Properties

Label 1911.4.a.v.1.11
Level $1911$
Weight $4$
Character 1911.1
Self dual yes
Analytic conductor $112.753$
Analytic rank $0$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,-1,-33,31,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(0\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - x^{10} - 59 x^{9} + 36 x^{8} + 1220 x^{7} - 339 x^{6} - 10807 x^{5} + 58 x^{4} + 40509 x^{3} + \cdots - 27208 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-4.83732\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.83732 q^{2} -3.00000 q^{3} +15.3997 q^{4} +16.3780 q^{5} -14.5120 q^{6} +35.7947 q^{8} +9.00000 q^{9} +79.2258 q^{10} +5.16661 q^{11} -46.1991 q^{12} -13.0000 q^{13} -49.1341 q^{15} +49.9531 q^{16} +6.88424 q^{17} +43.5359 q^{18} +122.280 q^{19} +252.217 q^{20} +24.9926 q^{22} -70.6956 q^{23} -107.384 q^{24} +143.240 q^{25} -62.8852 q^{26} -27.0000 q^{27} +205.007 q^{29} -237.678 q^{30} +173.826 q^{31} -44.7186 q^{32} -15.4998 q^{33} +33.3013 q^{34} +138.597 q^{36} -165.139 q^{37} +591.509 q^{38} +39.0000 q^{39} +586.247 q^{40} -116.581 q^{41} +98.2962 q^{43} +79.5642 q^{44} +147.402 q^{45} -341.977 q^{46} +559.104 q^{47} -149.859 q^{48} +692.898 q^{50} -20.6527 q^{51} -200.196 q^{52} -190.585 q^{53} -130.608 q^{54} +84.6189 q^{55} -366.841 q^{57} +991.684 q^{58} +394.926 q^{59} -756.650 q^{60} -1.15246 q^{61} +840.851 q^{62} -615.943 q^{64} -212.914 q^{65} -74.9777 q^{66} -656.911 q^{67} +106.015 q^{68} +212.087 q^{69} +260.791 q^{71} +322.153 q^{72} +1065.83 q^{73} -798.833 q^{74} -429.720 q^{75} +1883.08 q^{76} +188.656 q^{78} +356.419 q^{79} +818.133 q^{80} +81.0000 q^{81} -563.942 q^{82} +804.148 q^{83} +112.750 q^{85} +475.490 q^{86} -615.020 q^{87} +184.937 q^{88} -645.066 q^{89} +713.033 q^{90} -1088.69 q^{92} -521.477 q^{93} +2704.57 q^{94} +2002.71 q^{95} +134.156 q^{96} -1002.09 q^{97} +46.4995 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - q^{2} - 33 q^{3} + 31 q^{4} + 17 q^{5} + 3 q^{6} - 54 q^{8} + 99 q^{9} + 75 q^{10} + 7 q^{11} - 93 q^{12} - 143 q^{13} - 51 q^{15} + 23 q^{16} - 20 q^{17} - 9 q^{18} + 242 q^{19} + 254 q^{20} - 290 q^{22}+ \cdots + 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.83732 1.71025 0.855126 0.518420i \(-0.173480\pi\)
0.855126 + 0.518420i \(0.173480\pi\)
\(3\) −3.00000 −0.577350
\(4\) 15.3997 1.92496
\(5\) 16.3780 1.46490 0.732448 0.680823i \(-0.238378\pi\)
0.732448 + 0.680823i \(0.238378\pi\)
\(6\) −14.5120 −0.987414
\(7\) 0 0
\(8\) 35.7947 1.58192
\(9\) 9.00000 0.333333
\(10\) 79.2258 2.50534
\(11\) 5.16661 0.141617 0.0708087 0.997490i \(-0.477442\pi\)
0.0708087 + 0.997490i \(0.477442\pi\)
\(12\) −46.1991 −1.11138
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) −49.1341 −0.845758
\(16\) 49.9531 0.780517
\(17\) 6.88424 0.0982160 0.0491080 0.998793i \(-0.484362\pi\)
0.0491080 + 0.998793i \(0.484362\pi\)
\(18\) 43.5359 0.570084
\(19\) 122.280 1.47647 0.738237 0.674541i \(-0.235659\pi\)
0.738237 + 0.674541i \(0.235659\pi\)
\(20\) 252.217 2.81987
\(21\) 0 0
\(22\) 24.9926 0.242202
\(23\) −70.6956 −0.640915 −0.320458 0.947263i \(-0.603837\pi\)
−0.320458 + 0.947263i \(0.603837\pi\)
\(24\) −107.384 −0.913321
\(25\) 143.240 1.14592
\(26\) −62.8852 −0.474339
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 205.007 1.31272 0.656359 0.754449i \(-0.272096\pi\)
0.656359 + 0.754449i \(0.272096\pi\)
\(30\) −237.678 −1.44646
\(31\) 173.826 1.00710 0.503549 0.863967i \(-0.332027\pi\)
0.503549 + 0.863967i \(0.332027\pi\)
\(32\) −44.7186 −0.247038
\(33\) −15.4998 −0.0817629
\(34\) 33.3013 0.167974
\(35\) 0 0
\(36\) 138.597 0.641654
\(37\) −165.139 −0.733750 −0.366875 0.930270i \(-0.619572\pi\)
−0.366875 + 0.930270i \(0.619572\pi\)
\(38\) 591.509 2.52514
\(39\) 39.0000 0.160128
\(40\) 586.247 2.31735
\(41\) −116.581 −0.444072 −0.222036 0.975038i \(-0.571270\pi\)
−0.222036 + 0.975038i \(0.571270\pi\)
\(42\) 0 0
\(43\) 98.2962 0.348605 0.174303 0.984692i \(-0.444233\pi\)
0.174303 + 0.984692i \(0.444233\pi\)
\(44\) 79.5642 0.272608
\(45\) 147.402 0.488299
\(46\) −341.977 −1.09613
\(47\) 559.104 1.73519 0.867593 0.497275i \(-0.165666\pi\)
0.867593 + 0.497275i \(0.165666\pi\)
\(48\) −149.859 −0.450632
\(49\) 0 0
\(50\) 692.898 1.95981
\(51\) −20.6527 −0.0567051
\(52\) −200.196 −0.533888
\(53\) −190.585 −0.493942 −0.246971 0.969023i \(-0.579435\pi\)
−0.246971 + 0.969023i \(0.579435\pi\)
\(54\) −130.608 −0.329138
\(55\) 84.6189 0.207455
\(56\) 0 0
\(57\) −366.841 −0.852443
\(58\) 991.684 2.24508
\(59\) 394.926 0.871440 0.435720 0.900082i \(-0.356494\pi\)
0.435720 + 0.900082i \(0.356494\pi\)
\(60\) −756.650 −1.62805
\(61\) −1.15246 −0.00241896 −0.00120948 0.999999i \(-0.500385\pi\)
−0.00120948 + 0.999999i \(0.500385\pi\)
\(62\) 840.851 1.72239
\(63\) 0 0
\(64\) −615.943 −1.20301
\(65\) −212.914 −0.406289
\(66\) −74.9777 −0.139835
