Properties

Label 1911.4.a.w.1.11
Level $1911$
Weight $4$
Character 1911.1
Self dual yes
Analytic conductor $112.753$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,-1,33,31,-17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - x^{10} - 59 x^{9} + 36 x^{8} + 1220 x^{7} - 339 x^{6} - 10807 x^{5} + 58 x^{4} + 40509 x^{3} + \cdots - 27208 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-4.83732\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.83732 q^{2} +3.00000 q^{3} +15.3997 q^{4} -16.3780 q^{5} +14.5120 q^{6} +35.7947 q^{8} +9.00000 q^{9} -79.2258 q^{10} +5.16661 q^{11} +46.1991 q^{12} +13.0000 q^{13} -49.1341 q^{15} +49.9531 q^{16} -6.88424 q^{17} +43.5359 q^{18} -122.280 q^{19} -252.217 q^{20} +24.9926 q^{22} -70.6956 q^{23} +107.384 q^{24} +143.240 q^{25} +62.8852 q^{26} +27.0000 q^{27} +205.007 q^{29} -237.678 q^{30} -173.826 q^{31} -44.7186 q^{32} +15.4998 q^{33} -33.3013 q^{34} +138.597 q^{36} -165.139 q^{37} -591.509 q^{38} +39.0000 q^{39} -586.247 q^{40} +116.581 q^{41} +98.2962 q^{43} +79.5642 q^{44} -147.402 q^{45} -341.977 q^{46} -559.104 q^{47} +149.859 q^{48} +692.898 q^{50} -20.6527 q^{51} +200.196 q^{52} -190.585 q^{53} +130.608 q^{54} -84.6189 q^{55} -366.841 q^{57} +991.684 q^{58} -394.926 q^{59} -756.650 q^{60} +1.15246 q^{61} -840.851 q^{62} -615.943 q^{64} -212.914 q^{65} +74.9777 q^{66} -656.911 q^{67} -106.015 q^{68} -212.087 q^{69} +260.791 q^{71} +322.153 q^{72} -1065.83 q^{73} -798.833 q^{74} +429.720 q^{75} -1883.08 q^{76} +188.656 q^{78} +356.419 q^{79} -818.133 q^{80} +81.0000 q^{81} +563.942 q^{82} -804.148 q^{83} +112.750 q^{85} +475.490 q^{86} +615.020 q^{87} +184.937 q^{88} +645.066 q^{89} -713.033 q^{90} -1088.69 q^{92} -521.477 q^{93} -2704.57 q^{94} +2002.71 q^{95} -134.156 q^{96} +1002.09 q^{97} +46.4995 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - q^{2} + 33 q^{3} + 31 q^{4} - 17 q^{5} - 3 q^{6} - 54 q^{8} + 99 q^{9} - 75 q^{10} + 7 q^{11} + 93 q^{12} + 143 q^{13} - 51 q^{15} + 23 q^{16} + 20 q^{17} - 9 q^{18} - 242 q^{19} - 254 q^{20} - 290 q^{22}+ \cdots + 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.83732 1.71025 0.855126 0.518420i \(-0.173480\pi\)
0.855126 + 0.518420i \(0.173480\pi\)
\(3\) 3.00000 0.577350
\(4\) 15.3997 1.92496
\(5\) −16.3780 −1.46490 −0.732448 0.680823i \(-0.761622\pi\)
−0.732448 + 0.680823i \(0.761622\pi\)
\(6\) 14.5120 0.987414
\(7\) 0 0
\(8\) 35.7947 1.58192
\(9\) 9.00000 0.333333
\(10\) −79.2258 −2.50534
\(11\) 5.16661 0.141617 0.0708087 0.997490i \(-0.477442\pi\)
0.0708087 + 0.997490i \(0.477442\pi\)
\(12\) 46.1991 1.11138
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −49.1341 −0.845758
\(16\) 49.9531 0.780517
\(17\) −6.88424 −0.0982160 −0.0491080 0.998793i \(-0.515638\pi\)
−0.0491080 + 0.998793i \(0.515638\pi\)
\(18\) 43.5359 0.570084
\(19\) −122.280 −1.47647 −0.738237 0.674541i \(-0.764341\pi\)
−0.738237 + 0.674541i \(0.764341\pi\)
\(20\) −252.217 −2.81987
\(21\) 0 0
\(22\) 24.9926 0.242202
\(23\) −70.6956 −0.640915 −0.320458 0.947263i \(-0.603837\pi\)
−0.320458 + 0.947263i \(0.603837\pi\)
\(24\) 107.384 0.913321
\(25\) 143.240 1.14592
\(26\) 62.8852 0.474339
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) 205.007 1.31272 0.656359 0.754449i \(-0.272096\pi\)
0.656359 + 0.754449i \(0.272096\pi\)
\(30\) −237.678 −1.44646
\(31\) −173.826 −1.00710 −0.503549 0.863967i \(-0.667973\pi\)
−0.503549 + 0.863967i \(0.667973\pi\)
\(32\) −44.7186 −0.247038
\(33\) 15.4998 0.0817629
\(34\) −33.3013 −0.167974
\(35\) 0 0
\(36\) 138.597 0.641654
\(37\) −165.139 −0.733750 −0.366875 0.930270i \(-0.619572\pi\)
−0.366875 + 0.930270i \(0.619572\pi\)
\(38\) −591.509 −2.52514
\(39\) 39.0000 0.160128
\(40\) −586.247 −2.31735
\(41\) 116.581 0.444072 0.222036 0.975038i \(-0.428730\pi\)
0.222036 + 0.975038i \(0.428730\pi\)
\(42\) 0 0
\(43\) 98.2962 0.348605 0.174303 0.984692i \(-0.444233\pi\)
0.174303 + 0.984692i \(0.444233\pi\)
\(44\) 79.5642 0.272608
\(45\) −147.402 −0.488299
\(46\) −341.977 −1.09613
\(47\) −559.104 −1.73519 −0.867593 0.497275i \(-0.834334\pi\)
−0.867593 + 0.497275i \(0.834334\pi\)
\(48\) 149.859 0.450632
\(49\) 0 0
\(50\) 692.898 1.95981
\(51\) −20.6527 −0.0567051
\(52\) 200.196 0.533888
\(53\) −190.585 −0.493942 −0.246971 0.969023i \(-0.579435\pi\)
−0.246971 + 0.969023i \(0.579435\pi\)
\(54\) 130.608 0.329138
\(55\) −84.6189 −0.207455
\(56\) 0 0
\(57\) −366.841 −0.852443
\(58\) 991.684 2.24508
\(59\) −394.926 −0.871440 −0.435720 0.900082i \(-0.643506\pi\)
−0.435720 + 0.900082i \(0.643506\pi\)
\(60\) −756.650 −1.62805
\(61\) 1.15246 0.00241896 0.00120948 0.999999i \(-0.499615\pi\)
0.00120948 + 0.999999i \(0.499615\pi\)
\(62\) −840.851 −1.72239
\(63\) 0 0
\(64\) −615.943 −1.20301
\(65\) −212.914 −0.406289
\(66\) 74.9777 0.139835
\(67\) −656.911 −1.19783 −0.598914 0.800814i \(-0.704401\pi\)
−0.598914 + 0.800814i \(0.704401\pi\)
