Defining parameters
Level: | \( N \) | = | \( 192 = 2^{6} \cdot 3 \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(18432\) | ||
Trace bound: | \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(192))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8336 | 3478 | 4858 |
Cusp forms | 8048 | 3434 | 4614 |
Eisenstein series | 288 | 44 | 244 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(192))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
192.9.b | \(\chi_{192}(31, \cdot)\) | 192.9.b.a | 8 | 1 |
192.9.b.b | 12 | |||
192.9.b.c | 12 | |||
192.9.e | \(\chi_{192}(65, \cdot)\) | 192.9.e.a | 1 | 1 |
192.9.e.b | 1 | |||
192.9.e.c | 2 | |||
192.9.e.d | 2 | |||
192.9.e.e | 2 | |||
192.9.e.f | 2 | |||
192.9.e.g | 2 | |||
192.9.e.h | 2 | |||
192.9.e.i | 8 | |||
192.9.e.j | 8 | |||
192.9.e.k | 16 | |||
192.9.e.l | 16 | |||
192.9.g | \(\chi_{192}(127, \cdot)\) | 192.9.g.a | 2 | 1 |
192.9.g.b | 2 | |||
192.9.g.c | 4 | |||
192.9.g.d | 8 | |||
192.9.g.e | 8 | |||
192.9.g.f | 8 | |||
192.9.h | \(\chi_{192}(161, \cdot)\) | 192.9.h.a | 4 | 1 |
192.9.h.b | 4 | |||
192.9.h.c | 16 | |||
192.9.h.d | 40 | |||
192.9.i | \(\chi_{192}(17, \cdot)\) | n/a | 124 | 2 |
192.9.l | \(\chi_{192}(79, \cdot)\) | 192.9.l.a | 64 | 2 |
192.9.m | \(\chi_{192}(7, \cdot)\) | None | 0 | 4 |
192.9.p | \(\chi_{192}(41, \cdot)\) | None | 0 | 4 |
192.9.q | \(\chi_{192}(5, \cdot)\) | n/a | 2032 | 8 |
192.9.t | \(\chi_{192}(19, \cdot)\) | n/a | 1024 | 8 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(192))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(192)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)