\(67\) −656.911 −1.19783 −0.598914 0.800814i \(-0.704401\pi\)
−0.598914 + 0.800814i \(0.704401\pi\)
\(68\) 106.015 0.189062
\(69\) 212.087 0.370033
\(70\) 0 0
\(71\) 260.791 0.435919 0.217960 0.975958i \(-0.430060\pi\)
0.217960 + 0.975958i \(0.430060\pi\)
\(72\) 322.153 0.527306
\(73\) 1065.83 1.70885 0.854427 0.519572i \(-0.173909\pi\)
0.854427 + 0.519572i \(0.173909\pi\)
\(74\) −798.833 −1.25490
\(75\) −429.720 −0.661597
\(76\) 1883.08 2.84216
\(77\) 0 0
\(78\) 188.656 0.273860
\(79\) 356.419 0.507598 0.253799 0.967257i \(-0.418320\pi\)
0.253799 + 0.967257i \(0.418320\pi\)
\(80\) 818.133 1.14338
\(81\) 81.0000 0.111111
\(82\) −563.942 −0.759475
\(83\) 804.148 1.06345 0.531727 0.846916i \(-0.321543\pi\)
0.531727 + 0.846916i \(0.321543\pi\)
\(84\) 0 0
\(85\) 112.750 0.143876
\(86\) 475.490 0.596203
\(87\) −615.020 −0.757898
\(88\) 184.937 0.224027
\(89\) −645.066 −0.768279 −0.384139 0.923275i \(-0.625502\pi\)
−0.384139 + 0.923275i \(0.625502\pi\)
\(90\) 713.033 0.835114
\(91\) 0 0
\(92\) −1088.69 −1.23374
\(93\) −521.477 −0.581448
\(94\) 2704.57 2.96761
\(95\) 2002.71 2.16288
\(96\) 134.156 0.142627
\(97\) −1002.09 −1.04894 −0.524468 0.851430i \(-0.675736\pi\)
−0.524468 + 0.851430i \(0.675736\pi\)
\(98\) 0 0
\(99\) 46.4995 0.0472058
\(100\) 2205.85 2.20585
\(101\) 1642.29 1.61796 0.808979 0.587838i \(-0.200021\pi\)
0.808979 + 0.587838i \(0.200021\pi\)
\(102\) −99.9038 −0.0969799
\(103\) −1446.23 −1.38351 −0.691753 0.722134i \(-0.743161\pi\)
−0.691753 + 0.722134i \(0.743161\pi\)
\(104\) −465.331 −0.438745
\(105\) 0 0
\(106\) −921.923 −0.844765
\(107\) −567.920 −0.513112 −0.256556 0.966529i \(-0.582588\pi\)
−0.256556 + 0.966529i \(0.582588\pi\)
\(108\) −415.792 −0.370459
\(109\) 1808.43 1.58914 0.794568 0.607175i \(-0.207697\pi\)
0.794568 + 0.607175i \(0.207697\pi\)
\(110\) 409.329 0.354800
\(111\) 495.418 0.423631
\(112\) 0 0
\(113\) −1598.23 −1.33052 −0.665260 0.746612i \(-0.731679\pi\)
−0.665260 + 0.746612i \(0.731679\pi\)
\(114\) −1774.53 −1.45789
\(115\) −1157.85 −0.938874
\(116\) 3157.04 2.52693
\(117\) −117.000 −0.0924500
\(118\) 1910.38 1.49038
\(119\) 0 0
\(120\) −1758.74 −1.33792
\(121\) −1304.31 −0.979945
\(122\) −5.57480 −0.00413704
\(123\) 349.744 0.256385
\(124\) 2676.86 1.93862
\(125\) 298.734 0.213757
\(126\) 0 0
\(127\) 1555.80 1.08705 0.543524 0.839393i \(-0.317090\pi\)
0.543524 + 0.839393i \(0.317090\pi\)
\(128\) −2621.77 −1.81042
\(129\) −294.888 −0.201267
\(130\) −1029.94 −0.694857
\(131\) −724.411 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(132\) −238.693 −0.157390
\(133\) 0 0
\(134\) −3177.69 −2.04859
\(135\) −442.207 −0.281919
\(136\) 246.419 0.155370
\(137\) −1706.15 −1.06399 −0.531995 0.846748i \(-0.678557\pi\)
−0.531995 + 0.846748i \(0.678557\pi\)
\(138\) 1025.93 0.632849
\(139\) −2998.76 −1.82987 −0.914934 0.403605i \(-0.867757\pi\)
−0.914934 + 0.403605i \(0.867757\pi\)
\(140\) 0 0
\(141\) −1677.31 −1.00181
\(142\) 1261.53 0.745532
\(143\) −67.1659 −0.0392776
\(144\) 449.578 0.260172
\(145\) 3357.61 1.92299
\(146\) 5155.78 2.92257
\(147\) 0 0
\(148\) −2543.10 −1.41244
\(149\) −1404.51 −0.772228 −0.386114 0.922451i \(-0.626183\pi\)
−0.386114 + 0.922451i \(0.626183\pi\)
\(150\) −2078.69 −1.13150
\(151\) −918.641 −0.495086 −0.247543 0.968877i \(-0.579623\pi\)
−0.247543 + 0.968877i \(0.579623\pi\)
\(152\) 4376.99 2.33566
\(153\) 61.9581 0.0327387
\(154\) 0 0
\(155\) 2846.92 1.47529
\(156\) 600.588 0.308241
\(157\) 1089.66 0.553913 0.276957 0.960882i \(-0.410674\pi\)
0.276957 + 0.960882i \(0.410674\pi\)
\(158\) 1724.11 0.868121
\(159\) 571.756 0.285177
\(160\) −732.402 −0.361884
\(161\) 0 0
\(162\) 391.823 0.190028
\(163\) −1777.50 −0.854136 −0.427068 0.904219i \(-0.640454\pi\)
−0.427068 + 0.904219i \(0.640454\pi\)
\(164\) −1795.32 −0.854822
\(165\) −253.857 −0.119774
\(166\) 3889.92 1.81877
\(167\) −1165.78 −0.540182 −0.270091 0.962835i \(-0.587054\pi\)
−0.270091 + 0.962835i \(0.587054\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 545.409 0.246065
\(171\) 1100.52 0.492158
\(172\) 1513.73 0.671052
\(173\) 716.703 0.314971 0.157485 0.987521i \(-0.449661\pi\)
0.157485 + 0.987521i \(0.449661\pi\)
\(174\) −2975.05 −1.29620
\(175\) 0 0
\(176\) 258.088 0.110535
\(177\) −1184.78 −0.503126
\(178\) −3120.39 −1.31395
\(179\) 1614.59 0.674189 0.337094 0.941471i \(-0.390556\pi\)
0.337094 + 0.941471i \(0.390556\pi\)
\(180\) 2269.95 0.939956
\(181\) 525.461 0.215786 0.107893 0.994163i \(-0.465590\pi\)
0.107893 + 0.994163i \(0.465590\pi\)
\(182\) 0 0
\(183\) 3.45737 0.00139659
\(184\) −2530.53 −1.01388
\(185\) −2704.66 −1.07487
\(186\) −2522.55 −0.994422
\(187\) 35.5682 0.0139091
\(188\) 8610.04 3.34017
\(189\) 0 0
\(190\) 9687.75 3.69907
\(191\) 2689.87 1.01902 0.509509 0.860465i \(-0.329827\pi\)
0.509509 + 0.860465i \(0.329827\pi\)
\(192\) 1847.83 0.694560
\(193\) 4306.51 1.60616 0.803081 0.595870i \(-0.203193\pi\)
