi\)
\(654\) 21.6694 0.847339
\(655\) −23.1681 −0.905252
\(656\) 7.75758 0.302883
\(657\) 50.3370 1.96383
\(658\) −12.1896 −0.475200
\(659\) 29.8438 1.16255 0.581275 0.813707i \(-0.302554\pi\)
0.581275 + 0.813707i \(0.302554\pi\)
\(660\) −17.6801 −0.688197
\(661\) 41.2333 1.60379 0.801895 0.597465i \(-0.203825\pi\)
0.801895 + 0.597465i \(0.203825\pi\)
\(662\) 28.0044 1.08842
\(663\) −5.67197 −0.220281
\(664\) −12.2558 −0.475619
\(665\) −3.40328 −0.131974
\(666\) 37.7810 1.46398
\(667\) 26.3602 1.02067
\(668\) 23.0716 0.892665
\(669\) −10.8421 −0.419182
\(670\) 29.6564 1.14573
\(671\) 16.5433 0.638646
\(672\) 7.72874 0.298142
\(673\) −40.4650 −1.55981 −0.779905 0.625897i \(-0.784733\pi\)
−0.779905 + 0.625897i \(0.784733\pi\)
\(674\) 29.7109 1.14442
\(675\) 64.9803 2.50109
\(676\) −7.52589 −0.289457
\(677\) 43.9447 1.68893 0.844466 0.535609i \(-0.179918\pi\)
0.844466 + 0.535609i \(0.179918\pi\)
\(678\) 16.6611 0.639864
\(679\) −47.3124 −1.81568
\(680\) 2.64417 0.101399
\(681\) 1.72165 0.0659737
\(682\) 0 0
\(683\) −4.87945 −0.186707 −0.0933535 0.995633i \(-0.529759\pi\)
−0.0933535 + 0.995633i \(0.529759\pi\)
\(684\) 2.58993 0.0990284
\(685\) 11.8878 0.454210
\(686\) −19.2830 −0.736230
\(687\) 15.2475 0.581730
\(688\) 7.64688 0.291534
\(689\) −6.15220 −0.234380
\(690\) 52.0491 1.98147
\(691\) 35.6502 1.35620 0.678099 0.734971i \(-0.262804\pi\)
0.678099 + 0.734971i \(0.262804\pi\)
\(692\) −20.2515 −0.769845
\(693\) 27.8194 1.05677
\(694\) −9.82039 −0.372777
\(695\) 8.25901 0.313282
\(696\) −15.9584 −0.604903
\(697\) −6.12899 −0.232152
\(698\) 1.02613 0.0388397
\(699\) −29.1515 −1.10261
\(700\) 15.6188 0.590334
\(701\) −20.3324 −0.767944 −0.383972 0.923345i \(-0.625444\pi\)
−0.383972 + 0.923345i \(0.625444\pi\)
\(702\) 24.5180 0.925374
\(703\) 2.37762 0.0896735
\(704\) 1.72165 0.0648870
\(705\) 49.6976 1.87172
\(706\) 21.0122 0.790805
\(707\) −23.8165 −0.895713
\(708\) −13.3961 −0.503458
\(709\) −9.60069 −0.360562 −0.180281 0.983615i \(-0.557701\pi\)
−0.180281 + 0.983615i \(0.557701\pi\)
\(710\) 39.8079 1.49396
\(711\) −13.4389 −0.503997
\(712\) 14.6442 0.548813
\(713\) 0 0
\(714\) −6.10621 −0.228519
\(715\) −13.4811 −0.504166
\(716\) −7.93596 −0.296581
\(717\) −37.9300 −1.41652
\(718\) −30.4196 −1.13525
\(719\) −36.7351 −1.36999 −0.684994 0.728549i \(-0.740195\pi\)
−0.684994 + 0.728549i \(0.740195\pi\)
\(720\) −21.4702 −0.800146
\(721\) −3.29256 −0.122621
\(722\) −18.8370 −0.701041
\(723\) 61.1172 2.27297
\(724\) −24.2847 −0.902533
\(725\) −32.2499 −1.19773
\(726\) −24.6576 −0.915129
\(727\) 16.6310 0.616811 0.308405 0.951255i \(-0.400205\pi\)
