Defining parameters
Level: | \( N \) | \(=\) | \( 1922 = 2 \cdot 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1922.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(496\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1922))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 280 | 77 | 203 |
Cusp forms | 217 | 77 | 140 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(64\) | \(17\) | \(47\) | \(49\) | \(17\) | \(32\) | \(15\) | \(0\) | \(15\) | |||
\(+\) | \(-\) | \(-\) | \(76\) | \(21\) | \(55\) | \(60\) | \(21\) | \(39\) | \(16\) | \(0\) | \(16\) | |||
\(-\) | \(+\) | \(-\) | \(72\) | \(25\) | \(47\) | \(56\) | \(25\) | \(31\) | \(16\) | \(0\) | \(16\) | |||
\(-\) | \(-\) | \(+\) | \(68\) | \(14\) | \(54\) | \(52\) | \(14\) | \(38\) | \(16\) | \(0\) | \(16\) | |||
Plus space | \(+\) | \(132\) | \(31\) | \(101\) | \(101\) | \(31\) | \(70\) | \(31\) | \(0\) | \(31\) | ||||
Minus space | \(-\) | \(148\) | \(46\) | \(102\) | \(116\) | \(46\) | \(70\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1922))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1922))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1922)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(961))\)\(^{\oplus 2}\)