0.803081 + 0.595870i \(0.203193\pi\)
\(194\) −4847.43 −1.79394
\(195\) 638.743 0.234571
\(196\) 0 0
\(197\) 4743.03 1.71536 0.857682 0.514180i \(-0.171904\pi\)
0.857682 + 0.514180i \(0.171904\pi\)
\(198\) 224.933 0.0807338
\(199\) 4212.91 1.50073 0.750366 0.661023i \(-0.229877\pi\)
0.750366 + 0.661023i \(0.229877\pi\)
\(200\) 5127.23 1.81275
\(201\) 1970.73 0.691566
\(202\) 7944.28 2.76712
\(203\) 0 0
\(204\) −318.045 −0.109155
\(205\) −1909.37 −0.650519
\(206\) −6995.88 −2.36614
\(207\) −636.260 −0.213638
\(208\) −649.390 −0.216476
\(209\) 631.774 0.209094
\(210\) 0 0
\(211\) −2657.69 −0.867122 −0.433561 0.901124i \(-0.642743\pi\)
−0.433561 + 0.901124i \(0.642743\pi\)
\(212\) −2934.96 −0.950819
\(213\) −782.374 −0.251678
\(214\) −2747.21 −0.877550
\(215\) 1609.90 0.510670
\(216\) −966.458 −0.304440
\(217\) 0 0
\(218\) 8747.94 2.71782
\(219\) −3197.50 −0.986607
\(220\) 1303.11 0.399343
\(221\) −89.4951 −0.0272402
\(222\) 2396.50 0.724515
\(223\) 1982.11 0.595211 0.297605 0.954689i \(-0.403812\pi\)
0.297605 + 0.954689i \(0.403812\pi\)
\(224\) 0 0
\(225\) 1289.16 0.381973
\(226\) −7731.15 −2.27553
\(227\) −4680.70 −1.36859 −0.684293 0.729207i \(-0.739889\pi\)
−0.684293 + 0.729207i \(0.739889\pi\)
\(228\) −5649.24 −1.64092
\(229\) 6347.83 1.83177 0.915887 0.401435i \(-0.131489\pi\)
0.915887 + 0.401435i \(0.131489\pi\)
\(230\) −5600.92 −1.60571
\(231\) 0 0
\(232\) 7338.16 2.07661
\(233\) 5132.05 1.44297 0.721484 0.692431i \(-0.243460\pi\)
0.721484 + 0.692431i \(0.243460\pi\)
\(234\) −565.967 −0.158113
\(235\) 9157.03 2.54187
\(236\) 6081.74 1.67749
\(237\) −1069.26 −0.293062
\(238\) 0 0
\(239\) −4937.46 −1.33631 −0.668155 0.744022i \(-0.732916\pi\)
−0.668155 + 0.744022i \(0.732916\pi\)
\(240\) −2454.40 −0.660128
\(241\) 5595.12 1.49549 0.747745 0.663986i \(-0.231137\pi\)
0.747745 + 0.663986i \(0.231137\pi\)
\(242\) −6309.35 −1.67595
\(243\) −243.000 −0.0641500
\(244\) −17.7475 −0.00465641
\(245\) 0 0
\(246\) 1691.82 0.438483
\(247\) −1589.64 −0.409500
\(248\) 6222.04 1.59315
\(249\) −2412.44 −0.613986
\(250\) 1445.07 0.365578
\(251\) −6375.31 −1.60321 −0.801605 0.597853i \(-0.796020\pi\)
−0.801605 + 0.597853i \(0.796020\pi\)
\(252\) 0 0
\(253\) −365.257 −0.0907648
\(254\) 7525.92 1.85913
\(255\) −338.251 −0.0830670
\(256\) −7754.79 −1.89326
\(257\) −4821.50 −1.17026 −0.585130 0.810940i \(-0.698956\pi\)
−0.585130 + 0.810940i \(0.698956\pi\)
\(258\) −1426.47 −0.344218
\(259\) 0 0
\(260\) −3278.82 −0.782091
\(261\) 1845.06 0.437573
\(262\) −3504.21 −0.826300
\(263\) −2068.59 −0.484998 −0.242499 0.970152i \(-0.577967\pi\)
−0.242499 + 0.970152i \(0.577967\pi\)
\(264\) −554.812 −0.129342
\(265\) −3121.41 −0.723573
\(266\) 0 0
\(267\) 1935.20 0.443566
\(268\) −10116.2 −2.30577
\(269\) 752.070 0.170463 0.0852315 0.996361i \(-0.472837\pi\)
0.0852315 + 0.996361i \(0.472837\pi\)
\(270\) −2139.10 −0.482153
\(271\) 4367.60 0.979015 0.489507 0.871999i \(-0.337177\pi\)
0.489507 + 0.871999i \(0.337177\pi\)
\(272\) 343.889 0.0766593
\(273\) 0 0
\(274\) −8253.22 −1.81969
\(275\) 740.065 0.162282
\(276\) 3266.07 0.712299
\(277\) 713.426 0.154750 0.0773748 0.997002i \(-0.475346\pi\)
0.0773748 + 0.997002i \(0.475346\pi\)
\(278\) −14506.0 −3.12953
\(279\) 1564.43 0.335699
\(280\) 0 0
\(281\) 858.912 0.182343 0.0911715 0.995835i \(-0.470939\pi\)
0.0911715 + 0.995835i \(0.470939\pi\)
\(282\) −8113.71 −1.71335
\(283\) −9354.01 −1.96480 −0.982400 0.186792i \(-0.940191\pi\)
−0.982400 + 0.186792i \(0.940191\pi\)
\(284\) 4016.11 0.839128
\(285\) −6008.13 −1.24874
\(286\) −324.903 −0.0671746
\(287\) 0 0
\(288\) −402.467 −0.0823459
\(289\) −4865.61 −0.990354
\(290\) 16241.8 3.28880
\(291\) 3006.27 0.605603
\(292\) 16413.5 3.28948
\(293\) 7360.81 1.46766 0.733828 0.679335i \(-0.237732\pi\)
0.733828 + 0.679335i \(0.237732\pi\)
\(294\) 0 0
\(295\) 6468.11 1.27657
\(296\) −5911.12 −1.16073
\(297\) −139.498 −0.0272543
\(298\) −6794.07 −1.32070
\(299\) 919.043 0.177758
\(300\) −6617.55 −1.27355
\(301\) 0 0
\(302\) −4443.76 −0.846721
\(303\) −4926.86 −0.934128
\(304\) 6108.27 1.15241
\(305\) −18.8749 −0.00354353
\(306\) 299.711 0.0559914
\(307\) −8873.13 −1.64956 −0.824782 0.565451i \(-0.808702\pi\)
−0.824782 + 0.565451i \(0.808702\pi\)
\(308\) 0 0
\(309\) 4338.69 0.798768
\(310\) 13771.5 2.52312
\(311\) −9942.02 −1.81273 −0.906367 0.422491i \(-0.861156\pi\)
−0.906367 + 0.422491i \(0.861156\pi\)
\(312\) 1395.99 0.253310
\(313\) 1301.41 0.235016 0.117508 0.993072i \(-0.462509\pi\)
0.117508 + 0.993072i \(0.462509\pi\)
\(314\) 5271.04 0.947331
\(315\) 0 0
\(316\) 5488.74 0.977108
\(317\) 3168.01 0.561303 0.280652 0.959810i \(-0.409449\pi\)
0.280652 + 0.959810i \(0.409449\pi\)
\(318\) 2765.77 0.487725
\(319\) 1059.19 0.185904
\(320\) −10087.9 −1.76229
\(321\) 1703.76 0.296245
\(322\) 0 0
\(323\) 841.806 0.145013
\(324\) 1247.38 0.213885
\(325\) −1862.12 −0.317821
