Defining parameters
| Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 192.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(256\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(192, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 236 | 56 | 180 |
| Cusp forms | 212 | 56 | 156 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(192, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 192.8.f.a | $4$ | $59.978$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+27\beta_{2} q^{3}+13\beta_{3} q^{5}+377\beta_1 q^{7}+\cdots\) |
| 192.8.f.b | $4$ | $59.978$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-27\beta_1 q^{3}-127\beta_{3} q^{7}+2187 q^{9}+\cdots\) |
| 192.8.f.c | $16$ | $59.978$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{3}-\beta _{8}q^{5}+(6^{2}\beta _{4}+\beta _{11})q^{7}+\cdots\) |
| 192.8.f.d | $32$ | $59.978$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{8}^{\mathrm{old}}(192, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)