\(68\) −106.015 −0.189062
\(69\) −212.087 −0.370033
\(70\) 0 0
\(71\) 260.791 0.435919 0.217960 0.975958i \(-0.430060\pi\)
0.217960 + 0.975958i \(0.430060\pi\)
\(72\) 322.153 0.527306
\(73\) −1065.83 −1.70885 −0.854427 0.519572i \(-0.826091\pi\)
−0.854427 + 0.519572i \(0.826091\pi\)
\(74\) −798.833 −1.25490
\(75\) 429.720 0.661597
\(76\) −1883.08 −2.84216
\(77\) 0 0
\(78\) 188.656 0.273860
\(79\) 356.419 0.507598 0.253799 0.967257i \(-0.418320\pi\)
0.253799 + 0.967257i \(0.418320\pi\)
\(80\) −818.133 −1.14338
\(81\) 81.0000 0.111111
\(82\) 563.942 0.759475
\(83\) −804.148 −1.06345 −0.531727 0.846916i \(-0.678457\pi\)
−0.531727 + 0.846916i \(0.678457\pi\)
\(84\) 0 0
\(85\) 112.750 0.143876
\(86\) 475.490 0.596203
\(87\) 615.020 0.757898
\(88\) 184.937 0.224027
\(89\) 645.066 0.768279 0.384139 0.923275i \(-0.374498\pi\)
0.384139 + 0.923275i \(0.374498\pi\)
\(90\) −713.033 −0.835114
\(91\) 0 0
\(92\) −1088.69 −1.23374
\(93\) −521.477 −0.581448
\(94\) −2704.57 −2.96761
\(95\) 2002.71 2.16288
\(96\) −134.156 −0.142627
\(97\) 1002.09 1.04894 0.524468 0.851430i \(-0.324264\pi\)
0.524468 + 0.851430i \(0.324264\pi\)
\(98\) 0 0
\(99\) 46.4995 0.0472058
\(100\) 2205.85 2.20585
\(101\) −1642.29 −1.61796 −0.808979 0.587838i \(-0.799979\pi\)
−0.808979 + 0.587838i \(0.799979\pi\)
\(102\) −99.9038 −0.0969799
\(103\) 1446.23 1.38351 0.691753 0.722134i \(-0.256839\pi\)
0.691753 + 0.722134i \(0.256839\pi\)
\(104\) 465.331 0.438745
\(105\) 0 0
\(106\) −921.923 −0.844765
\(107\) −567.920 −0.513112 −0.256556 0.966529i \(-0.582588\pi\)
−0.256556 + 0.966529i \(0.582588\pi\)
\(108\) 415.792 0.370459
\(109\) 1808.43 1.58914 0.794568 0.607175i \(-0.207697\pi\)
0.794568 + 0.607175i \(0.207697\pi\)
\(110\) −409.329 −0.354800
\(111\) −495.418 −0.423631
\(112\) 0 0
\(113\) −1598.23 −1.33052 −0.665260 0.746612i \(-0.731679\pi\)
−0.665260 + 0.746612i \(0.731679\pi\)
\(114\) −1774.53 −1.45789
\(115\) 1157.85 0.938874
\(116\) 3157.04 2.52693
\(117\) 117.000 0.0924500
\(118\) −1910.38 −1.49038
\(119\) 0 0
\(120\) −1758.74 −1.33792
\(121\) −1304.31 −0.979945
\(122\) 5.57480 0.00413704
\(123\) 349.744 0.256385
\(124\) −2676.86 −1.93862
\(125\) −298.734 −0.213757
\(126\) 0 0
\(127\) 1555.80 1.08705 0.543524 0.839393i \(-0.317090\pi\)
0.543524 + 0.839393i \(0.317090\pi\)
\(128\) −2621.77 −1.81042
\(129\) 294.888 0.201267
\(130\) −1029.94 −0.694857
\(131\) 724.411 0.483145 0.241573 0.970383i \(-0.422337\pi\)
0.241573 + 0.970383i \(0.422337\pi\)
\(132\) 238.693 0.157390
\(133\) 0 0
\(134\) −3177.69 −2.04859
\(135\) −442.207 −0.281919
\(136\) −246.419 −0.155370
\(137\) −1706.15 −1.06399 −0.531995 0.846748i \(-0.678557\pi\)
−0.531995 + 0.846748i \(0.678557\pi\)
\(138\) −1025.93 −0.632849
\(139\) 2998.76 1.82987 0.914934 0.403605i \(-0.132243\pi\)
0.914934 + 0.403605i \(0.132243\pi\)
\(140\) 0 0
\(141\) −1677.31 −1.00181
\(142\) 1261.53 0.745532
\(143\) 67.1659 0.0392776
\(144\) 449.578 0.260172
\(145\) −3357.61 −1.92299
\(146\) −5155.78 −2.92257
\(147\) 0 0
\(148\) −2543.10 −1.41244
\(149\) −1404.51 −0.772228 −0.386114 0.922451i \(-0.626183\pi\)
−0.386114 + 0.922451i \(0.626183\pi\)
\(150\) 2078.69 1.13150
\(151\) −918.641 −0.495086 −0.247543 0.968877i \(-0.579623\pi\)
−0.247543 + 0.968877i \(0.579623\pi\)
\(152\) −4376.99 −2.33566
\(153\) −61.9581 −0.0327387
\(154\) 0 0
\(155\) 2846.92 1.47529
\(156\) 600.588 0.308241
\(157\) −1089.66 −0.553913 −0.276957 0.960882i \(-0.589326\pi\)
−0.276957 + 0.960882i \(0.589326\pi\)
\(158\) 1724.11 0.868121
\(159\) −571.756 −0.285177
\(160\) 732.402 0.361884
\(161\) 0 0
\(162\) 391.823 0.190028
\(163\) −1777.50 −0.854136 −0.427068 0.904219i \(-0.640454\pi\)
−0.427068 + 0.904219i \(0.640454\pi\)
\(164\) 1795.32 0.854822
\(165\) −253.857 −0.119774
\(166\) −3889.92 −1.81877
\(167\) 1165.78 0.540182 0.270091 0.962835i \(-0.412946\pi\)
0.270091 + 0.962835i \(0.412946\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 545.409 0.246065
\(171\) −1100.52 −0.492158
\(172\) 1513.73 0.671052
\(173\) −716.703 −0.314971 −0.157485 0.987521i \(-0.550339\pi\)
−0.157485 + 0.987521i \(0.550339\pi\)
\(174\) 2975.05 1.29620
\(175\) 0 0
\(176\) 258.088 0.110535
\(177\) −1184.78 −0.503126
\(178\) 3120.39 1.31395
\(179\) 1614.59 0.674189 0.337094 0.941471i \(-0.390556\pi\)
0.337094 + 0.941471i \(0.390556\pi\)
\(180\) −2269.95 −0.939956
\(181\) −525.461 −0.215786 −0.107893 0.994163i \(-0.534410\pi\)
−0.107893 + 0.994163i \(0.534410\pi\)
\(182\) 0 0
\(183\) 3.45737 0.00139659
\(184\) −2530.53 −1.01388
\(185\) 2704.66 1.07487
\(186\) −2522.55 −0.994422
\(187\) −35.5682 −0.0139091
\(188\) −8610.04 −3.34017
\(189\) 0 0
\(190\) 9687.75 3.69907
\(191\) 2689.87 1.01902 0.509509 0.860465i \(-0.329827\pi\)
0.509509 + 0.860465i \(0.329827\pi\)
\(192\) −1847.83 −0.694560
\(193\) 4306.51 1.60616 0.803081 0.595870i \(-0.203193\pi\)
