Properties

Label 192.9.g
Level $192$
Weight $9$
Character orbit 192.g
Rep. character $\chi_{192}(127,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $6$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 192.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(288\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(192, [\chi])\).

Total New Old
Modular forms 268 32 236
Cusp forms 244 32 212
Eisenstein series 24 0 24

Trace form

\( 32 q - 69984 q^{9} + 51392 q^{13} + 154560 q^{17} + 243648 q^{21} + 3208288 q^{25} - 2132352 q^{29} - 431552 q^{37} + 4374720 q^{41} - 26353376 q^{49} + 5358720 q^{53} - 40770240 q^{61} - 45233664 q^{65}+ \cdots + 140979520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
192.9.g.a 192.g 4.b $2$ $78.217$ \(\Q(\sqrt{-3}) \) None 48.9.g.b \(0\) \(0\) \(-1452\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{3}-726 q^{5}-196\beta q^{7}-2187 q^{9}+\cdots\)
192.9.g.b 192.g 4.b $2$ $78.217$ \(\Q(\sqrt{-3}) \) None 48.9.g.a \(0\) \(0\) \(180\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+27\beta q^{3}+90 q^{5}-532\beta q^{7}-2187 q^{9}+\cdots\)
192.9.g.c 192.g 4.b $4$ $78.217$ \(\Q(\sqrt{-3}, \sqrt{1801})\) None 48.9.g.c \(0\) \(0\) \(264\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3^{3}\beta _{1}q^{3}+(66+\beta _{2})q^{5}+(-772\beta _{1}+\cdots)q^{7}+\cdots\)
192.9.g.d 192.g 4.b $8$ $78.217$ 8.0.3468738816.6 None 96.9.g.b \(0\) \(0\) \(-560\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+(-70-\beta _{4})q^{5}+(7\beta _{1}+7\beta _{3}+\cdots)q^{7}+\cdots\)
192.9.g.e 192.g 4.b $8$ $78.217$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 12.9.d.a \(0\) \(0\) \(336\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}+(42+\beta _{2})q^{5}+(-7\beta _{1}-\beta _{6}+\cdots)q^{7}+\cdots\)
192.9.g.f 192.g 4.b $8$ $78.217$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 96.9.g.a \(0\) \(0\) \(1232\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(154-\beta _{6})q^{5}+(-17\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)