0.308405 + 0.951255i \(0.400205\pi\)
\(728\) 5.89319 0.218416
\(729\) −13.6498 −0.505547
\(730\) −26.2605 −0.971946
\(731\) −6.04153 −0.223454
\(732\) 29.4843 1.08977
\(733\) 3.54478 0.130929 0.0654647 0.997855i \(-0.479147\pi\)
0.0654647 + 0.997855i \(0.479147\pi\)
\(734\) 25.8054 0.952496
\(735\) 6.73293 0.248348
\(736\) −5.06842 −0.186824
\(737\) −15.2558 −0.561956
\(738\) 49.7663 1.83192
\(739\) 9.42152 0.346576 0.173288 0.984871i \(-0.444561\pi\)
0.173288 + 0.984871i \(0.444561\pi\)
\(740\) −19.7101 −0.724559
\(741\) 2.89834 0.106473
\(742\) −6.62320 −0.243145
\(743\) 0.492369 0.0180633 0.00903163 0.999959i \(-0.497125\pi\)
0.00903163 + 0.999959i \(0.497125\pi\)
\(744\) 0 0
\(745\) 47.6201 1.74467
\(746\) 12.4846 0.457095
\(747\) −78.6236 −2.87669
\(748\) −1.36021 −0.0497343
\(749\) 37.8128 1.38165
\(750\) −12.3321 −0.450305
\(751\) 40.8985 1.49241 0.746204 0.665718i \(-0.231875\pi\)
0.746204 + 0.665718i \(0.231875\pi\)
\(752\) −4.83944 −0.176476
\(753\) −75.5314 −2.75252
\(754\) −12.1684 −0.443146
\(755\) 15.8497 0.576830
\(756\) 26.3951 0.959980
\(757\) −14.6050 −0.530829 −0.265414 0.964134i \(-0.585509\pi\)
−0.265414 + 0.964134i \(0.585509\pi\)
\(758\) 1.88418 0.0684366
\(759\) −26.7751 −0.971875
\(760\) −1.35115 −0.0490114
\(761\) 53.8460 1.95192 0.975958 0.217957i \(-0.0699392\pi\)
0.975958 + 0.217957i \(0.0699392\pi\)
\(762\) 12.8233 0.464539
\(763\) 17.7879 0.643967
\(764\) 11.3915 0.412129
\(765\) 16.9628 0.613292
\(766\) 13.0368 0.471041
\(767\) −10.2146 −0.368828
\(768\) 3.06842 0.110722
\(769\) 41.8213 1.50811 0.754057 0.656809i \(-0.228094\pi\)
0.754057 + 0.656809i \(0.228094\pi\)
\(770\) −14.5132 −0.523021
\(771\) 62.9107 2.26567
\(772\) −10.1451 −0.365132
\(773\) 19.7207 0.709305 0.354652 0.934998i \(-0.384599\pi\)
0.354652 + 0.934998i \(0.384599\pi\)
\(774\) 49.0561 1.76329
\(775\) 0 0
\(776\) −18.7837 −0.674296
\(777\) 45.5168 1.63291
\(778\) 10.3218 0.370055
\(779\) 3.13187 0.112211
\(780\) −24.0269 −0.860300
\(781\) −20.4780 −0.732760
\(782\) 4.00438 0.143196
\(783\) −54.5011 −1.94771
\(784\) −0.655638 −0.0234156
\(785\) 61.4742 2.19411
\(786\) 21.2412 0.757648
\(787\) 3.79037 0.135112 0.0675560 0.997715i \(-0.478480\pi\)
0.0675560 + 0.997715i \(0.478480\pi\)
\(788\) −2.34087 −0.0833900
\(789\) 15.5567 0.553833
\(790\) 7.01099 0.249440
\(791\) 13.6767 0.486288
\(792\) 11.0447 0.392456
\(793\) 22.4819 0.798357
\(794\) 14.8604 0.527377
\(795\) 27.0031 0.957703
\(796\) −11.9110 −0.422176
\(797\) 12.4130 0.439692 0.219846 0.975535i \(-0.429444\pi\)
0.219846 + 0.975535i \(0.429444\pi\)
\(798\) 3.12023 0.110455
\(799\) 3.82347 0.135265