0.803081 + 0.595870i \(0.203193\pi\)
\(194\) 4847.43 1.79394
\(195\) −638.743 −0.234571
\(196\) 0 0
\(197\) 4743.03 1.71536 0.857682 0.514180i \(-0.171904\pi\)
0.857682 + 0.514180i \(0.171904\pi\)
\(198\) 224.933 0.0807338
\(199\) −4212.91 −1.50073 −0.750366 0.661023i \(-0.770123\pi\)
−0.750366 + 0.661023i \(0.770123\pi\)
\(200\) 5127.23 1.81275
\(201\) −1970.73 −0.691566
\(202\) −7944.28 −2.76712
\(203\) 0 0
\(204\) −318.045 −0.109155
\(205\) −1909.37 −0.650519
\(206\) 6995.88 2.36614
\(207\) −636.260 −0.213638
\(208\) 649.390 0.216476
\(209\) −631.774 −0.209094
\(210\) 0 0
\(211\) −2657.69 −0.867122 −0.433561 0.901124i \(-0.642743\pi\)
−0.433561 + 0.901124i \(0.642743\pi\)
\(212\) −2934.96 −0.950819
\(213\) 782.374 0.251678
\(214\) −2747.21 −0.877550
\(215\) −1609.90 −0.510670
\(216\) 966.458 0.304440
\(217\) 0 0
\(218\) 8747.94 2.71782
\(219\) −3197.50 −0.986607
\(220\) −1303.11 −0.399343
\(221\) −89.4951 −0.0272402
\(222\) −2396.50 −0.724515
\(223\) −1982.11 −0.595211 −0.297605 0.954689i \(-0.596188\pi\)
−0.297605 + 0.954689i \(0.596188\pi\)
\(224\) 0 0
\(225\) 1289.16 0.381973
\(226\) −7731.15 −2.27553
\(227\) 4680.70 1.36859 0.684293 0.729207i \(-0.260111\pi\)
0.684293 + 0.729207i \(0.260111\pi\)
\(228\) −5649.24 −1.64092
\(229\) −6347.83 −1.83177 −0.915887 0.401435i \(-0.868511\pi\)
−0.915887 + 0.401435i \(0.868511\pi\)
\(230\) 5600.92 1.60571
\(231\) 0 0
\(232\) 7338.16 2.07661
\(233\) 5132.05 1.44297 0.721484 0.692431i \(-0.243460\pi\)
0.721484 + 0.692431i \(0.243460\pi\)
\(234\) 565.967 0.158113
\(235\) 9157.03 2.54187
\(236\) −6081.74 −1.67749
\(237\) 1069.26 0.293062
\(238\) 0 0
\(239\) −4937.46 −1.33631 −0.668155 0.744022i \(-0.732916\pi\)
−0.668155 + 0.744022i \(0.732916\pi\)
\(240\) −2454.40 −0.660128
\(241\) −5595.12 −1.49549 −0.747745 0.663986i \(-0.768863\pi\)
−0.747745 + 0.663986i \(0.768863\pi\)
\(242\) −6309.35 −1.67595
\(243\) 243.000 0.0641500
\(244\) 17.7475 0.00465641
\(245\) 0 0
\(246\) 1691.82 0.438483
\(247\) −1589.64 −0.409500
\(248\) −6222.04 −1.59315
\(249\) −2412.44 −0.613986
\(250\) −1445.07 −0.365578
\(251\) 6375.31 1.60321 0.801605 0.597853i \(-0.203980\pi\)
0.801605 + 0.597853i \(0.203980\pi\)
\(252\) 0 0
\(253\) −365.257 −0.0907648
\(254\) 7525.92 1.85913
\(255\) 338.251 0.0830670
\(256\) −7754.79 −1.89326
\(257\) 4821.50 1.17026 0.585130 0.810940i \(-0.301044\pi\)
0.585130 + 0.810940i \(0.301044\pi\)
\(258\) 1426.47 0.344218
\(259\) 0 0
\(260\) −3278.82 −0.782091
\(261\) 1845.06 0.437573
\(262\) 3504.21 0.826300
\(263\) −2068.59 −0.484998 −0.242499 0.970152i \(-0.577967\pi\)
−0.242499 + 0.970152i \(0.577967\pi\)
\(264\) 554.812 0.129342
\(265\) 3121.41 0.723573
\(266\) 0 0
\(267\) 1935.20 0.443566
\(268\) −10116.2 −2.30577
\(269\) −752.070 −0.170463 −0.0852315 0.996361i \(-0.527163\pi\)
−0.0852315 + 0.996361i \(0.527163\pi\)
\(270\) −2139.10 −0.482153
\(271\) −4367.60 −0.979015 −0.489507 0.871999i \(-0.662823\pi\)
−0.489507 + 0.871999i \(0.662823\pi\)
\(272\) −343.889 −0.0766593
\(273\) 0 0
\(274\) −8253.22 −1.81969
\(275\) 740.065 0.162282
\(276\) −3266.07 −0.712299
\(277\) 713.426 0.154750 0.0773748 0.997002i \(-0.475346\pi\)
0.0773748 + 0.997002i \(0.475346\pi\)
\(278\) 14506.0 3.12953
\(279\) −1564.43 −0.335699
\(280\) 0 0
\(281\) 858.912 0.182343 0.0911715 0.995835i \(-0.470939\pi\)
0.0911715 + 0.995835i \(0.470939\pi\)
\(282\) −8113.71 −1.71335
\(283\) 9354.01 1.96480 0.982400 0.186792i \(-0.0598089\pi\)
0.982400 + 0.186792i \(0.0598089\pi\)
\(284\) 4016.11 0.839128
\(285\) 6008.13 1.24874
\(286\) 324.903 0.0671746
\(287\) 0 0
\(288\) −402.467 −0.0823459
\(289\) −4865.61 −0.990354
\(290\) −16241.8 −3.28880
\(291\) 3006.27 0.605603
\(292\) −16413.5 −3.28948
\(293\) −7360.81 −1.46766 −0.733828 0.679335i \(-0.762268\pi\)
−0.733828 + 0.679335i \(0.762268\pi\)
\(294\) 0 0
\(295\) 6468.11 1.27657
\(296\) −5911.12 −1.16073
\(297\) 139.498 0.0272543
\(298\) −6794.07 −1.32070
\(299\) −919.043 −0.177758
\(300\) 6617.55 1.27355
\(301\) 0 0
\(302\) −4443.76 −0.846721
\(303\) −4926.86 −0.934128
\(304\) −6108.27 −1.15241
\(305\) −18.8749 −0.00354353
\(306\) −299.711 −0.0559914
\(307\) 8873.13 1.64956 0.824782 0.565451i \(-0.191298\pi\)
0.824782 + 0.565451i \(0.191298\pi\)
\(308\) 0 0
\(309\) 4338.69 0.798768
\(310\) 13771.5 2.52312
\(311\) 9942.02 1.81273 0.906367 0.422491i \(-0.138844\pi\)
0.906367 + 0.422491i \(0.138844\pi\)
\(312\) 1395.99 0.253310
\(313\) −1301.41 −0.235016 −0.117508 0.993072i \(-0.537491\pi\)
−0.117508 + 0.993072i \(0.537491\pi\)
\(314\) −5271.04 −0.947331
\(315\) 0 0
\(316\) 5488.74 0.977108
\(317\) 3168.01 0.561303 0.280652 0.959810i \(-0.409449\pi\)
0.280652 + 0.959810i \(0.409449\pi\)
\(318\) −2765.77 −0.487725
\(319\) 1059.19 0.185904
\(320\) 10087.9 1.76229
\(321\) −1703.76 −0.296245
\(322\) 0 0
\(323\) 841.806 0.145013
\(324\) 1247.38 0.213885
\(325\) 1862.12 0.317821