\(326\) −8598.32 −1.46079
\(327\) −5425.28 −0.917488
\(328\) −4173.00 −0.702485
\(329\) 0 0
\(330\) −1227.99 −0.204844
\(331\) −595.878 −0.0989499 −0.0494750 0.998775i \(-0.515755\pi\)
−0.0494750 + 0.998775i \(0.515755\pi\)
\(332\) 12383.6 2.04711
\(333\) −1486.25 −0.244583
\(334\) −5639.24 −0.923848
\(335\) −10758.9 −1.75469
\(336\) 0 0
\(337\) −9176.25 −1.48327 −0.741636 0.670803i \(-0.765950\pi\)
−0.741636 + 0.670803i \(0.765950\pi\)
\(338\) 817.508 0.131558
\(339\) 4794.69 0.768176
\(340\) 1736.32 0.276956
\(341\) 898.090 0.142623
\(342\) 5323.58 0.841714
\(343\) 0 0
\(344\) 3518.48 0.551465
\(345\) 3473.56 0.542059
\(346\) 3466.93 0.538679
\(347\) 2898.12 0.448355 0.224178 0.974548i \(-0.428030\pi\)
0.224178 + 0.974548i \(0.428030\pi\)
\(348\) −9471.13 −1.45892
\(349\) 783.587 0.120185 0.0600923 0.998193i \(-0.480860\pi\)
0.0600923 + 0.998193i \(0.480860\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) −231.044 −0.0349848
\(353\) −5240.19 −0.790106 −0.395053 0.918658i \(-0.629274\pi\)
−0.395053 + 0.918658i \(0.629274\pi\)
\(354\) −5731.15 −0.860473
\(355\) 4271.25 0.638576
\(356\) −9933.82 −1.47891
\(357\) 0 0
\(358\) 7810.27 1.15303
\(359\) 3490.98 0.513223 0.256611 0.966515i \(-0.417394\pi\)
0.256611 + 0.966515i \(0.417394\pi\)
\(360\) 5276.22 0.772448
\(361\) 8093.46 1.17998
\(362\) 2541.82 0.369048
\(363\) 3912.92 0.565771
\(364\) 0 0
\(365\) 17456.2 2.50329
\(366\) 16.7244 0.00238852
\(367\) −3436.90 −0.488842 −0.244421 0.969669i \(-0.578598\pi\)
−0.244421 + 0.969669i \(0.578598\pi\)
\(368\) −3531.46 −0.500245
\(369\) −1049.23 −0.148024
\(370\) −13083.3 −1.83829
\(371\) 0 0
\(372\) −8030.59 −1.11927
\(373\) −1700.44 −0.236047 −0.118024 0.993011i \(-0.537656\pi\)
−0.118024 + 0.993011i \(0.537656\pi\)
\(374\) 172.055 0.0237881
\(375\) −896.203 −0.123413
\(376\) 20013.0 2.74492
\(377\) −2665.09 −0.364082
\(378\) 0 0
\(379\) −6419.93 −0.870105 −0.435052 0.900405i \(-0.643270\pi\)
−0.435052 + 0.900405i \(0.643270\pi\)
\(380\) 30841.1 4.16346
\(381\) −4667.41 −0.627608
\(382\) 13011.8 1.74278
\(383\) −8897.78 −1.18709 −0.593545 0.804801i \(-0.702272\pi\)
−0.593545 + 0.804801i \(0.702272\pi\)
\(384\) 7865.30 1.04525
\(385\) 0 0
\(386\) 20832.0 2.74694
\(387\) 884.665 0.116202
\(388\) −15431.9 −2.01916
\(389\) −2696.07 −0.351404 −0.175702 0.984443i \(-0.556219\pi\)
−0.175702 + 0.984443i \(0.556219\pi\)
\(390\) 3089.81 0.401176
\(391\) −486.685 −0.0629481
\(392\) 0 0
\(393\) 2173.23 0.278944
\(394\) 22943.6 2.93371
\(395\) 5837.44 0.743579
\(396\) 716.078 0.0908694
\(397\) −6204.46 −0.784365 −0.392183 0.919887i \(-0.628280\pi\)
−0.392183 + 0.919887i \(0.628280\pi\)
\(398\) 20379.2 2.56663
\(399\) 0 0
\(400\) 7155.28 0.894410
\(401\) 6215.81 0.774072 0.387036 0.922065i \(-0.373499\pi\)
0.387036 + 0.922065i \(0.373499\pi\)
\(402\) 9533.07 1.18275
\(403\) −2259.73 −0.279319
\(404\) 25290.7 3.11451
\(405\) 1326.62 0.162766
\(406\) 0 0
\(407\) −853.211 −0.103912
\(408\) −739.258 −0.0897028
\(409\) 909.851 0.109998 0.0549991 0.998486i \(-0.482484\pi\)
0.0549991 + 0.998486i \(0.482484\pi\)
\(410\) −9236.25 −1.11255
\(411\) 5118.46 0.614295
\(412\) −22271.5 −2.66320
\(413\) 0 0
\(414\) −3077.80 −0.365376
\(415\) 13170.4 1.55785
\(416\) 581.342 0.0685159
\(417\) 8996.28 1.05647
\(418\) 3056.10 0.357604
\(419\) −5345.25 −0.623228 −0.311614 0.950209i \(-0.600870\pi\)
−0.311614 + 0.950209i \(0.600870\pi\)
\(420\) 0 0
\(421\) 10597.2 1.22679 0.613393 0.789778i \(-0.289804\pi\)
0.613393 + 0.789778i \(0.289804\pi\)
\(422\) −12856.1 −1.48300
\(423\) 5031.94 0.578396
\(424\) −6821.95 −0.781375
\(425\) 986.098 0.112548
\(426\) −3784.60 −0.430433
\(427\) 0 0
\(428\) −8745.80 −0.987720
\(429\) 201.498 0.0226769
\(430\) 7787.60 0.873375
\(431\) 547.482 0.0611863 0.0305931 0.999532i \(-0.490260\pi\)
0.0305931 + 0.999532i \(0.490260\pi\)
\(432\) −1348.73 −0.150211
\(433\) −2168.27 −0.240648 −0.120324 0.992735i \(-0.538393\pi\)
−0.120324 + 0.992735i \(0.538393\pi\)
\(434\) 0 0
\(435\) −10072.8 −1.11024
\(436\) 27849.2 3.05903
\(437\) −8644.67 −0.946295
\(438\) −15467.3 −1.68735
\(439\) 10369.3 1.12734 0.563668 0.826001i \(-0.309390\pi\)
0.563668 + 0.826001i \(0.309390\pi\)
\(440\) 3028.91 0.328176
\(441\) 0 0
\(442\) −432.917 −0.0465877
\(443\) −8216.42 −0.881205 −0.440603 0.897702i \(-0.645235\pi\)
−0.440603 + 0.897702i \(0.645235\pi\)
\(444\) 7629.29 0.815473
\(445\) −10564.9 −1.12545
\(446\) 9588.12 1.01796
\(447\) 4213.53 0.445846
\(448\) 0 0
\(449\) −12142.2 −1.27623 −0.638113 0.769942i \(-0.720285\pi\)
−0.638113 + 0.769942i \(0.720285\pi\)
\(450\) 6236.08 0.653270
\(451\) −602.330 −0.0628883
\(452\) −24612.3 −2.56120
\(453\) 2755.92 0.285838
\(454\) −22642.1 −2.34063
\(455\) 0 0
\(456\) −13131.0 −1.34849
\(457\) −8647.67 −0.885166 −0.442583 0.896728i \(-0.645938\pi\)
−0.442583 + 0.896728i \(0.645938\pi\)
