Properties

Label 192.8.f
Level $192$
Weight $8$
Character orbit 192.f
Rep. character $\chi_{192}(95,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $4$
Sturm bound $256$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 192.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(256\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(192, [\chi])\).

Total New Old
Modular forms 236 56 180
Cusp forms 212 56 156
Eisenstein series 24 0 24

Trace form

\( 56 q + 875000 q^{25} + 297048 q^{33} - 5566248 q^{49} + 2059032 q^{57} - 2534128 q^{73} - 38530440 q^{81} - 48537152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
192.8.f.a 192.f 24.f $4$ $59.978$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-6}) \) 192.8.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+27\beta_{2} q^{3}+13\beta_{3} q^{5}+377\beta_1 q^{7}+\cdots\)
192.8.f.b 192.f 24.f $4$ $59.978$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 192.8.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-27\beta_1 q^{3}-127\beta_{3} q^{7}+2187 q^{9}+\cdots\)
192.8.f.c 192.f 24.f $16$ $59.978$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 192.8.f.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}-\beta _{8}q^{5}+(6^{2}\beta _{4}+\beta _{11})q^{7}+\cdots\)
192.8.f.d 192.f 24.f $32$ $59.978$ None 192.8.f.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{8}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)