\(326\) −8598.32 −1.46079
\(327\) 5425.28 0.917488
\(328\) 4173.00 0.702485
\(329\) 0 0
\(330\) −1227.99 −0.204844
\(331\) −595.878 −0.0989499 −0.0494750 0.998775i \(-0.515755\pi\)
−0.0494750 + 0.998775i \(0.515755\pi\)
\(332\) −12383.6 −2.04711
\(333\) −1486.25 −0.244583
\(334\) 5639.24 0.923848
\(335\) 10758.9 1.75469
\(336\) 0 0
\(337\) −9176.25 −1.48327 −0.741636 0.670803i \(-0.765950\pi\)
−0.741636 + 0.670803i \(0.765950\pi\)
\(338\) 817.508 0.131558
\(339\) −4794.69 −0.768176
\(340\) 1736.32 0.276956
\(341\) −898.090 −0.142623
\(342\) −5323.58 −0.841714
\(343\) 0 0
\(344\) 3518.48 0.551465
\(345\) 3473.56 0.542059
\(346\) −3466.93 −0.538679
\(347\) 2898.12 0.448355 0.224178 0.974548i \(-0.428030\pi\)
0.224178 + 0.974548i \(0.428030\pi\)
\(348\) 9471.13 1.45892
\(349\) −783.587 −0.120185 −0.0600923 0.998193i \(-0.519140\pi\)
−0.0600923 + 0.998193i \(0.519140\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) −231.044 −0.0349848
\(353\) 5240.19 0.790106 0.395053 0.918658i \(-0.370726\pi\)
0.395053 + 0.918658i \(0.370726\pi\)
\(354\) −5731.15 −0.860473
\(355\) −4271.25 −0.638576
\(356\) 9933.82 1.47891
\(357\) 0 0
\(358\) 7810.27 1.15303
\(359\) 3490.98 0.513223 0.256611 0.966515i \(-0.417394\pi\)
0.256611 + 0.966515i \(0.417394\pi\)
\(360\) −5276.22 −0.772448
\(361\) 8093.46 1.17998
\(362\) −2541.82 −0.369048
\(363\) −3912.92 −0.565771
\(364\) 0 0
\(365\) 17456.2 2.50329
\(366\) 16.7244 0.00238852
\(367\) 3436.90 0.488842 0.244421 0.969669i \(-0.421402\pi\)
0.244421 + 0.969669i \(0.421402\pi\)
\(368\) −3531.46 −0.500245
\(369\) 1049.23 0.148024
\(370\) 13083.3 1.83829
\(371\) 0 0
\(372\) −8030.59 −1.11927
\(373\) −1700.44 −0.236047 −0.118024 0.993011i \(-0.537656\pi\)
−0.118024 + 0.993011i \(0.537656\pi\)
\(374\) −172.055 −0.0237881
\(375\) −896.203 −0.123413
\(376\) −20013.0 −2.74492
\(377\) 2665.09 0.364082
\(378\) 0 0
\(379\) −6419.93 −0.870105 −0.435052 0.900405i \(-0.643270\pi\)
−0.435052 + 0.900405i \(0.643270\pi\)
\(380\) 30841.1 4.16346
\(381\) 4667.41 0.627608
\(382\) 13011.8 1.74278
\(383\) 8897.78 1.18709 0.593545 0.804801i \(-0.297728\pi\)
0.593545 + 0.804801i \(0.297728\pi\)
\(384\) −7865.30 −1.04525
\(385\) 0 0
\(386\) 20832.0 2.74694
\(387\) 884.665 0.116202
\(388\) 15431.9 2.01916
\(389\) −2696.07 −0.351404 −0.175702 0.984443i \(-0.556219\pi\)
−0.175702 + 0.984443i \(0.556219\pi\)
\(390\) −3089.81 −0.401176
\(391\) 486.685 0.0629481
\(392\) 0 0
\(393\) 2173.23 0.278944
\(394\) 22943.6 2.93371
\(395\) −5837.44 −0.743579
\(396\) 716.078 0.0908694
\(397\) 6204.46 0.784365 0.392183 0.919887i \(-0.371720\pi\)
0.392183 + 0.919887i \(0.371720\pi\)
\(398\) −20379.2 −2.56663
\(399\) 0 0
\(400\) 7155.28 0.894410
\(401\) 6215.81 0.774072 0.387036 0.922065i \(-0.373499\pi\)
0.387036 + 0.922065i \(0.373499\pi\)
\(402\) −9533.07 −1.18275
\(403\) −2259.73 −0.279319
\(404\) −25290.7 −3.11451
\(405\) −1326.62 −0.162766
\(406\) 0 0
\(407\) −853.211 −0.103912
\(408\) −739.258 −0.0897028
\(409\) −909.851 −0.109998 −0.0549991 0.998486i \(-0.517516\pi\)
−0.0549991 + 0.998486i \(0.517516\pi\)
\(410\) −9236.25 −1.11255
\(411\) −5118.46 −0.614295
\(412\) 22271.5 2.66320
\(413\) 0 0
\(414\) −3077.80 −0.365376
\(415\) 13170.4 1.55785
\(416\) −581.342 −0.0685159
\(417\) 8996.28 1.05647
\(418\) −3056.10 −0.357604
\(419\) 5345.25 0.623228 0.311614 0.950209i \(-0.399130\pi\)
0.311614 + 0.950209i \(0.399130\pi\)
\(420\) 0 0
\(421\) 10597.2 1.22679 0.613393 0.789778i \(-0.289804\pi\)
0.613393 + 0.789778i \(0.289804\pi\)
\(422\) −12856.1 −1.48300
\(423\) −5031.94 −0.578396
\(424\) −6821.95 −0.781375
\(425\) −986.098 −0.112548
\(426\) 3784.60 0.430433
\(427\) 0 0
\(428\) −8745.80 −0.987720
\(429\) 201.498 0.0226769
\(430\) −7787.60 −0.873375
\(431\) 547.482 0.0611863 0.0305931 0.999532i \(-0.490260\pi\)
0.0305931 + 0.999532i \(0.490260\pi\)
\(432\) 1348.73 0.150211
\(433\) 2168.27 0.240648 0.120324 0.992735i \(-0.461607\pi\)
0.120324 + 0.992735i \(0.461607\pi\)
\(434\) 0 0
\(435\) −10072.8 −1.11024
\(436\) 27849.2 3.05903
\(437\) 8644.67 0.946295
\(438\) −15467.3 −1.68735
\(439\) −10369.3 −1.12734 −0.563668 0.826001i \(-0.690610\pi\)
−0.563668 + 0.826001i \(0.690610\pi\)
\(440\) −3028.91 −0.328176
\(441\) 0 0
\(442\) −432.917 −0.0465877
\(443\) −8216.42 −0.881205 −0.440603 0.897702i \(-0.645235\pi\)
−0.440603 + 0.897702i \(0.645235\pi\)
\(444\) −7629.29 −0.815473
\(445\) −10564.9 −1.12545
\(446\) −9588.12 −1.01796
\(447\) −4213.53 −0.445846
\(448\) 0 0
\(449\) −12142.2 −1.27623 −0.638113 0.769942i \(-0.720285\pi\)
−0.638113 + 0.769942i \(0.720285\pi\)
\(450\) 6236.08 0.653270
\(451\) 602.330 0.0628883
\(452\) −24612.3 −2.56120
\(453\) −2755.92 −0.285838
\(454\) 22642.1 2.34063
\(455\) 0 0
\(456\) −13131.0 −1.34849
\(457\) −8647.67 −0.885166 −0.442583 0.896728i \(-0.645938\pi\)
−0.442583 + 0.896728i \(0.645938\pi\)