\(458\) 30706.5 3.13280
\(459\) −185.874 −0.0189017
\(460\) −17830.6 −1.80730
\(461\) −3096.97 −0.312885 −0.156443 0.987687i \(-0.550003\pi\)
−0.156443 + 0.987687i \(0.550003\pi\)
\(462\) 0 0
\(463\) −2933.61 −0.294463 −0.147231 0.989102i \(-0.547036\pi\)
−0.147231 + 0.989102i \(0.547036\pi\)
\(464\) 10240.7 1.02460
\(465\) −8540.77 −0.851760
\(466\) 24825.4 2.46784
\(467\) −2017.58 −0.199919 −0.0999597 0.994991i \(-0.531871\pi\)
−0.0999597 + 0.994991i \(0.531871\pi\)
\(468\) −1801.76 −0.177963
\(469\) 0 0
\(470\) 44295.5 4.34723
\(471\) −3268.98 −0.319802
\(472\) 14136.3 1.37855
\(473\) 507.858 0.0493686
\(474\) −5172.34 −0.501210
\(475\) 17515.4 1.69192
\(476\) 0 0
\(477\) −1715.27 −0.164647
\(478\) −23884.1 −2.28543
\(479\) −10221.6 −0.975025 −0.487512 0.873116i \(-0.662096\pi\)
−0.487512 + 0.873116i \(0.662096\pi\)
\(480\) 2197.21 0.208934
\(481\) 2146.81 0.203506
\(482\) 27065.4 2.55766
\(483\) 0 0
\(484\) −20085.9 −1.88636
\(485\) −16412.2 −1.53658
\(486\) −1175.47 −0.109713
\(487\) −8120.41 −0.755587 −0.377794 0.925890i \(-0.623317\pi\)
−0.377794 + 0.925890i \(0.623317\pi\)
\(488\) −41.2518 −0.00382660
\(489\) 5332.49 0.493136
\(490\) 0 0
\(491\) −10516.9 −0.966646 −0.483323 0.875442i \(-0.660570\pi\)
−0.483323 + 0.875442i \(0.660570\pi\)
\(492\) 5385.95 0.493531
\(493\) 1411.32 0.128930
\(494\) −7689.62 −0.700349
\(495\) 761.570 0.0691516
\(496\) 8683.13 0.786056
\(497\) 0 0
\(498\) −11669.8 −1.05007
\(499\) −14223.9 −1.27605 −0.638023 0.770017i \(-0.720248\pi\)
−0.638023 + 0.770017i \(0.720248\pi\)
\(500\) 4600.42 0.411474
\(501\) 3497.33 0.311874
\(502\) −30839.4 −2.74189
\(503\) −19730.7 −1.74901 −0.874503 0.485020i \(-0.838812\pi\)
−0.874503 + 0.485020i \(0.838812\pi\)
\(504\) 0 0
\(505\) 26897.4 2.37014
\(506\) −1766.86 −0.155231
\(507\) −507.000 −0.0444116
\(508\) 23958.9 2.09253
\(509\) −20325.9 −1.77000 −0.884998 0.465595i \(-0.845840\pi\)
−0.884998 + 0.465595i \(0.845840\pi\)
\(510\) −1636.23 −0.142065
\(511\) 0 0
\(512\) −16538.3 −1.42753
\(513\) −3301.57 −0.284148
\(514\) −23323.1 −2.00144
\(515\) −23686.4 −2.02669
\(516\) −4541.19 −0.387432
\(517\) 2888.68 0.245733
\(518\) 0 0
\(519\) −2150.11 −0.181848
\(520\) −7621.21 −0.642716
\(521\) 16050.6 1.34969 0.674845 0.737960i \(-0.264211\pi\)
0.674845 + 0.737960i \(0.264211\pi\)
\(522\) 8925.16 0.748359
\(523\) 2211.82 0.184926 0.0924629 0.995716i \(-0.470526\pi\)
0.0924629 + 0.995716i \(0.470526\pi\)
\(524\) −11155.7 −0.930037
\(525\) 0 0
\(526\) −10006.4 −0.829470
\(527\) 1196.66 0.0989131
\(528\) −774.264 −0.0638173
\(529\) −7169.13 −0.589228
\(530\) −15099.3 −1.23749
\(531\) 3554.33 0.290480
\(532\) 0 0
\(533\) 1515.56 0.123163
\(534\) 9361.17 0.758610
\(535\) −9301.42 −0.751655
\(536\) −23513.9 −1.89487
\(537\) −4843.76 −0.389243
\(538\) 3638.01 0.291535
\(539\) 0 0
\(540\) −6809.85 −0.542684
\(541\) −14763.8 −1.17328 −0.586642 0.809847i \(-0.699550\pi\)
−0.586642 + 0.809847i \(0.699550\pi\)
\(542\) 21127.5 1.67436
\(543\) −1576.38 −0.124584
\(544\) −307.853 −0.0242631
\(545\) 29618.5 2.32792
\(546\) 0 0
\(547\) 8994.09 0.703034 0.351517 0.936181i \(-0.385666\pi\)
0.351517 + 0.936181i \(0.385666\pi\)
\(548\) −26274.3 −2.04814
\(549\) −10.3721 −0.000806321 0
\(550\) 3579.93 0.277543
\(551\) 25068.3 1.93819
\(552\) 7591.59 0.585361
\(553\) 0 0
\(554\) 3451.07 0.264661
\(555\) 8113.97 0.620575
\(556\) −46180.0 −3.52242
\(557\) −3557.63 −0.270631 −0.135316 0.990803i \(-0.543205\pi\)
−0.135316 + 0.990803i \(0.543205\pi\)
\(558\) 7567.66 0.574130
\(559\) −1277.85 −0.0966857
\(560\) 0 0
\(561\) −106.705 −0.00803042
\(562\) 4154.83 0.311852
\(563\) 10820.2 0.809979 0.404990 0.914321i \(-0.367275\pi\)
0.404990 + 0.914321i \(0.367275\pi\)
\(564\) −25830.1 −1.92845
\(565\) −26175.9 −1.94907
\(566\) −45248.4 −3.36030
\(567\) 0 0
\(568\) 9334.96 0.689588
\(569\) 16487.5 1.21475 0.607374 0.794416i \(-0.292223\pi\)
0.607374 + 0.794416i \(0.292223\pi\)
\(570\) −29063.3 −2.13566
\(571\) −3472.27 −0.254484 −0.127242 0.991872i \(-0.540612\pi\)
−0.127242 + 0.991872i \(0.540612\pi\)
\(572\) −1034.34 −0.0756079
\(573\) −8069.62 −0.588330
\(574\) 0 0
\(575\) −10126.4 −0.734437
\(576\) −5543.49 −0.401005
\(577\) −13174.6 −0.950545 −0.475273 0.879839i \(-0.657651\pi\)
−0.475273 + 0.879839i \(0.657651\pi\)
\(578\) −23536.5 −1.69375
\(579\) −12919.5 −0.927318
\(580\) 51706.1 3.70169
\(581\) 0 0
\(582\) 14542.3 1.03573
\(583\) −984.680 −0.0699508
\(584\) 38151.2 2.70327
\(585\) −1916.23 −0.135430
\(586\) 35606.6 2.51006
\(587\) −14194.6 −0.998085 −0.499042 0.866578i \(-0.666315\pi\)
−0.499042 + 0.866578i \(0.666315\pi\)
\(588\) 0 0
\(589\) 21255.4 1.48695
\(590\) 31288.3 2.18325
\(591\) −14229.1 −0.990366
\(592\) −8249.22 −0.572704
\(593\) −9446.52 −0.654169 −0.327084 0.944995i \(-0.606066\pi\)
−0.327084 + 0.944995i \(0.606066\pi\)
\(594\) −674.799 −0.0466117
\(595\) 0 0
