Defining parameters
Level: | \( N \) | \(=\) | \( 1911 = 3 \cdot 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1911.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 33 \) | ||
Sturm bound: | \(1045\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1911))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 800 | 246 | 554 |
Cusp forms | 768 | 246 | 522 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(105\) | \(33\) | \(72\) | \(101\) | \(33\) | \(68\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(97\) | \(27\) | \(70\) | \(93\) | \(27\) | \(66\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(95\) | \(30\) | \(65\) | \(91\) | \(30\) | \(61\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(103\) | \(33\) | \(70\) | \(99\) | \(33\) | \(66\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(95\) | \(25\) | \(70\) | \(91\) | \(25\) | \(66\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(103\) | \(35\) | \(68\) | \(99\) | \(35\) | \(64\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(105\) | \(36\) | \(69\) | \(101\) | \(36\) | \(65\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(97\) | \(27\) | \(70\) | \(93\) | \(27\) | \(66\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(416\) | \(137\) | \(279\) | \(400\) | \(137\) | \(263\) | \(16\) | \(0\) | \(16\) | |||||
Minus space | \(-\) | \(384\) | \(109\) | \(275\) | \(368\) | \(109\) | \(259\) | \(16\) | \(0\) | \(16\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1911))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1911))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1911)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 2}\)