[N,k,chi] = [192,9,Mod(127,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.127");
S:= CuspForms(chi, 9);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).
\(n\)
\(65\)
\(127\)
\(133\)
\(\chi(n)\)
\(1\)
\(-1\)
\(1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} - 616T_{5}^{3} - 396168T_{5}^{2} + 157725920T_{5} + 52706093200 \)
T5^4 - 616*T5^3 - 396168*T5^2 + 157725920*T5 + 52706093200
acting on \(S_{9}^{\mathrm{new}}(192, [\chi])\).
$p$
$F_p(T)$
$2$
\( T^{8} \)
T^8
$3$
\( (T^{2} + 2187)^{4} \)
(T^2 + 2187)^4
$5$
\( (T^{4} - 616 T^{3} + \cdots + 52706093200)^{2} \)
(T^4 - 616*T^3 - 396168*T^2 + 157725920*T + 52706093200)^2
$7$
\( T^{8} + 25047808 T^{6} + \cdots + 79\!\cdots\!84 \)
T^8 + 25047808*T^6 + 115598119176192*T^4 + 177125938248396046336*T^2 + 79915096500483878246416384
$11$
\( T^{8} + 1747174336 T^{6} + \cdots + 65\!\cdots\!84 \)
T^8 + 1747174336*T^6 + 980030071445841408*T^4 + 183009669036554211535863808*T^2 + 6539743034516214664282944986742784
$13$
\( (T^{4} - 27128 T^{3} + \cdots - 81\!\cdots\!44)^{2} \)
(T^4 - 27128*T^3 + 125736600*T^2 + 1373513503264*T - 8115140092392944)^2
$17$
\( (T^{4} + 102168 T^{3} + \cdots + 28\!\cdots\!68)^{2} \)
(T^4 + 102168*T^3 - 8298502824*T^2 - 550443941419680*T + 28283333429938218768)^2
$19$
\( T^{8} + 33336733632 T^{6} + \cdots + 10\!\cdots\!84 \)
T^8 + 33336733632*T^6 + 308043048029858145792*T^4 + 571498250304159773389374603264*T^2 + 107455341110997102663389624452983619584
$23$
\( T^{8} + 277565694208 T^{6} + \cdots + 21\!\cdots\!76 \)
T^8 + 277565694208*T^6 + 25552817849508828831744*T^4 + 805103762658915304791362935717888*T^2 + 2125881559793898906658636520561265791205376
$29$
\( (T^{4} - 166856 T^{3} + \cdots - 40\!\cdots\!92)^{2} \)
(T^4 - 166856*T^3 - 1336580368584*T^2 + 393736974799209568*T - 4062534790617861844592)^2
$31$
\( T^{8} + 3440896309504 T^{6} + \cdots + 13\!\cdots\!76 \)
T^8 + 3440896309504*T^6 + 3783549292170288579987456*T^4 + 1446829351905342404760188196760059904*T^2 + 132479467848178244653709311643905612100666392576
$37$
\( (T^{4} + 1972584 T^{3} + \cdots + 30\!\cdots\!84)^{2} \)
(T^4 + 1972584*T^3 - 4059898099752*T^2 - 2769599579099273568*T + 3060752716265315726067984)^2
$41$
\( (T^{4} - 5901544 T^{3} + \cdots - 37\!\cdots\!12)^{2} \)
(T^4 - 5901544*T^3 - 5543249177256*T^2 + 62232589548810155360*T - 37577258100350902406224112)^2
$43$
\( T^{8} + 42117576693184 T^{6} + \cdots + 70\!\cdots\!00 \)
T^8 + 42117576693184*T^6 + 484656212825679975739885056*T^4 + 1107008773148439709369459374819855155200*T^2 + 701502482026481993437301133658184221490658058240000
$47$
\( T^{8} + 48015145188352 T^{6} + \cdots + 26\!\cdots\!16 \)
T^8 + 48015145188352*T^6 + 542787404345397960566145024*T^4 + 1065745125462572430113162955623269138432*T^2 + 2635830146265914718871832156505778890988129878016
$53$
\( (T^{4} + 394296 T^{3} + \cdots + 34\!\cdots\!72)^{2} \)
(T^4 + 394296*T^3 - 172523341356744*T^2 + 399050027538963520608*T + 3449915158236520160951785872)^2
$59$
\( T^{8} + 556916566724800 T^{6} + \cdots + 31\!\cdots\!64 \)
T^8 + 556916566724800*T^6 + 101652175917829130735711368704*T^4 + 6243084188294263982866457649621524188413952*T^2 + 31525594151560006235144403664917718458045781179318206464
$61$
\( (T^{4} - 20126168 T^{3} + \cdots + 19\!\cdots\!00)^{2} \)
(T^4 - 20126168*T^3 - 439141130946984*T^2 + 7777735015017260947360*T + 19642235109170982912473405200)^2
$67$
\( T^{8} + \cdots + 41\!\cdots\!96 \)
T^8 + 1910967543834304*T^6 + 1080302056777581779157683344896*T^4 + 164321753200171635231150336356843859970932736*T^2 + 4167876591627390124528227007195736629806932743314509725696
$71$
\( T^{8} + \cdots + 13\!\cdots\!16 \)
T^8 + 1254185059710208*T^6 + 510417223032931601409988583424*T^4 + 71338568264486765840368269026152483344351232*T^2 + 1397741395976376789739582792493941289810026658092250300416
$73$
\( (T^{4} + 28356024 T^{3} + \cdots + 60\!\cdots\!52)^{2} \)
(T^4 + 28356024*T^3 - 1438705950327912*T^2 - 25166019584310905885472*T + 600695308795819860665946753552)^2
$79$
\( T^{8} + \cdots + 16\!\cdots\!24 \)
T^8 + 6711464655355648*T^6 + 11836612408189290526574011779072*T^4 + 2867821474903207701414765640298376955386658816*T^2 + 16431311894549255702712974727691600596058016323900118401024
$83$
\( T^{8} + \cdots + 54\!\cdots\!16 \)
T^8 + 5330597028915136*T^6 + 3527385850231467717594373694976*T^4 + 786891671172122057726671956654117512349466624*T^2 + 54908755881517225970671834221975225277461402434160379887616
$89$
\( (T^{4} - 30830088 T^{3} + \cdots - 54\!\cdots\!04)^{2} \)
(T^4 - 30830088*T^3 - 3345828334318056*T^2 + 39676959635053756411872*T - 54569906764170466097410385904)^2
$97$
\( (T^{4} - 13915144 T^{3} + \cdots - 66\!\cdots\!12)^{2} \)
(T^4 - 13915144*T^3 - 20581821505101288*T^2 + 1222573791064887610402784*T - 6659647795026728806391762761712)^2
show more
show less