Properties

Label 1922.2.a
Level $1922$
Weight $2$
Character orbit 1922.a
Rep. character $\chi_{1922}(1,\cdot)$
Character field $\Q$
Dimension $77$
Newform subspaces $20$
Sturm bound $496$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(496\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1922))\).

Total New Old
Modular forms 280 77 203
Cusp forms 217 77 140
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(64\)\(17\)\(47\)\(49\)\(17\)\(32\)\(15\)\(0\)\(15\)
\(+\)\(-\)\(-\)\(76\)\(21\)\(55\)\(60\)\(21\)\(39\)\(16\)\(0\)\(16\)
\(-\)\(+\)\(-\)\(72\)\(25\)\(47\)\(56\)\(25\)\(31\)\(16\)\(0\)\(16\)
\(-\)\(-\)\(+\)\(68\)\(14\)\(54\)\(52\)\(14\)\(38\)\(16\)\(0\)\(16\)
Plus space\(+\)\(132\)\(31\)\(101\)\(101\)\(31\)\(70\)\(31\)\(0\)\(31\)
Minus space\(-\)\(148\)\(46\)\(102\)\(116\)\(46\)\(70\)\(32\)\(0\)\(32\)

Trace form

\( 77 q + q^{2} - 2 q^{3} + 77 q^{4} + 2 q^{5} + 2 q^{6} - 4 q^{7} + q^{8} + 81 q^{9} + 2 q^{10} + 6 q^{11} - 2 q^{12} + 4 q^{14} + 12 q^{15} + 77 q^{16} + 6 q^{17} + 5 q^{18} + 4 q^{19} + 2 q^{20} - 4 q^{21}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1922))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 31
1922.2.a.a 1922.a 1.a $1$ $15.347$ \(\Q\) None 62.2.c.a \(-1\) \(-1\) \(-3\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-3q^{5}+q^{6}-q^{7}+\cdots\)
1922.2.a.b 1922.a 1.a $1$ $15.347$ \(\Q\) None 62.2.c.a \(-1\) \(1\) \(-3\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-3q^{5}-q^{6}-q^{7}+\cdots\)
1922.2.a.c 1922.a 1.a $1$ $15.347$ \(\Q\) None 62.2.c.b \(1\) \(-3\) \(1\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}+q^{5}-3q^{6}-3q^{7}+\cdots\)
1922.2.a.d 1922.a 1.a $1$ $15.347$ \(\Q\) None 62.2.a.a \(1\) \(0\) \(-2\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+q^{8}-3q^{9}-2q^{10}+\cdots\)
1922.2.a.e 1922.a 1.a $1$ $15.347$ \(\Q\) None 62.2.c.b \(1\) \(3\) \(1\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}+q^{4}+q^{5}+3q^{6}-3q^{7}+\cdots\)
1922.2.a.f 1922.a 1.a $2$ $15.347$ \(\Q(\sqrt{3}) \) None 62.2.a.b \(-2\) \(-2\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+2\beta q^{5}+\cdots\)
1922.2.a.g 1922.a 1.a $2$ $15.347$ \(\Q(\sqrt{10}) \) None 1922.2.a.g \(-2\) \(0\) \(-4\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}-2q^{5}-\beta q^{6}+2q^{7}+\cdots\)
1922.2.a.h 1922.a 1.a $4$ $15.347$ \(\Q(\zeta_{15})^+\) None 62.2.g.b \(-4\) \(-6\) \(3\) \(1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-2-\beta _{3})q^{3}+q^{4}+(1-\beta _{2}+\cdots)q^{5}+\cdots\)
1922.2.a.i 1922.a 1.a $4$ $15.347$ 4.4.8725.1 None 62.2.d.b \(-4\) \(-1\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(\beta _{2}+\beta _{3})q^{5}+\cdots\)
1922.2.a.j 1922.a 1.a $4$ $15.347$ \(\Q(\zeta_{16})^+\) None 1922.2.a.j \(-4\) \(0\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+2\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)
1922.2.a.k 1922.a 1.a $4$ $15.347$ \(\Q(\sqrt{2}, \sqrt{5})\) None 1922.2.a.k \(-4\) \(0\) \(4\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(1+\beta _{3})q^{5}-\beta _{1}q^{6}+\cdots\)
1922.2.a.l 1922.a 1.a $4$ $15.347$ 4.4.8725.1 None 62.2.d.b \(-4\) \(1\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(\beta _{2}+\beta _{3})q^{5}+\cdots\)
1922.2.a.m 1922.a 1.a $4$ $15.347$ \(\Q(\zeta_{15})^+\) None 62.2.g.b \(-4\) \(6\) \(3\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(2+\beta _{3})q^{3}+q^{4}+(1-\beta _{2})q^{5}+\cdots\)
1922.2.a.n 1922.a 1.a $4$ $15.347$ 4.4.4525.1 None 62.2.d.a \(4\) \(-3\) \(-2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{1})q^{3}+q^{4}+(-1-\beta _{3})q^{5}+\cdots\)
1922.2.a.o 1922.a 1.a $4$ $15.347$ \(\Q(\zeta_{15})^+\) None 62.2.g.a \(4\) \(-2\) \(-1\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{3}q^{3}+q^{4}+(-1-\beta _{2}-2\beta _{3})q^{5}+\cdots\)
1922.2.a.p 1922.a 1.a $4$ $15.347$ \(\Q(\zeta_{16})^+\) None 1922.2.a.p \(4\) \(0\) \(-8\) \(-8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(\beta _{1}+\beta _{3})q^{3}+q^{4}+(-2-\beta _{2}+\cdots)q^{5}+\cdots\)
1922.2.a.q 1922.a 1.a $4$ $15.347$ \(\Q(\zeta_{15})^+\) None 62.2.g.a \(4\) \(2\) \(-1\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{3}q^{3}+q^{4}+(-1-\beta _{2}-2\beta _{3})q^{5}+\cdots\)
1922.2.a.r 1922.a 1.a $4$ $15.347$ 4.4.4525.1 None 62.2.d.a \(4\) \(3\) \(-2\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1})q^{3}+q^{4}+(-1-\beta _{3})q^{5}+\cdots\)
1922.2.a.s 1922.a 1.a $8$ $15.347$ \(\Q(\zeta_{32})^+\) None 1922.2.a.s \(-8\) \(0\) \(0\) \(-16\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-\beta _{5}-\beta _{7})q^{3}+q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots\)
1922.2.a.t 1922.a 1.a $16$ $15.347$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1922.2.a.t \(16\) \(0\) \(16\) \(16\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+(1-\beta _{6}+\beta _{7}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1922))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1922)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(961))\)\(^{\oplus 2}\)