\(596\) −21629.0 −1.48651
\(597\) −12638.7 −0.866448
\(598\) 4445.71 0.304011
\(599\) 7467.14 0.509347 0.254674 0.967027i \(-0.418032\pi\)
0.254674 + 0.967027i \(0.418032\pi\)
\(600\) −15381.7 −1.04659
\(601\) 1115.01 0.0756779 0.0378389 0.999284i \(-0.487953\pi\)
0.0378389 + 0.999284i \(0.487953\pi\)
\(602\) 0 0
\(603\) −5912.20 −0.399276
\(604\) −14146.8 −0.953021
\(605\) −21362.0 −1.43552
\(606\) −23832.8 −1.59759
\(607\) 14706.2 0.983374 0.491687 0.870772i \(-0.336380\pi\)
0.491687 + 0.870772i \(0.336380\pi\)
\(608\) −5468.20 −0.364745
\(609\) 0 0
\(610\) −91.3042 −0.00606033
\(611\) −7268.36 −0.481254
\(612\) 954.136 0.0630207
\(613\) 23507.6 1.54888 0.774438 0.632650i \(-0.218033\pi\)
0.774438 + 0.632650i \(0.218033\pi\)
\(614\) −42922.2 −2.82117
\(615\) 5728.12 0.375577
\(616\) 0 0
\(617\) −18523.1 −1.20861 −0.604306 0.796753i \(-0.706549\pi\)
−0.604306 + 0.796753i \(0.706549\pi\)
\(618\) 20987.6 1.36609
\(619\) 15470.8 1.00456 0.502280 0.864705i \(-0.332495\pi\)
0.502280 + 0.864705i \(0.332495\pi\)
\(620\) 43841.7 2.83988
\(621\) 1908.78 0.123344
\(622\) −48092.8 −3.10023
\(623\) 0 0
\(624\) 1948.17 0.124983
\(625\) −13012.3 −0.832788
\(626\) 6295.33 0.401936
\(627\) −1895.32 −0.120721
\(628\) 16780.4 1.06626
\(629\) −1136.86 −0.0720660
\(630\) 0 0
\(631\) 25835.8 1.62996 0.814982 0.579486i \(-0.196747\pi\)
0.814982 + 0.579486i \(0.196747\pi\)
\(632\) 12757.9 0.802979
\(633\) 7973.07 0.500633
\(634\) 15324.7 0.959970
\(635\) 25481.0 1.59241
\(636\) 8804.87 0.548956
\(637\) 0 0
\(638\) 5123.65 0.317942
\(639\) 2347.12 0.145306
\(640\) −42939.4 −2.65207
\(641\) −14716.1 −0.906789 −0.453394 0.891310i \(-0.649787\pi\)
−0.453394 + 0.891310i \(0.649787\pi\)
\(642\) 8241.64 0.506654
\(643\) 15531.5 0.952573 0.476286 0.879290i \(-0.341983\pi\)
0.476286 + 0.879290i \(0.341983\pi\)
\(644\) 0 0
\(645\) −4829.69 −0.294836
\(646\) 4072.09 0.248010
\(647\) −31042.5 −1.88626 −0.943128 0.332431i \(-0.892131\pi\)
−0.943128 + 0.332431i \(0.892131\pi\)
\(648\) 2899.37 0.175769
\(649\) 2040.43 0.123411
\(650\) −9007.67 −0.543554
\(651\) 0 0
\(652\) −27372.9 −1.64418
\(653\) −21968.5 −1.31653 −0.658265 0.752786i \(-0.728709\pi\)
−0.658265 + 0.752786i \(0.728709\pi\)
\(654\) −26243.8 −1.56914
\(655\) −11864.4 −0.707758
\(656\) −5823.60 −0.346606
\(657\) 9592.49 0.569618
\(658\) 0 0
\(659\) −3283.83 −0.194112 −0.0970560 0.995279i \(-0.530943\pi\)
−0.0970560 + 0.995279i \(0.530943\pi\)
\(660\) −3909.32 −0.230561
\(661\) 15962.2 0.939268 0.469634 0.882861i \(-0.344386\pi\)
0.469634 + 0.882861i \(0.344386\pi\)
\(662\) −2882.46 −0.169229
\(663\) 268.485 0.0157272
\(664\) 28784.3 1.68230
\(665\) 0 0
\(666\) −7189.49 −0.418299
\(667\) −14493.1 −0.841341
\(668\) −17952.6 −1.03983
\(669\) −5946.34 −0.343645
\(670\) −52044.3 −3.00097
\(671\) −5.95429 −0.000342567 0
\(672\) 0 0
\(673\) −26354.1 −1.50948 −0.754738 0.656027i \(-0.772236\pi\)
−0.754738 + 0.656027i \(0.772236\pi\)
\(674\) −44388.5 −2.53677
\(675\) −3867.48 −0.220532
\(676\) 2602.55 0.148074
\(677\) 29401.7 1.66913 0.834564 0.550912i \(-0.185720\pi\)
0.834564 + 0.550912i \(0.185720\pi\)
\(678\) 23193.5 1.31378
\(679\) 0 0
\(680\) 4035.86 0.227600
\(681\) 14042.1 0.790154
\(682\) 4344.35 0.243920
\(683\) 2437.56 0.136560 0.0682801 0.997666i \(-0.478249\pi\)
0.0682801 + 0.997666i \(0.478249\pi\)
\(684\) 16947.7 0.947386
\(685\) −27943.4 −1.55863
\(686\) 0 0
\(687\) −19043.5 −1.05758
\(688\) 4910.20 0.272092
\(689\) 2477.61 0.136995
\(690\) 16802.8 0.927058
\(691\) 20802.5 1.14524 0.572622 0.819819i \(-0.305926\pi\)
0.572622 + 0.819819i \(0.305926\pi\)
\(692\) 11037.0 0.606307
\(693\) 0 0
\(694\) 14019.1 0.766800
\(695\) −49113.8 −2.68056
\(696\) −22014.5 −1.19893
\(697\) −802.574 −0.0436150
\(698\) 3790.46 0.205546
\(699\) −15396.1 −0.833098
\(700\) 0 0
\(701\) −11644.1 −0.627376 −0.313688 0.949526i \(-0.601565\pi\)
−0.313688 + 0.949526i \(0.601565\pi\)
\(702\) 1697.90 0.0912865
\(703\) −20193.3 −1.08336
\(704\) −3182.34 −0.170368
\(705\) −27471.1 −1.46755
\(706\) −25348.5 −1.35128
\(707\) 0 0
\(708\) −18245.2 −0.968499
\(709\) −7851.47 −0.415893 −0.207947 0.978140i \(-0.566678\pi\)
−0.207947 + 0.978140i \(0.566678\pi\)
\(710\) 20661.4 1.09213
\(711\) 3207.77 0.169199
\(712\) −23090.0 −1.21535
\(713\) −12288.7 −0.645464
\(714\) 0 0
\(715\) −1100.05 −0.0575376
\(716\) 24864.1 1.29779
\(717\) 14812.4 0.771519
\(718\) 16887.0 0.877740
\(719\) −8769.51 −0.454864 −0.227432 0.973794i \(-0.573033\pi\)
−0.227432 + 0.973794i \(0.573033\pi\)
\(720\) 7363.20 0.381125
\(721\) 0 0
\(722\) 39150.7 2.01806
\(723\) −16785.3 −0.863421
\(724\) 8091.93 0.415379
\(725\) 29365.2 1.50427
\(726\) 18928.1 0.967611
\(727\) −1063.85 −0.0542726 −0.0271363 0.999632i \(-0.508639\pi\)
−0.0271363 + 0.999632i \(0.508639\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 84441.5 4.28126
\(731\) 676.694 0.0342386
