Properties

Label 1922.2.a.r
Level $1922$
Weight $2$
Character orbit 1922.a
Self dual yes
Analytic conductor $15.347$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,2,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,3,4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3472472685\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4525.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} + ( - \beta_{3} - 1) q^{5} + ( - \beta_1 + 1) q^{6} + (\beta_{2} - 2 \beta_1) q^{7} + q^{8} + (\beta_{3} - \beta_1 + 2) q^{9} + ( - \beta_{3} - 1) q^{10} + ( - \beta_{3} - \beta_1 + 2) q^{11}+ \cdots + (2 \beta_{3} + 3 \beta_{2} - 3 \beta_1 + 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 3 q^{3} + 4 q^{4} - 2 q^{5} + 3 q^{6} - 4 q^{7} + 4 q^{8} + 5 q^{9} - 2 q^{10} + 9 q^{11} + 3 q^{12} + 7 q^{13} - 4 q^{14} - 7 q^{15} + 4 q^{16} + 4 q^{17} + 5 q^{18} - 7 q^{19} - 2 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 7x^{2} + 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} - 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 5\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.72069
1.45038
−1.10266
−2.06842
1.00000 −1.72069 1.00000 −1.68148 −1.72069 −4.82335 1.00000 −0.0392126 −1.68148
1.2 1.00000 −0.450384 1.00000 2.34677 −0.450384 −4.51880 1.00000 −2.79715 2.34677
1.3 1.00000 2.10266 1.00000 0.681481 2.10266 2.82335 1.00000 1.42118 0.681481
1.4 1.00000 3.06842 1.00000 −3.34677 3.06842 2.51880 1.00000 6.41519 −3.34677
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1922.2.a.r 4
31.b odd 2 1 1922.2.a.n 4
31.d even 5 2 62.2.d.a 8
93.l odd 10 2 558.2.i.i 8
124.l odd 10 2 496.2.n.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.2.d.a 8 31.d even 5 2
496.2.n.e 8 124.l odd 10 2
558.2.i.i 8 93.l odd 10 2
1922.2.a.n 4 31.b odd 2 1
1922.2.a.r 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 3T_{3}^{3} - 4T_{3}^{2} + 10T_{3} + 5 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1922))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots + 155 \) Copy content Toggle raw display
$11$ \( T^{4} - 9 T^{3} + \cdots - 45 \) Copy content Toggle raw display
$13$ \( T^{4} - 7 T^{3} + \cdots - 101 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{4} + 7 T^{3} + \cdots + 45 \) Copy content Toggle raw display
$23$ \( T^{4} + 11 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots - 45 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 26 T^{3} + \cdots + 1145 \) Copy content Toggle raw display
$41$ \( T^{4} - 2 T^{3} + \cdots + 909 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots - 661 \) Copy content Toggle raw display
$47$ \( T^{4} + 10 T^{3} + \cdots - 909 \) Copy content Toggle raw display
$53$ \( T^{4} - 6 T^{3} + \cdots + 171 \) Copy content Toggle raw display
$59$ \( T^{4} - T^{3} + \cdots - 855 \) Copy content Toggle raw display
$61$ \( T^{4} - 2 T^{3} + \cdots + 279 \) Copy content Toggle raw display
$67$ \( T^{4} + 13 T^{3} + \cdots - 139 \) Copy content Toggle raw display
$71$ \( T^{4} - 108 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$73$ \( T^{4} - 13 T^{3} + \cdots - 2195 \) Copy content Toggle raw display
$79$ \( T^{4} + 21 T^{3} + \cdots - 3205 \) Copy content Toggle raw display
$83$ \( T^{4} - 14 T^{3} + \cdots + 1899 \) Copy content Toggle raw display
$89$ \( T^{4} - 38 T^{3} + \cdots + 45 \) Copy content Toggle raw display
$97$ \( T^{4} + 30 T^{3} + \cdots - 269 \) Copy content Toggle raw display
show more
show less