\(800\) 6.20087 0.219234
\(801\) 93.9451 3.31939
\(802\) 12.2199 0.431500
\(803\) 13.5090 0.476721
\(804\) −27.1898 −0.958912
\(805\) 42.7260 1.50589
\(806\) 0 0
\(807\) −16.2546 −0.572190
\(808\) −9.45550 −0.332643
\(809\) −23.2060 −0.815878 −0.407939 0.913009i \(-0.633752\pi\)
−0.407939 + 0.913009i \(0.633752\pi\)
\(810\) −43.2037 −1.51802
\(811\) 39.4836 1.38646 0.693228 0.720718i \(-0.256188\pi\)
0.693228 + 0.720718i \(0.256188\pi\)
\(812\) −13.1000 −0.459719
\(813\) −23.9773 −0.840921
\(814\) 10.1393 0.355382
\(815\) 42.4283 1.48620
\(816\) −2.42425 −0.0848657
\(817\) 3.08718 0.108007
\(818\) 14.9660 0.523274
\(819\) 37.8059 1.32105
\(820\) −25.9628 −0.906661
\(821\) −17.9793 −0.627482 −0.313741 0.949509i \(-0.601582\pi\)
−0.313741 + 0.949509i \(0.601582\pi\)
\(822\) −10.8991 −0.380150
\(823\) 3.71681 0.129560 0.0647800 0.997900i \(-0.479365\pi\)
0.0647800 + 0.997900i \(0.479365\pi\)
\(824\) −1.30719 −0.0455382
\(825\) 32.7576 1.14047
\(826\) −10.9966 −0.382621
\(827\) 38.8764 1.35186 0.675932 0.736964i \(-0.263741\pi\)
0.675932 + 0.736964i \(0.263741\pi\)
\(828\) −32.5149 −1.12997
\(829\) 21.0176 0.729970 0.364985 0.931013i \(-0.381074\pi\)
0.364985 + 0.931013i \(0.381074\pi\)
\(830\) 41.0175 1.42374
\(831\) −3.16148 −0.109671
\(832\) 2.33968 0.0811139
\(833\) 0.517997 0.0179475
\(834\) −7.57210 −0.262200
\(835\) −77.2152 −2.67214
\(836\) 0.695060 0.0240392
\(837\) 0 0
\(838\) 15.2903 0.528193
\(839\) 20.9531 0.723380 0.361690 0.932298i \(-0.382200\pi\)
0.361690 + 0.932298i \(0.382200\pi\)
\(840\) −25.8663 −0.892472
\(841\) −1.95093 −0.0672733
\(842\) 21.4454 0.739057
\(843\) 21.6708 0.746380
\(844\) 20.5097 0.705974
\(845\) 25.1874 0.866474
\(846\) −31.0459 −1.06738
\(847\) −20.2409 −0.695486
\(848\) −2.62950 −0.0902975
\(849\) 66.5310 2.28334
\(850\) −4.89909 −0.168038
\(851\) −29.8494 −1.02322
\(852\) −36.4970 −1.25037
\(853\) 53.2215 1.82227 0.911135 0.412107i \(-0.135207\pi\)
0.911135 + 0.412107i \(0.135207\pi\)
\(854\) 24.2031 0.828213
\(855\) −8.66789 −0.296436
\(856\) 15.0122 0.513107
\(857\) −14.1166 −0.482212 −0.241106 0.970499i \(-0.577510\pi\)
−0.241106 + 0.970499i \(0.577510\pi\)
\(858\) 12.3599 0.421961
\(859\) −21.1882 −0.722931 −0.361465 0.932386i \(-0.617723\pi\)
−0.361465 + 0.932386i \(0.617723\pi\)
\(860\) −25.5923 −0.872691
\(861\) 59.9563 2.04330
\(862\) 8.95255 0.304925
\(863\) 3.42261 0.116507 0.0582535 0.998302i \(-0.481447\pi\)
0.0582535 + 0.998302i \(0.481447\pi\)
\(864\) 10.4792 0.356510
\(865\) 67.7770 2.30449
\(866\) 5.18109 0.176061
\(867\) −50.2478 −1.70650
\(868\) 0 0
\(869\) −3.60659 −0.122345
\(870\) 53.4093 1.81074