\(732\) 53.2424 0.00268838
\(733\) −10750.5 −0.541716 −0.270858 0.962619i \(-0.587307\pi\)
−0.270858 + 0.962619i \(0.587307\pi\)
\(734\) −16625.4 −0.836042
\(735\) 0 0
\(736\) 3161.41 0.158330
\(737\) −3394.00 −0.169633
\(738\) −5075.47 −0.253158
\(739\) 17099.4 0.851165 0.425583 0.904920i \(-0.360069\pi\)
0.425583 + 0.904920i \(0.360069\pi\)
\(740\) −41650.9 −2.06908
\(741\) 4768.93 0.236425
\(742\) 0 0
\(743\) −35309.8 −1.74346 −0.871730 0.489986i \(-0.837002\pi\)
−0.871730 + 0.489986i \(0.837002\pi\)
\(744\) −18666.1 −0.919803
\(745\) −23003.1 −1.13123
\(746\) −8225.60 −0.403700
\(747\) 7237.33 0.354485
\(748\) 547.739 0.0267745
\(749\) 0 0
\(750\) −4335.22 −0.211067
\(751\) −31626.2 −1.53669 −0.768346 0.640035i \(-0.778920\pi\)
−0.768346 + 0.640035i \(0.778920\pi\)
\(752\) 27929.0 1.35434
\(753\) 19125.9 0.925614
\(754\) −12891.9 −0.622673
\(755\) −15045.5 −0.725249
\(756\) 0 0
\(757\) 8789.00 0.421984 0.210992 0.977488i \(-0.432331\pi\)
0.210992 + 0.977488i \(0.432331\pi\)
\(758\) −31055.3 −1.48810
\(759\) 1095.77 0.0524031
\(760\) 71686.4 3.42150
\(761\) −8178.79 −0.389594 −0.194797 0.980844i \(-0.562405\pi\)
−0.194797 + 0.980844i \(0.562405\pi\)
\(762\) −22577.8 −1.07337
\(763\) 0 0
\(764\) 41423.2 1.96157
\(765\) 1014.75 0.0479587
\(766\) −43041.4 −2.03022
\(767\) −5134.04 −0.241694
\(768\) 23264.4 1.09307
\(769\) −13503.3 −0.633216 −0.316608 0.948556i \(-0.602544\pi\)
−0.316608 + 0.948556i \(0.602544\pi\)
\(770\) 0 0
\(771\) 14464.5 0.675650
\(772\) 66318.9 3.09180
\(773\) 4110.06 0.191240 0.0956200 0.995418i \(-0.469517\pi\)
0.0956200 + 0.995418i \(0.469517\pi\)
\(774\) 4279.41 0.198734
\(775\) 24898.8 1.15405
\(776\) −35869.5 −1.65933
\(777\) 0 0
\(778\) −13041.8 −0.600989
\(779\) −14255.6 −0.655661
\(780\) 9836.45 0.451540
\(781\) 1347.41 0.0617337
\(782\) −2354.25 −0.107657
\(783\) −5535.18 −0.252633
\(784\) 0 0
\(785\) 17846.5 0.811425
\(786\) 10512.6 0.477065
\(787\) 27340.0 1.23833 0.619166 0.785260i \(-0.287471\pi\)
0.619166 + 0.785260i \(0.287471\pi\)
\(788\) 73041.2 3.30201
\(789\) 6205.76 0.280014
\(790\) 28237.6 1.27171
\(791\) 0 0
\(792\) 1664.44 0.0746757
\(793\) 14.9819 0.000670900 0
\(794\) −30013.0 −1.34146
\(795\) 9364.24 0.417755
\(796\) 64877.6 2.88885
\(797\) 4514.37 0.200637 0.100318 0.994955i \(-0.468014\pi\)
0.100318 + 0.994955i \(0.468014\pi\)
\(798\) 0 0
\(799\) 3849.01 0.170423
\(800\) −6405.49 −0.283085
\(801\) −5805.59 −0.256093
\(802\) 30067.9 1.32386
\(803\) 5506.74 0.242003
\(804\) 30348.7 1.33124
\(805\) 0 0
\(806\) −10931.1 −0.477705
\(807\) −2256.21 −0.0984168
\(808\) 58785.2 2.55948
\(809\) 22472.8 0.976641 0.488320 0.872664i \(-0.337610\pi\)
0.488320 + 0.872664i \(0.337610\pi\)
\(810\) 6417.29 0.278371
\(811\) −26153.6 −1.13240 −0.566199 0.824268i \(-0.691587\pi\)
−0.566199 + 0.824268i \(0.691587\pi\)
\(812\) 0 0
\(813\) −13102.8 −0.565235
\(814\) −4127.26 −0.177715
\(815\) −29111.9 −1.25122
\(816\) −1031.67 −0.0442593
\(817\) 12019.7 0.514707
\(818\) 4401.25 0.188125
\(819\) 0 0
\(820\) −29403.8 −1.25222
\(821\) 31826.7 1.35294 0.676468 0.736472i \(-0.263510\pi\)
0.676468 + 0.736472i \(0.263510\pi\)
\(822\) 24759.7 1.05060
\(823\) −22129.9 −0.937303 −0.468652 0.883383i \(-0.655260\pi\)
−0.468652 + 0.883383i \(0.655260\pi\)
\(824\) −51767.4 −2.18859
\(825\) −2220.19 −0.0936937
\(826\) 0 0
\(827\) −14089.5 −0.592431 −0.296216 0.955121i \(-0.595725\pi\)
−0.296216 + 0.955121i \(0.595725\pi\)
\(828\) −9798.22 −0.411246
\(829\) −19178.8 −0.803505 −0.401753 0.915748i \(-0.631599\pi\)
−0.401753 + 0.915748i \(0.631599\pi\)
\(830\) 63709.3 2.66432
\(831\) −2140.28 −0.0893447
\(832\) 8007.26 0.333656
\(833\) 0 0
\(834\) 43517.9 1.80684
\(835\) −19093.1 −0.791311
\(836\) 9729.13 0.402499
\(837\) −4693.29 −0.193816
\(838\) −25856.7 −1.06588
\(839\) −12029.5 −0.494998 −0.247499 0.968888i \(-0.579609\pi\)
−0.247499 + 0.968888i \(0.579609\pi\)
\(840\) 0 0
\(841\) 17638.8 0.723227
\(842\) 51262.2 2.09811
\(843\) −2576.73 −0.105276
\(844\) −40927.6 −1.66918
\(845\) 2767.89 0.112684
\(846\) 24341.1 0.989202
\(847\) 0 0
\(848\) −9520.33 −0.385530
\(849\) 28062.0 1.13438
\(850\) 4770.07 0.192485
\(851\) 11674.6 0.470271
\(852\) −12048.3 −0.484471
\(853\) 31976.7 1.28354 0.641770 0.766897i \(-0.278200\pi\)
0.641770 + 0.766897i \(0.278200\pi\)
\(854\) 0 0
\(855\) 18024.4 0.720960
\(856\) −20328.6 −0.811701
\(857\) 22460.8 0.895270 0.447635 0.894216i \(-0.352266\pi\)
0.447635 + 0.894216i \(0.352266\pi\)
\(858\) 974.710 0.0387833
\(859\) −7553.74 −0.300035 −0.150018 0.988683i \(-0.547933\pi\)
−0.150018 + 0.988683i \(0.547933\pi\)
\(860\) 24791.9 0.983021
\(861\) 0 0
\(862\) 2648.35 0.104644
\(863\) 45888.0 1.81002 0.905008 0.425394i \(-0.139864\pi\)
0.905008 + 0.425394i \(0.139864\pi\)
\(864\) 1207.40 0.0475424
\(865\) 11738.2 0.461399
\(866\) −10488.6 −0.411569
\(867\) 14596.8 0.571781
\(868\) 0 0