\(458\) −30706.5 −3.13280
\(459\) −185.874 −0.0189017
\(460\) 17830.6 1.80730
\(461\) 3096.97 0.312885 0.156443 0.987687i \(-0.449997\pi\)
0.156443 + 0.987687i \(0.449997\pi\)
\(462\) 0 0
\(463\) −2933.61 −0.294463 −0.147231 0.989102i \(-0.547036\pi\)
−0.147231 + 0.989102i \(0.547036\pi\)
\(464\) 10240.7 1.02460
\(465\) 8540.77 0.851760
\(466\) 24825.4 2.46784
\(467\) 2017.58 0.199919 0.0999597 0.994991i \(-0.468129\pi\)
0.0999597 + 0.994991i \(0.468129\pi\)
\(468\) 1801.76 0.177963
\(469\) 0 0
\(470\) 44295.5 4.34723
\(471\) −3268.98 −0.319802
\(472\) −14136.3 −1.37855
\(473\) 507.858 0.0493686
\(474\) 5172.34 0.501210
\(475\) −17515.4 −1.69192
\(476\) 0 0
\(477\) −1715.27 −0.164647
\(478\) −23884.1 −2.28543
\(479\) 10221.6 0.975025 0.487512 0.873116i \(-0.337904\pi\)
0.487512 + 0.873116i \(0.337904\pi\)
\(480\) 2197.21 0.208934
\(481\) −2146.81 −0.203506
\(482\) −27065.4 −2.55766
\(483\) 0 0
\(484\) −20085.9 −1.88636
\(485\) −16412.2 −1.53658
\(486\) 1175.47 0.109713
\(487\) −8120.41 −0.755587 −0.377794 0.925890i \(-0.623317\pi\)
−0.377794 + 0.925890i \(0.623317\pi\)
\(488\) 41.2518 0.00382660
\(489\) −5332.49 −0.493136
\(490\) 0 0
\(491\) −10516.9 −0.966646 −0.483323 0.875442i \(-0.660570\pi\)
−0.483323 + 0.875442i \(0.660570\pi\)
\(492\) 5385.95 0.493531
\(493\) −1411.32 −0.128930
\(494\) −7689.62 −0.700349
\(495\) −761.570 −0.0691516
\(496\) −8683.13 −0.786056
\(497\) 0 0
\(498\) −11669.8 −1.05007
\(499\) −14223.9 −1.27605 −0.638023 0.770017i \(-0.720248\pi\)
−0.638023 + 0.770017i \(0.720248\pi\)
\(500\) −4600.42 −0.411474
\(501\) 3497.33 0.311874
\(502\) 30839.4 2.74189
\(503\) 19730.7 1.74901 0.874503 0.485020i \(-0.161188\pi\)
0.874503 + 0.485020i \(0.161188\pi\)
\(504\) 0 0
\(505\) 26897.4 2.37014
\(506\) −1766.86 −0.155231
\(507\) 507.000 0.0444116
\(508\) 23958.9 2.09253
\(509\) 20325.9 1.77000 0.884998 0.465595i \(-0.154160\pi\)
0.884998 + 0.465595i \(0.154160\pi\)
\(510\) 1636.23 0.142065
\(511\) 0 0
\(512\) −16538.3 −1.42753
\(513\) −3301.57 −0.284148
\(514\) 23323.1 2.00144
\(515\) −23686.4 −2.02669
\(516\) 4541.19 0.387432
\(517\) −2888.68 −0.245733
\(518\) 0 0
\(519\) −2150.11 −0.181848
\(520\) −7621.21 −0.642716
\(521\) −16050.6 −1.34969 −0.674845 0.737960i \(-0.735789\pi\)
−0.674845 + 0.737960i \(0.735789\pi\)
\(522\) 8925.16 0.748359
\(523\) −2211.82 −0.184926 −0.0924629 0.995716i \(-0.529474\pi\)
−0.0924629 + 0.995716i \(0.529474\pi\)
\(524\) 11155.7 0.930037
\(525\) 0 0
\(526\) −10006.4 −0.829470
\(527\) 1196.66 0.0989131
\(528\) 774.264 0.0638173
\(529\) −7169.13 −0.589228
\(530\) 15099.3 1.23749
\(531\) −3554.33 −0.290480
\(532\) 0 0
\(533\) 1515.56 0.123163
\(534\) 9361.17 0.758610
\(535\) 9301.42 0.751655
\(536\) −23513.9 −1.89487
\(537\) 4843.76 0.389243
\(538\) −3638.01 −0.291535
\(539\) 0 0
\(540\) −6809.85 −0.542684
\(541\) −14763.8 −1.17328 −0.586642 0.809847i \(-0.699550\pi\)
−0.586642 + 0.809847i \(0.699550\pi\)
\(542\) −21127.5 −1.67436
\(543\) −1576.38 −0.124584
\(544\) 307.853 0.0242631
\(545\) −29618.5 −2.32792
\(546\) 0 0
\(547\) 8994.09 0.703034 0.351517 0.936181i \(-0.385666\pi\)
0.351517 + 0.936181i \(0.385666\pi\)
\(548\) −26274.3 −2.04814
\(549\) 10.3721 0.000806321 0
\(550\) 3579.93 0.277543
\(551\) −25068.3 −1.93819
\(552\) −7591.59 −0.585361
\(553\) 0 0
\(554\) 3451.07 0.264661
\(555\) 8113.97 0.620575
\(556\) 46180.0 3.52242
\(557\) −3557.63 −0.270631 −0.135316 0.990803i \(-0.543205\pi\)
−0.135316 + 0.990803i \(0.543205\pi\)
\(558\) −7567.66 −0.574130
\(559\) 1277.85 0.0966857
\(560\) 0 0
\(561\) −106.705 −0.00803042
\(562\) 4154.83 0.311852
\(563\) −10820.2 −0.809979 −0.404990 0.914321i \(-0.632725\pi\)
−0.404990 + 0.914321i \(0.632725\pi\)
\(564\) −25830.1 −1.92845
\(565\) 26175.9 1.94907
\(566\) 45248.4 3.36030
\(567\) 0 0
\(568\) 9334.96 0.689588
\(569\) 16487.5 1.21475 0.607374 0.794416i \(-0.292223\pi\)
0.607374 + 0.794416i \(0.292223\pi\)
\(570\) 29063.3 2.13566
\(571\) −3472.27 −0.254484 −0.127242 0.991872i \(-0.540612\pi\)
−0.127242 + 0.991872i \(0.540612\pi\)
\(572\) 1034.34 0.0756079
\(573\) 8069.62 0.588330
\(574\) 0 0
\(575\) −10126.4 −0.734437
\(576\) −5543.49 −0.401005
\(577\) 13174.6 0.950545 0.475273 0.879839i \(-0.342349\pi\)
0.475273 + 0.879839i \(0.342349\pi\)
\(578\) −23536.5 −1.69375
\(579\) 12919.5 0.927318
\(580\) −51706.1 −3.70169
\(581\) 0 0
\(582\) 14542.3 1.03573
\(583\) −984.680 −0.0699508
\(584\) −38151.2 −2.70327
\(585\) −1916.23 −0.135430
\(586\) −35606.6 −2.51006
\(587\) 14194.6 0.998085 0.499042 0.866578i \(-0.333685\pi\)
0.499042 + 0.866578i \(0.333685\pi\)
\(588\) 0 0
\(589\) 21255.4 1.48695
\(590\) 31288.3 2.18325
\(591\) 14229.1 0.990366
\(592\) −8249.22 −0.572704
\(593\) 9446.52 0.654169 0.327084 0.944995i \(-0.393934\pi\)
0.327084 + 0.944995i \(0.393934\pi\)
\(594\) 674.799 0.0466117
\(595\) 0 0
\(596\) −21629.0 −1.48651
\(597\) −12638.7 −0.866448