\(871\) −20.7324 −0.702489
\(872\) 7.06206 0.239152
\(873\) −120.501 −4.07834
\(874\) −2.04621 −0.0692141
\(875\) −10.1232 −0.342226
\(876\) 24.0764 0.813467
\(877\) −49.0825 −1.65740 −0.828700 0.559693i \(-0.810919\pi\)
−0.828700 + 0.559693i \(0.810919\pi\)
\(878\) −2.26810 −0.0765447
\(879\) −27.5601 −0.929581
\(880\) −5.76196 −0.194236
\(881\) 26.4814 0.892180 0.446090 0.894988i \(-0.352816\pi\)
0.446090 + 0.894988i \(0.352816\pi\)
\(882\) −4.20604 −0.141625
\(883\) 16.6772 0.561233 0.280616 0.959820i \(-0.409461\pi\)
0.280616 + 0.959820i \(0.409461\pi\)
\(884\) −1.84850 −0.0621718
\(885\) 44.8338 1.50707
\(886\) −22.1187 −0.743093
\(887\) 17.1609 0.576205 0.288103 0.957600i \(-0.406976\pi\)
0.288103 + 0.957600i \(0.406976\pi\)
\(888\) 18.0708 0.606417
\(889\) 10.5264 0.353043
\(890\) −49.0107 −1.64284
\(891\) 22.2249 0.744561
\(892\) −3.53346 −0.118309
\(893\) −1.95377 −0.0653804
\(894\) −43.6595 −1.46019
\(895\) 26.5598 0.887798
\(896\) 2.51880 0.0841473
\(897\) −36.3868 −1.21492
\(898\) −16.6105 −0.554298
\(899\) 0 0
\(900\) 39.7798 1.32599
\(901\) 2.07748 0.0692109
\(902\) 13.3558 0.444700
\(903\) 59.1007 1.96675
\(904\) 5.42985 0.180594
\(905\) 81.2753 2.70168
\(906\) −14.5315 −0.482776
\(907\) −37.5178 −1.24576 −0.622879 0.782318i \(-0.714037\pi\)
−0.622879 + 0.782318i \(0.714037\pi\)
\(908\) 0.561086 0.0186203
\(909\) −60.6588 −2.01193
\(910\) −19.7232 −0.653817
\(911\) −26.0821 −0.864140 −0.432070 0.901840i \(-0.642217\pi\)
−0.432070 + 0.901840i \(0.642217\pi\)
\(912\) 1.23878 0.0410200
\(913\) −21.1002 −0.698316
\(914\) −36.3789 −1.20331
\(915\) −98.6773 −3.26217
\(916\) 4.96919 0.164187
\(917\) 17.4365 0.575802
\(918\) −8.27927 −0.273257
\(919\) −50.7390 −1.67373 −0.836863 0.547413i \(-0.815613\pi\)
−0.836863 + 0.547413i \(0.815613\pi\)
\(920\) 16.9628 0.559248
\(921\) −44.6187 −1.47024
\(922\) 3.49237 0.115015
\(923\) −27.8291 −0.916007
\(924\) 13.3062 0.437741
\(925\) 36.5188 1.20073
\(926\) 6.06601 0.199341
\(927\) −8.38589 −0.275429
\(928\) −5.20087 −0.170727
\(929\) −46.0097 −1.50953 −0.754764 0.655996i \(-0.772249\pi\)
−0.754764 + 0.655996i \(0.772249\pi\)
\(930\) 0 0
\(931\) −0.264693 −0.00867495
\(932\) −9.50049 −0.311199
\(933\) −32.6473 −1.06882
\(934\) 3.06626 0.100331
\(935\) 4.55232 0.148877
\(936\) 15.0095 0.490601
\(937\) 35.9405 1.17413 0.587063 0.809542i \(-0.300284\pi\)
0.587063 + 0.809542i \(0.300284\pi\)
\(938\) −22.3196 −0.728760
\(939\) 10.3638 0.338211
\(940\) 16.1965 0.528271
\(941\) 18.3159 0.597082 0.298541 0.954397i \(-0.403500\pi\)
0.298541 + 0.954397i \(0.403500\pi\)
\(942\) −56.3614 −1.83635
\(943\) −39.3186 −1.28039
