Properties

Label 192.8.f.c
Level $192$
Weight $8$
Character orbit 192.f
Analytic conductor $59.978$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,8,Mod(95,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.95"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 192.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,15360] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.9779248930\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4372 x^{14} + 7613770 x^{12} - 6683530912 x^{10} + 3071754181219 x^{8} - 688859966054368 x^{6} + \cdots + 59\!\cdots\!21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{60}\cdot 3^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{3} - \beta_{8} q^{5} + (\beta_{11} + 36 \beta_{4}) q^{7} + (\beta_{13} + 960) q^{9} + ( - 30 \beta_{7} + \beta_{6} + 61 \beta_{5}) q^{11} + ( - \beta_{10} - \beta_{9}) q^{13} + ( - 5 \beta_{11} + 132 \beta_{4} - \beta_{3}) q^{15}+ \cdots + (309 \beta_{15} + \cdots - 101988 \beta_{5}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 15360 q^{9} + 568720 q^{25} + 1791696 q^{33} - 1861680 q^{49} + 663120 q^{57} - 25933856 q^{73} - 19595376 q^{81} + 43421312 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 4372 x^{14} + 7613770 x^{12} - 6683530912 x^{10} + 3071754181219 x^{8} - 688859966054368 x^{6} + \cdots + 59\!\cdots\!21 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 188835 \nu^{14} - 3912579551 \nu^{12} + 11532772844222 \nu^{10} + \cdots + 90\!\cdots\!32 ) / 48\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 12\!\cdots\!38 \nu^{14} + \cdots - 41\!\cdots\!42 ) / 23\!\cdots\!09 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 12\!\cdots\!00 \nu^{15} + \cdots - 20\!\cdots\!09 ) / 55\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 22\!\cdots\!61 \nu^{15} + \cdots - 89\!\cdots\!00 \nu ) / 51\!\cdots\!14 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 38\!\cdots\!74 \nu^{15} + \cdots + 25\!\cdots\!64 ) / 11\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 57\!\cdots\!10 \nu^{15} + \cdots + 45\!\cdots\!92 ) / 16\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 19\!\cdots\!37 \nu^{15} + \cdots - 25\!\cdots\!64 ) / 27\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 23\!\cdots\!26 \nu^{15} + \cdots - 71\!\cdots\!56 \nu ) / 21\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 19\!\cdots\!18 \nu^{15} + \cdots - 13\!\cdots\!08 ) / 70\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 38\!\cdots\!36 \nu^{15} + \cdots + 13\!\cdots\!69 ) / 14\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 61\!\cdots\!42 \nu^{15} + \cdots - 24\!\cdots\!10 \nu ) / 12\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 38\!\cdots\!36 \nu^{15} + \cdots - 13\!\cdots\!08 ) / 35\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 88\!\cdots\!00 \nu^{15} - 14525256369435 \nu^{14} + \cdots - 69\!\cdots\!52 ) / 75\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 32\!\cdots\!48 \nu^{15} - 653636536624575 \nu^{14} + \cdots - 31\!\cdots\!40 ) / 33\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 15\!\cdots\!56 \nu^{15} + \cdots + 25\!\cdots\!64 ) / 55\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{12} - 2\beta_{9} + 8\beta_{7} + 32\beta_{5} - 6\beta_{4} ) / 96 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{12} - 4\beta_{9} + 8\beta_{7} - 16\beta_{5} + 3\beta_{2} + 52464 ) / 96 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 12 \beta_{15} - 24 \beta_{13} + 759 \beta_{12} - 1518 \beta_{9} + 360 \beta_{8} + 4180 \beta_{7} + \cdots - 12 \beta_1 ) / 64 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 1591 \beta_{12} + 72 \beta_{10} - 6292 \beta_{9} + 18764 \beta_{7} + 540 \beta_{6} - 36988 \beta_{5} + \cdots + 46642128 ) / 96 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 56556 \beta_{15} - 131160 \beta_{13} + 2449933 \beta_{12} - 57600 \beta_{11} - 4899866 \beta_{9} + \cdots - 65580 \beta_1 ) / 192 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 730574 \beta_{12} + 56616 \beta_{10} - 2865680 \beta_{9} + 9980340 \beta_{7} + 165420 \beta_{6} + \cdots + 15025889056 ) / 32 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 36195264 \beta_{15} - 453600 \beta_{14} - 96551280 \beta_{13} + 1308101543 \beta_{12} + \cdots - 48502440 \beta_1 ) / 96 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 2847645569 \beta_{12} + 290354904 \beta_{10} - 11100227372 \beta_{9} + 41908695364 \beta_{7} + \cdots + 45157691024592 ) / 96 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 28912543020 \beta_{15} - 849398400 \beta_{14} - 86871032856 \beta_{13} + 932611011327 \beta_{12} + \cdots - 43860215628 \beta_1 ) / 64 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 3570580811393 \beta_{12} + 435866996376 \beta_{10} - 13846456249196 \beta_{9} + \cdots + 46\!