\(598\) −4445.71 −0.304011
\(599\) 7467.14 0.509347 0.254674 0.967027i \(-0.418032\pi\)
0.254674 + 0.967027i \(0.418032\pi\)
\(600\) 15381.7 1.04659
\(601\) −1115.01 −0.0756779 −0.0378389 0.999284i \(-0.512047\pi\)
−0.0378389 + 0.999284i \(0.512047\pi\)
\(602\) 0 0
\(603\) −5912.20 −0.399276
\(604\) −14146.8 −0.953021
\(605\) 21362.0 1.43552
\(606\) −23832.8 −1.59759
\(607\) −14706.2 −0.983374 −0.491687 0.870772i \(-0.663620\pi\)
−0.491687 + 0.870772i \(0.663620\pi\)
\(608\) 5468.20 0.364745
\(609\) 0 0
\(610\) −91.3042 −0.00606033
\(611\) −7268.36 −0.481254
\(612\) −954.136 −0.0630207
\(613\) 23507.6 1.54888 0.774438 0.632650i \(-0.218033\pi\)
0.774438 + 0.632650i \(0.218033\pi\)
\(614\) 42922.2 2.82117
\(615\) −5728.12 −0.375577
\(616\) 0 0
\(617\) −18523.1 −1.20861 −0.604306 0.796753i \(-0.706549\pi\)
−0.604306 + 0.796753i \(0.706549\pi\)
\(618\) 20987.6 1.36609
\(619\) −15470.8 −1.00456 −0.502280 0.864705i \(-0.667505\pi\)
−0.502280 + 0.864705i \(0.667505\pi\)
\(620\) 43841.7 2.83988
\(621\) −1908.78 −0.123344
\(622\) 48092.8 3.10023
\(623\) 0 0
\(624\) 1948.17 0.124983
\(625\) −13012.3 −0.832788
\(626\) −6295.33 −0.401936
\(627\) −1895.32 −0.120721
\(628\) −16780.4 −1.06626
\(629\) 1136.86 0.0720660
\(630\) 0 0
\(631\) 25835.8 1.62996 0.814982 0.579486i \(-0.196747\pi\)
0.814982 + 0.579486i \(0.196747\pi\)
\(632\) 12757.9 0.802979
\(633\) −7973.07 −0.500633
\(634\) 15324.7 0.959970
\(635\) −25481.0 −1.59241
\(636\) −8804.87 −0.548956
\(637\) 0 0
\(638\) 5123.65 0.317942
\(639\) 2347.12 0.145306
\(640\) 42939.4 2.65207
\(641\) −14716.1 −0.906789 −0.453394 0.891310i \(-0.649787\pi\)
−0.453394 + 0.891310i \(0.649787\pi\)
\(642\) −8241.64 −0.506654
\(643\) −15531.5 −0.952573 −0.476286 0.879290i \(-0.658017\pi\)
−0.476286 + 0.879290i \(0.658017\pi\)
\(644\) 0 0
\(645\) −4829.69 −0.294836
\(646\) 4072.09 0.248010
\(647\) 31042.5 1.88626 0.943128 0.332431i \(-0.107869\pi\)
0.943128 + 0.332431i \(0.107869\pi\)
\(648\) 2899.37 0.175769
\(649\) −2040.43 −0.123411
\(650\) 9007.67 0.543554
\(651\) 0 0
\(652\) −27372.9 −1.64418
\(653\) −21968.5 −1.31653 −0.658265 0.752786i \(-0.728709\pi\)
−0.658265 + 0.752786i \(0.728709\pi\)
\(654\) 26243.8 1.56914
\(655\) −11864.4 −0.707758
\(656\) 5823.60 0.346606
\(657\) −9592.49 −0.569618
\(658\) 0 0
\(659\) −3283.83 −0.194112 −0.0970560 0.995279i \(-0.530943\pi\)
−0.0970560 + 0.995279i \(0.530943\pi\)
\(660\) −3909.32 −0.230561
\(661\) −15962.2 −0.939268 −0.469634 0.882861i \(-0.655614\pi\)
−0.469634 + 0.882861i \(0.655614\pi\)
\(662\) −2882.46 −0.169229
\(663\) −268.485 −0.0157272
\(664\) −28784.3 −1.68230
\(665\) 0 0
\(666\) −7189.49 −0.418299
\(667\) −14493.1 −0.841341
\(668\) 17952.6 1.03983
\(669\) −5946.34 −0.343645
\(670\) 52044.3 3.00097
\(671\) 5.95429 0.000342567 0
\(672\) 0 0
\(673\) −26354.1 −1.50948 −0.754738 0.656027i \(-0.772236\pi\)
−0.754738 + 0.656027i \(0.772236\pi\)
\(674\) −44388.5 −2.53677
\(675\) 3867.48 0.220532
\(676\) 2602.55 0.148074
\(677\) −29401.7 −1.66913 −0.834564 0.550912i \(-0.814280\pi\)
−0.834564 + 0.550912i \(0.814280\pi\)
\(678\) −23193.5 −1.31378
\(679\) 0 0
\(680\) 4035.86 0.227600
\(681\) 14042.1 0.790154
\(682\) −4344.35 −0.243920
\(683\) 2437.56 0.136560 0.0682801 0.997666i \(-0.478249\pi\)
0.0682801 + 0.997666i \(0.478249\pi\)
\(684\) −16947.7 −0.947386
\(685\) 27943.4 1.55863
\(686\) 0 0
\(687\) −19043.5 −1.05758
\(688\) 4910.20 0.272092
\(689\) −2477.61 −0.136995
\(690\) 16802.8 0.927058
\(691\) −20802.5 −1.14524 −0.572622 0.819819i \(-0.694074\pi\)
−0.572622 + 0.819819i \(0.694074\pi\)
\(692\) −11037.0 −0.606307
\(693\) 0 0
\(694\) 14019.1 0.766800
\(695\) −49113.8 −2.68056
\(696\) 22014.5 1.19893
\(697\) −802.574 −0.0436150
\(698\) −3790.46 −0.205546
\(699\) 15396.1 0.833098
\(700\) 0 0
\(701\) −11644.1 −0.627376 −0.313688 0.949526i \(-0.601565\pi\)
−0.313688 + 0.949526i \(0.601565\pi\)
\(702\) 1697.90 0.0912865
\(703\) 20193.3 1.08336
\(704\) −3182.34 −0.170368
\(705\) 27471.1 1.46755
\(706\) 25348.5 1.35128
\(707\) 0 0
\(708\) −18245.2 −0.968499
\(709\) −7851.47 −0.415893 −0.207947 0.978140i \(-0.566678\pi\)
−0.207947 + 0.978140i \(0.566678\pi\)
\(710\) −20661.4 −1.09213
\(711\) 3207.77 0.169199
\(712\) 23090.0 1.21535
\(713\) 12288.7 0.645464
\(714\) 0 0
\(715\) −1100.05 −0.0575376
\(716\) 24864.1 1.29779
\(717\) −14812.4 −0.771519
\(718\) 16887.0 0.877740
\(719\) 8769.51 0.454864 0.227432 0.973794i \(-0.426967\pi\)
0.227432 + 0.973794i \(0.426967\pi\)
\(720\) −7363.20 −0.381125
\(721\) 0 0
\(722\) 39150.7 2.01806
\(723\) −16785.3 −0.863421
\(724\) −8091.93 −0.415379
\(725\) 29365.2 1.50427
\(726\) −18928.1 −0.967611
\(727\) 1063.85 0.0542726 0.0271363 0.999632i \(-0.491361\pi\)
0.0271363 + 0.999632i \(0.491361\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 84441.5 4.28126
\(731\) −676.694 −0.0342386
\(732\) 53.2424 0.00268838