\(944\) −4.36581 −0.142095
\(945\) −88.3383 −2.87365
\(946\) 13.1652 0.428038
\(947\) −52.6611 −1.71125 −0.855627 0.517593i \(-0.826828\pi\)
−0.855627 + 0.517593i \(0.826828\pi\)
\(948\) −6.42788 −0.208768
\(949\) 18.3584 0.595938
\(950\) 2.50340 0.0812212
\(951\) 20.0594 0.650469
\(952\) −1.99002 −0.0644969
\(953\) 49.6076 1.60695 0.803474 0.595340i \(-0.202983\pi\)
0.803474 + 0.595340i \(0.202983\pi\)
\(954\) −16.8688 −0.546146
\(955\) −38.1246 −1.23368
\(956\) −12.3614 −0.399797
\(957\) −27.4748 −0.888135
\(958\) 5.25392 0.169747
\(959\) −8.94684 −0.288909
\(960\) −10.2693 −0.331440
\(961\) 0 0
\(962\) 13.7791 0.444255
\(963\) 96.3061 3.10342
\(964\) 19.9181 0.641520
\(965\) 33.9535 1.09300
\(966\) −39.1725 −1.26035
\(967\) 56.5038 1.81704 0.908520 0.417841i \(-0.137213\pi\)
0.908520 + 0.417841i \(0.137213\pi\)
\(968\) −8.03593 −0.258285
\(969\) −0.978714 −0.0314408
\(970\) 62.8648 2.01847
\(971\) −1.69640 −0.0544402 −0.0272201 0.999629i \(-0.508665\pi\)
−0.0272201 + 0.999629i \(0.508665\pi\)
\(972\) 8.17277 0.262142
\(973\) −6.21578 −0.199269
\(974\) −6.79518 −0.217732
\(975\) 44.5168 1.42568
\(976\) 9.60897 0.307576
\(977\) −20.4951 −0.655697 −0.327848 0.944730i \(-0.606323\pi\)
−0.327848 + 0.944730i \(0.606323\pi\)
\(978\) −38.8995 −1.24387
\(979\) 25.2121 0.805782
\(980\) 2.19427 0.0700933
\(981\) 45.3045 1.44646
\(982\) 23.1009 0.737179
\(983\) 10.9679 0.349820 0.174910 0.984584i \(-0.444037\pi\)
0.174910 + 0.984584i \(0.444037\pi\)
\(984\) 23.8035 0.758828
\(985\) 7.83435 0.249623
\(986\) 4.10903 0.130858
\(987\) −37.4027 −1.19054
\(988\) 0.944572 0.0300508
\(989\) −38.7576 −1.23242
\(990\) −36.9641 −1.17479
\(991\) −32.5863 −1.03514 −0.517569 0.855642i \(-0.673163\pi\)
−0.517569 + 0.855642i \(0.673163\pi\)
\(992\) 0 0
\(993\) 85.9291 2.72688
\(994\) −29.9597 −0.950263
\(995\) 39.8635 1.26376
\(996\) −37.6061 −1.19159
\(997\) −33.2453 −1.05289 −0.526445 0.850209i \(-0.676475\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(998\) 25.1701 0.796744
\(999\) 61.7153 1.95258
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1922.2.a.r.1.4 4
31.4 even 5 62.2.d.a.47.1 yes 8
31.8 even 5 62.2.d.a.33.1 8
31.30 odd 2 1922.2.a.n.1.1 4
93.8 odd 10 558.2.i.i.343.2 8
93.35 odd 10 558.2.i.i.109.2 8
124.35 odd 10 496.2.n.e.481.2 8
124.39 odd 10 496.2.n.e.33.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.2.d.a.33.1 8 31.8 even 5
62.2.d.a.47.1 yes 8 31.4 even 5
496.2.n.e.33.2 8 124.39 odd 10
496.2.n.e.481.2 8 124.35 odd 10
558.2.i.i.109.2 8 93.35 odd 10
558.2.i.i.343.2 8 93.8 odd 10
1922.2.a.n.1.1 4 31.30 odd 2
1922.2.a.r.1.4 4 1.1 even 1 trivial