Properties

Label 192.8
Level 192
Weight 8
Dimension 3002
Nonzero newspaces 8
Sturm bound 16384
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(16384\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(192))\).

Total New Old
Modular forms 7312 3046 4266
Cusp forms 7024 3002 4022
Eisenstein series 288 44 244

Trace form

\( 3002 q - 6 q^{3} - 16 q^{4} - 8 q^{6} - 8 q^{7} - 10 q^{9} - 16 q^{10} + 2408 q^{11} - 8 q^{12} + 14112 q^{13} - 27008 q^{15} - 16 q^{16} + 11632 q^{17} - 8 q^{18} + 121156 q^{19} - 36188 q^{21} - 548928 q^{22}+ \cdots + 6456500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(192))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
192.8.a \(\chi_{192}(1, \cdot)\) 192.8.a.a 1 1
192.8.a.b 1
192.8.a.c 1
192.8.a.d 1
192.8.a.e 1
192.8.a.f 1
192.8.a.g 1
192.8.a.h 1
192.8.a.i 1
192.8.a.j 1
192.8.a.k 1
192.8.a.l 1
192.8.a.m 1
192.8.a.n 1
192.8.a.o 1
192.8.a.p 1
192.8.a.q 2
192.8.a.r 2
192.8.a.s 2
192.8.a.t 2
192.8.a.u 2
192.8.a.v 2
192.8.c \(\chi_{192}(191, \cdot)\) 192.8.c.a 2 1
192.8.c.b 4
192.8.c.c 4
192.8.c.d 8
192.8.c.e 8
192.8.c.f 28
192.8.d \(\chi_{192}(97, \cdot)\) 192.8.d.a 4 1
192.8.d.b 4
192.8.d.c 8
192.8.d.d 12
192.8.f \(\chi_{192}(95, \cdot)\) 192.8.f.a 4 1
192.8.f.b 4
192.8.f.c 16
192.8.f.d 32
192.8.j \(\chi_{192}(49, \cdot)\) 192.8.j.a 56 2
192.8.k \(\chi_{192}(47, \cdot)\) n/a 108 2
192.8.n \(\chi_{192}(25, \cdot)\) None 0 4
192.8.o \(\chi_{192}(23, \cdot)\) None 0 4
192.8.r \(\chi_{192}(13, \cdot)\) n/a 896 8
192.8.s \(\chi_{192}(11, \cdot)\) n/a 1776 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(192))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(192)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)