\(733\) 10750.5 0.541716 0.270858 0.962619i \(-0.412693\pi\)
0.270858 + 0.962619i \(0.412693\pi\)
\(734\) 16625.4 0.836042
\(735\) 0 0
\(736\) 3161.41 0.158330
\(737\) −3394.00 −0.169633
\(738\) 5075.47 0.253158
\(739\) 17099.4 0.851165 0.425583 0.904920i \(-0.360069\pi\)
0.425583 + 0.904920i \(0.360069\pi\)
\(740\) 41650.9 2.06908
\(741\) −4768.93 −0.236425
\(742\) 0 0
\(743\) −35309.8 −1.74346 −0.871730 0.489986i \(-0.837002\pi\)
−0.871730 + 0.489986i \(0.837002\pi\)
\(744\) −18666.1 −0.919803
\(745\) 23003.1 1.13123
\(746\) −8225.60 −0.403700
\(747\) −7237.33 −0.354485
\(748\) −547.739 −0.0267745
\(749\) 0 0
\(750\) −4335.22 −0.211067
\(751\) −31626.2 −1.53669 −0.768346 0.640035i \(-0.778920\pi\)
−0.768346 + 0.640035i \(0.778920\pi\)
\(752\) −27929.0 −1.35434
\(753\) 19125.9 0.925614
\(754\) 12891.9 0.622673
\(755\) 15045.5 0.725249
\(756\) 0 0
\(757\) 8789.00 0.421984 0.210992 0.977488i \(-0.432331\pi\)
0.210992 + 0.977488i \(0.432331\pi\)
\(758\) −31055.3 −1.48810
\(759\) −1095.77 −0.0524031
\(760\) 71686.4 3.42150
\(761\) 8178.79 0.389594 0.194797 0.980844i \(-0.437595\pi\)
0.194797 + 0.980844i \(0.437595\pi\)
\(762\) 22577.8 1.07337
\(763\) 0 0
\(764\) 41423.2 1.96157
\(765\) 1014.75 0.0479587
\(766\) 43041.4 2.03022
\(767\) −5134.04 −0.241694
\(768\) −23264.4 −1.09307
\(769\) 13503.3 0.633216 0.316608 0.948556i \(-0.397456\pi\)
0.316608 + 0.948556i \(0.397456\pi\)
\(770\) 0 0
\(771\) 14464.5 0.675650
\(772\) 66318.9 3.09180
\(773\) −4110.06 −0.191240 −0.0956200 0.995418i \(-0.530483\pi\)
−0.0956200 + 0.995418i \(0.530483\pi\)
\(774\) 4279.41 0.198734
\(775\) −24898.8 −1.15405
\(776\) 35869.5 1.65933
\(777\) 0 0
\(778\) −13041.8 −0.600989
\(779\) −14255.6 −0.655661
\(780\) −9836.45 −0.451540
\(781\) 1347.41 0.0617337
\(782\) 2354.25 0.107657
\(783\) 5535.18 0.252633
\(784\) 0 0
\(785\) 17846.5 0.811425
\(786\) 10512.6 0.477065
\(787\) −27340.0 −1.23833 −0.619166 0.785260i \(-0.712529\pi\)
−0.619166 + 0.785260i \(0.712529\pi\)
\(788\) 73041.2 3.30201
\(789\) −6205.76 −0.280014
\(790\) −28237.6 −1.27171
\(791\) 0 0
\(792\) 1664.44 0.0746757
\(793\) 14.9819 0.000670900 0
\(794\) 30013.0 1.34146
\(795\) 9364.24 0.417755
\(796\) −64877.6 −2.88885
\(797\) −4514.37 −0.200637 −0.100318 0.994955i \(-0.531986\pi\)
−0.100318 + 0.994955i \(0.531986\pi\)
\(798\) 0 0
\(799\) 3849.01 0.170423
\(800\) −6405.49 −0.283085
\(801\) 5805.59 0.256093
\(802\) 30067.9 1.32386
\(803\) −5506.74 −0.242003
\(804\) −30348.7 −1.33124
\(805\) 0 0
\(806\) −10931.1 −0.477705
\(807\) −2256.21 −0.0984168
\(808\) −58785.2 −2.55948
\(809\) 22472.8 0.976641 0.488320 0.872664i \(-0.337610\pi\)
0.488320 + 0.872664i \(0.337610\pi\)
\(810\) −6417.29 −0.278371
\(811\) 26153.6 1.13240 0.566199 0.824268i \(-0.308413\pi\)
0.566199 + 0.824268i \(0.308413\pi\)
\(812\) 0 0
\(813\) −13102.8 −0.565235
\(814\) −4127.26 −0.177715
\(815\) 29111.9 1.25122
\(816\) −1031.67 −0.0442593
\(817\) −12019.7 −0.514707
\(818\) −4401.25 −0.188125
\(819\) 0 0
\(820\) −29403.8 −1.25222
\(821\) 31826.7 1.35294 0.676468 0.736472i \(-0.263510\pi\)
0.676468 + 0.736472i \(0.263510\pi\)
\(822\) −24759.7 −1.05060
\(823\) −22129.9 −0.937303 −0.468652 0.883383i \(-0.655260\pi\)
−0.468652 + 0.883383i \(0.655260\pi\)
\(824\) 51767.4 2.18859
\(825\) 2220.19 0.0936937
\(826\) 0 0
\(827\) −14089.5 −0.592431 −0.296216 0.955121i \(-0.595725\pi\)
−0.296216 + 0.955121i \(0.595725\pi\)
\(828\) −9798.22 −0.411246
\(829\) 19178.8 0.803505 0.401753 0.915748i \(-0.368401\pi\)
0.401753 + 0.915748i \(0.368401\pi\)
\(830\) 63709.3 2.66432
\(831\) 2140.28 0.0893447
\(832\) −8007.26 −0.333656
\(833\) 0 0
\(834\) 43517.9 1.80684
\(835\) −19093.1 −0.791311
\(836\) −9729.13 −0.402499
\(837\) −4693.29 −0.193816
\(838\) 25856.7 1.06588
\(839\) 12029.5 0.494998 0.247499 0.968888i \(-0.420391\pi\)
0.247499 + 0.968888i \(0.420391\pi\)
\(840\) 0 0
\(841\) 17638.8 0.723227
\(842\) 51262.2 2.09811
\(843\) 2576.73 0.105276
\(844\) −40927.6 −1.66918
\(845\) −2767.89 −0.112684
\(846\) −24341.1 −0.989202
\(847\) 0 0
\(848\) −9520.33 −0.385530
\(849\) 28062.0 1.13438
\(850\) −4770.07 −0.192485
\(851\) 11674.6 0.470271
\(852\) 12048.3 0.484471
\(853\) −31976.7 −1.28354 −0.641770 0.766897i \(-0.721800\pi\)
−0.641770 + 0.766897i \(0.721800\pi\)
\(854\) 0 0
\(855\) 18024.4 0.720960
\(856\) −20328.6 −0.811701
\(857\) −22460.8 −0.895270 −0.447635 0.894216i \(-0.647734\pi\)
−0.447635 + 0.894216i \(0.647734\pi\)
\(858\) 974.710 0.0387833
\(859\) 7553.74 0.300035 0.150018 0.988683i \(-0.452067\pi\)
0.150018 + 0.988683i \(0.452067\pi\)
\(860\) −24791.9 −0.983021
\(861\) 0 0
\(862\) 2648.35 0.104644
\(863\) 45888.0 1.81002 0.905008 0.425394i \(-0.139864\pi\)
0.905008 + 0.425394i \(0.139864\pi\)
\(864\) −1207.40 −0.0475424
\(865\) 11738.2 0.461399
\(866\) 10488.6 0.411569
\(867\) −14596.8 −0.571781
\(868\) 0 0
\(869\) 1841.48 0.0718848