\cdots\!64 ) / 96 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 100618611465852 \beta_{15} - 4785221707200 \beta_{14} - 336331732761816 \beta_{13} + \cdots - 170558477234508 \beta_1 ) / 192 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 729582235098202 \beta_{12} + 101418500058168 \beta_{10} + \cdots + 79\!\cdots\!04 ) / 16 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 57\!\cdots\!84 \beta_{15} + \cdots - 10\!\cdots\!20 \beta_1 ) / 96 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 52\!\cdots\!05 \beta_{12} + \cdots + 49\!\cdots\!56 ) / 96 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 42\!\cdots\!72 \beta_{15} + \cdots - 88\!\cdots\!40 \beta_1 ) / 64 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
95.1
28.6975 0.500000i
16.4302 + 0.500000i
28.6975 + 0.500000i
16.4302 0.500000i
0.256837 + 0.500000i
33.0671 0.500000i
0.256837 0.500000i
33.0671 + 0.500000i
−33.0671 + 0.500000i
−0.256837 0.500000i
−33.0671 0.500000i
−0.256837 + 0.500000i
−16.4302 0.500000i
−28.6975 + 0.500000i
−16.4302 + 0.500000i
−28.6975 0.500000i
0 −45.1278 12.2673i 0 −464.255 0 639.029i 0 1886.03 + 1107.19i 0
95.2 0 −45.1278 12.2673i 0 464.255 0 639.029i 0 1886.03 + 1107.19i 0
95.3 0 −45.1278 + 12.2673i 0 −464.255 0 639.029i 0 1886.03 1107.19i 0
95.4 0 −45.1278 + 12.2673i 0 464.255 0 639.029i 0 1886.03 1107.19i 0
95.5 0 −33.3240 32.8103i 0 −108.659 0 1213.03i 0 33.9714 + 2186.74i 0
95.6 0 −33.3240 32.8103i 0 108.659 0 1213.03i 0 33.9714 + 2186.74i 0
95.7 0 −33.3240 + 32.8103i 0 −108.659 0 1213.03i 0 33.9714 2186.74i 0
95.8 0 −33.3240 + 32.8103i 0 108.659 0 1213.03i 0 33.9714 2186.74i 0
95.9 0 33.3240 32.8103i 0 −108.659 0 1213.03i 0 33.9714 2186.74i 0
95.10 0 33.3240 32.8103i 0 108.659 0 1213.03i 0 33.9714 2186.74i 0
95.11 0 33.3240 + 32.8103i 0 −108.659 0 1213.03i 0 33.9714 + 2186.74i 0
95.12 0 33.3240 + 32.8103i 0 108.659 0 1213.03i 0 33.9714 + 2186.74i 0
95.13 0 45.1278 12.2673i 0 −464.255 0 639.029i 0 1886.03 1107.19i 0
95.14 0 45.1278 12.2673i 0 464.255 0 639.029i 0 1886.03 1107.19i 0
95.15 0 45.1278 + 12.2673i 0 −464.255 0 639.029i 0 1886.03 + 1107.19i 0
95.16 0 45.1278 + 12.2673i 0 464.255 0 639.029i 0 1886.03 + 1107.19i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 95.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.8.f.c 16
3.b odd 2 1 inner 192.8.f.c 16
4.b odd 2 1 inner 192.8.f.c 16
8.b even 2 1 inner 192.8.f.c 16
8.d odd 2 1 inner 192.8.f.c 16
12.b even 2 1 inner 192.8.f.c 16
24.f even 2 1 inner 192.8.f.c 16
24.h odd 2 1 inner 192.8.f.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.8.f.c 16 1.a even 1 1 trivial
192.8.f.c 16 3.b odd 2 1 inner
192.8.f.c 16 4.b odd 2 1 inner
192.8.f.c 16 8.b even 2 1 inner
192.8.f.c 16 8.d odd 2 1 inner
192.8.f.c 16 12.b even 2 1 inner
192.8.f.c 16 24.f even 2 1 inner
192.8.f.c 16 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 227340T_{5}^{2} + 2544768000 \) acting on \(S_{8}^{\mathrm{new}}(192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} + \cdots + 22876792454961)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} - 227340 T^{2} + 2544768000)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 1879796 T^{2} + 600873025600)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots + 73141191486720)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + \cdots + 18\!\cdots\!80)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 99\!\cdots\!00)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 25\!\cdots\!00)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 47\!\cdots\!00)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 10\!\cdots\!80)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 35\!\cdots\!00)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + \cdots + 19\!\cdots\!20)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 44\!\cdots\!00)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 67\!\cdots\!00)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 20\!\cdots\!00)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 26\!\cdots\!00)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 98\!\cdots\!80)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 11\!\cdots\!00)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 61\!\cdots\!80)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 32\!\cdots\!00)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 1721755163660)^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 19\!\cdots\!00)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 22\!\cdots\!00)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 17\!\cdots\!00)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 26519341845860)^{8} \) Copy content Toggle raw display
show more
show less