\(869\) 1841.48 0.0718848
\(870\) −48725.5 −1.89879
\(871\) 8539.84 0.332218
\(872\) 64732.1 2.51388
\(873\) −9018.80 −0.349645
\(874\) −41817.1 −1.61840
\(875\) 0 0
\(876\) −49240.5 −1.89918
\(877\) 14712.3 0.566476 0.283238 0.959050i \(-0.408591\pi\)
0.283238 + 0.959050i \(0.408591\pi\)
\(878\) 50159.8 1.92803
\(879\) −22082.4 −0.847352
\(880\) 4226.98 0.161922
\(881\) 40585.8 1.55207 0.776033 0.630692i \(-0.217229\pi\)
0.776033 + 0.630692i \(0.217229\pi\)
\(882\) 0 0
\(883\) −44467.7 −1.69474 −0.847370 0.531002i \(-0.821816\pi\)
−0.847370 + 0.531002i \(0.821816\pi\)
\(884\) −1378.20 −0.0524364
\(885\) −19404.3 −0.737027
\(886\) −39745.5 −1.50708
\(887\) −17573.0 −0.665212 −0.332606 0.943066i \(-0.607928\pi\)
−0.332606 + 0.943066i \(0.607928\pi\)
\(888\) 17733.4 0.670149
\(889\) 0 0
\(890\) −51105.9 −1.92480
\(891\) 418.495 0.0157353
\(892\) 30523.9 1.14576
\(893\) 68367.4 2.56196
\(894\) 20382.2 0.762509
\(895\) 26443.7 0.987617
\(896\) 0 0
\(897\) −2757.13 −0.102629
\(898\) −58735.7 −2.18267
\(899\) 35635.4 1.32203
\(900\) 19852.7 0.735284
\(901\) −1312.03 −0.0485130
\(902\) −2913.67 −0.107555
\(903\) 0 0
\(904\) −57208.2 −2.10477
\(905\) 8606.01 0.316103
\(906\) 13331.3 0.488855
\(907\) −48566.0 −1.77796 −0.888979 0.457948i \(-0.848584\pi\)
−0.888979 + 0.457948i \(0.848584\pi\)
\(908\) −72081.4 −2.63448
\(909\) 14780.6 0.539319
\(910\) 0 0
\(911\) 11129.7 0.404767 0.202384 0.979306i \(-0.435131\pi\)
0.202384 + 0.979306i \(0.435131\pi\)
\(912\) −18324.8 −0.665346
\(913\) 4154.72 0.150604
\(914\) −41831.6 −1.51386
\(915\) 56.6248 0.00204586
\(916\) 97754.7 3.52610
\(917\) 0 0
\(918\) −899.134 −0.0323266
\(919\) −15164.2 −0.544309 −0.272155 0.962254i \(-0.587736\pi\)
−0.272155 + 0.962254i \(0.587736\pi\)
\(920\) −41445.1 −1.48522
\(921\) 26619.4 0.952376
\(922\) −14981.0 −0.535113
\(923\) −3390.29 −0.120902
\(924\) 0 0
\(925\) −23654.6 −0.840818
\(926\) −14190.8 −0.503606
\(927\) −13016.1 −0.461169
\(928\) −9167.61 −0.324291
\(929\) −10914.1 −0.385446 −0.192723 0.981253i \(-0.561732\pi\)
−0.192723 + 0.981253i \(0.561732\pi\)
\(930\) −41314.5 −1.45673
\(931\) 0 0
\(932\) 79032.0 2.77766
\(933\) 29826.1 1.04658
\(934\) −9759.67 −0.341913
\(935\) 582.537 0.0203754
\(936\) −4187.98 −0.146248
\(937\) 32662.9 1.13879 0.569397 0.822063i \(-0.307177\pi\)
0.569397 + 0.822063i \(0.307177\pi\)
\(938\) 0 0
\(939\) −3904.22 −0.135686
\(940\) 141015. 4.89300
\(941\) 40450.2 1.40132 0.700658 0.713497i \(-0.252890\pi\)
0.700658 + 0.713497i \(0.252890\pi\)
\(942\) −15813.1 −0.546942
\(943\) 8241.79 0.284612
\(944\) 19727.8 0.680174
\(945\) 0 0
\(946\) 2456.67 0.0844327
\(947\) 24891.8 0.854146 0.427073 0.904217i \(-0.359545\pi\)
0.427073 + 0.904217i \(0.359545\pi\)
\(948\) −16466.2 −0.564133
\(949\) −13855.8 −0.473951
\(950\) 84727.7 2.89361
\(951\) −9504.03 −0.324069
\(952\) 0 0
\(953\) −18293.1 −0.621796 −0.310898 0.950443i \(-0.600630\pi\)
−0.310898 + 0.950443i \(0.600630\pi\)
\(954\) −8297.31 −0.281588
\(955\) 44054.8 1.49275
\(956\) −76035.5 −2.57235
\(957\) −3177.57 −0.107332
\(958\) −49445.2 −1.66754
\(959\) 0 0
\(960\) 30263.8 1.01746
\(961\) 424.366 0.0142448
\(962\) 10384.8 0.348046
\(963\) −5111.28 −0.171037
\(964\) 86163.1 2.87876
\(965\) 70532.1 2.35286
\(966\) 0 0
\(967\) −1620.93 −0.0539043 −0.0269521 0.999637i \(-0.508580\pi\)
−0.0269521 + 0.999637i \(0.508580\pi\)
\(968\) −46687.3 −1.55019
\(969\) −2525.42 −0.0837235
\(970\) −79391.3 −2.62794
\(971\) 6450.05 0.213174 0.106587 0.994303i \(-0.466008\pi\)
0.106587 + 0.994303i \(0.466008\pi\)
\(972\) −3742.13 −0.123486
\(973\) 0 0
\(974\) −39281.0 −1.29224
\(975\) 5586.36 0.183494
\(976\) −57.5687 −0.00188804
\(977\) 7083.99 0.231972 0.115986 0.993251i \(-0.462997\pi\)
0.115986 + 0.993251i \(0.462997\pi\)
\(978\) 25795.0 0.843386
\(979\) −3332.80 −0.108802
\(980\) 0 0
\(981\) 16275.8 0.529712
\(982\) −50873.9 −1.65321
\(983\) 4587.68 0.148855 0.0744273 0.997226i \(-0.476287\pi\)
0.0744273 + 0.997226i \(0.476287\pi\)
\(984\) 12519.0 0.405580
\(985\) 77681.5 2.51283
\(986\) 6826.99 0.220503
\(987\) 0 0
\(988\) −24480.0 −0.788272
\(989\) −6949.11 −0.223426
\(990\) 3683.96 0.118267
\(991\) 38143.2 1.22266 0.611332 0.791374i \(-0.290634\pi\)
0.611332 + 0.791374i \(0.290634\pi\)
\(992\) −7773.24 −0.248791
\(993\) 1787.63 0.0571288
\(994\) 0 0
\(995\) 68999.2 2.19841
\(996\) −37150.9 −1.18190
\(997\) 14700.2 0.466962 0.233481 0.972361i \(-0.424988\pi\)
0.233481 + 0.972361i \(0.424988\pi\)
\(998\) −68805.4 −2.18236
\(999\) 4458.76 0.141210
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.4.a.v.1.11 11
7.2 even 3 273.4.i.d.235.1 yes 22
7.4 even 3 273.4.i.d.79.1 22
7.6 odd 2 1911.4.a.w.1.11 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.4.i.d.79.1 22 7.4 even 3
273.4.i.d.235.1 yes 22 7.2 even 3
1911.4.a.v.1.11 11 1.1 even 1 trivial
1911.4.a.w.1.11 11 7.6 odd 2