\(870\) −48725.5 −1.89879
\(871\) −8539.84 −0.332218
\(872\) 64732.1 2.51388
\(873\) 9018.80 0.349645
\(874\) 41817.1 1.61840
\(875\) 0 0
\(876\) −49240.5 −1.89918
\(877\) 14712.3 0.566476 0.283238 0.959050i \(-0.408591\pi\)
0.283238 + 0.959050i \(0.408591\pi\)
\(878\) −50159.8 −1.92803
\(879\) −22082.4 −0.847352
\(880\) −4226.98 −0.161922
\(881\) −40585.8 −1.55207 −0.776033 0.630692i \(-0.782771\pi\)
−0.776033 + 0.630692i \(0.782771\pi\)
\(882\) 0 0
\(883\) −44467.7 −1.69474 −0.847370 0.531002i \(-0.821816\pi\)
−0.847370 + 0.531002i \(0.821816\pi\)
\(884\) −1378.20 −0.0524364
\(885\) 19404.3 0.737027
\(886\) −39745.5 −1.50708
\(887\) 17573.0 0.665212 0.332606 0.943066i \(-0.392072\pi\)
0.332606 + 0.943066i \(0.392072\pi\)
\(888\) −17733.4 −0.670149
\(889\) 0 0
\(890\) −51105.9 −1.92480
\(891\) 418.495 0.0157353
\(892\) −30523.9 −1.14576
\(893\) 68367.4 2.56196
\(894\) −20382.2 −0.762509
\(895\) −26443.7 −0.987617
\(896\) 0 0
\(897\) −2757.13 −0.102629
\(898\) −58735.7 −2.18267
\(899\) −35635.4 −1.32203
\(900\) 19852.7 0.735284
\(901\) 1312.03 0.0485130
\(902\) 2913.67 0.107555
\(903\) 0 0
\(904\) −57208.2 −2.10477
\(905\) 8606.01 0.316103
\(906\) −13331.3 −0.488855
\(907\) −48566.0 −1.77796 −0.888979 0.457948i \(-0.848584\pi\)
−0.888979 + 0.457948i \(0.848584\pi\)
\(908\) 72081.4 2.63448
\(909\) −14780.6 −0.539319
\(910\) 0 0
\(911\) 11129.7 0.404767 0.202384 0.979306i \(-0.435131\pi\)
0.202384 + 0.979306i \(0.435131\pi\)
\(912\) −18324.8 −0.665346
\(913\) −4154.72 −0.150604
\(914\) −41831.6 −1.51386
\(915\) −56.6248 −0.00204586
\(916\) −97754.7 −3.52610
\(917\) 0 0
\(918\) −899.134 −0.0323266
\(919\) −15164.2 −0.544309 −0.272155 0.962254i \(-0.587736\pi\)
−0.272155 + 0.962254i \(0.587736\pi\)
\(920\) 41445.1 1.48522
\(921\) 26619.4 0.952376
\(922\) 14981.0 0.535113
\(923\) 3390.29 0.120902
\(924\) 0 0
\(925\) −23654.6 −0.840818
\(926\) −14190.8 −0.503606
\(927\) 13016.1 0.461169
\(928\) −9167.61 −0.324291
\(929\) 10914.1 0.385446 0.192723 0.981253i \(-0.438268\pi\)
0.192723 + 0.981253i \(0.438268\pi\)
\(930\) 41314.5 1.45673
\(931\) 0 0
\(932\) 79032.0 2.77766
\(933\) 29826.1 1.04658
\(934\) 9759.67 0.341913
\(935\) 582.537 0.0203754
\(936\) 4187.98 0.146248
\(937\) −32662.9 −1.13879 −0.569397 0.822063i \(-0.692823\pi\)
−0.569397 + 0.822063i \(0.692823\pi\)
\(938\) 0 0
\(939\) −3904.22 −0.135686
\(940\) 141015. 4.89300
\(941\) −40450.2 −1.40132 −0.700658 0.713497i \(-0.747110\pi\)
−0.700658 + 0.713497i \(0.747110\pi\)
\(942\) −15813.1 −0.546942
\(943\) −8241.79 −0.284612
\(944\) −19727.8 −0.680174
\(945\) 0 0
\(946\) 2456.67 0.0844327
\(947\) 24891.8 0.854146 0.427073 0.904217i \(-0.359545\pi\)
0.427073 + 0.904217i \(0.359545\pi\)
\(948\) 16466.2 0.564133
\(949\) −13855.8 −0.473951
\(950\) −84727.7 −2.89361
\(951\) 9504.03 0.324069
\(952\) 0 0
\(953\) −18293.1 −0.621796 −0.310898 0.950443i \(-0.600630\pi\)
−0.310898 + 0.950443i \(0.600630\pi\)
\(954\) −8297.31 −0.281588
\(955\) −44054.8 −1.49275
\(956\) −76035.5 −2.57235
\(957\) 3177.57 0.107332
\(958\) 49445.2 1.66754
\(959\) 0 0
\(960\) 30263.8 1.01746
\(961\) 424.366 0.0142448
\(962\) −10384.8 −0.348046
\(963\) −5111.28 −0.171037
\(964\) −86163.1 −2.87876
\(965\) −70532.1 −2.35286
\(966\) 0 0
\(967\) −1620.93 −0.0539043 −0.0269521 0.999637i \(-0.508580\pi\)
−0.0269521 + 0.999637i \(0.508580\pi\)
\(968\) −46687.3 −1.55019
\(969\) 2525.42 0.0837235
\(970\) −79391.3 −2.62794
\(971\) −6450.05 −0.213174 −0.106587 0.994303i \(-0.533992\pi\)
−0.106587 + 0.994303i \(0.533992\pi\)
\(972\) 3742.13 0.123486
\(973\) 0 0
\(974\) −39281.0 −1.29224
\(975\) 5586.36 0.183494
\(976\) 57.5687 0.00188804
\(977\) 7083.99 0.231972 0.115986 0.993251i \(-0.462997\pi\)
0.115986 + 0.993251i \(0.462997\pi\)
\(978\) −25795.0 −0.843386
\(979\) 3332.80 0.108802
\(980\) 0 0
\(981\) 16275.8 0.529712
\(982\) −50873.9 −1.65321
\(983\) −4587.68 −0.148855 −0.0744273 0.997226i \(-0.523713\pi\)
−0.0744273 + 0.997226i \(0.523713\pi\)
\(984\) 12519.0 0.405580
\(985\) −77681.5 −2.51283
\(986\) −6826.99 −0.220503
\(987\) 0 0
\(988\) −24480.0 −0.788272
\(989\) −6949.11 −0.223426
\(990\) −3683.96 −0.118267
\(991\) 38143.2 1.22266 0.611332 0.791374i \(-0.290634\pi\)
0.611332 + 0.791374i \(0.290634\pi\)
\(992\) 7773.24 0.248791
\(993\) −1787.63 −0.0571288
\(994\) 0 0
\(995\) 68999.2 2.19841
\(996\) −37150.9 −1.18190
\(997\) −14700.2 −0.466962 −0.233481 0.972361i \(-0.575012\pi\)
−0.233481 + 0.972361i \(0.575012\pi\)
\(998\) −68805.4 −2.18236
\(999\) −4458.76 −0.141210
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.4.a.w.1.11 11
7.3 odd 6 273.4.i.d.79.1 22
7.5 odd 6 273.4.i.d.235.1 yes 22
7.6 odd 2 1911.4.a.v.1.11 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.4.i.d.79.1 22 7.3 odd 6
273.4.i.d.235.1 yes 22 7.5 odd 6
1911.4.a.v.1.11 11 7.6 odd 2
1911.4.a.w.1.11 11 1.1 even 1 trivial