Properties

Label 1911.4.a.l.1.2
Level $1911$
Weight $4$
Character 1911.1
Self dual yes
Analytic conductor $112.753$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-3,-12,15,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1038472.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 22x^{2} + 6x + 104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.71034\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.71034 q^{2} -3.00000 q^{3} +5.76665 q^{4} +15.1555 q^{5} +11.1310 q^{6} +8.28649 q^{8} +9.00000 q^{9} -56.2319 q^{10} +60.6986 q^{11} -17.3000 q^{12} +13.0000 q^{13} -45.4664 q^{15} -76.8789 q^{16} -105.639 q^{17} -33.3931 q^{18} +76.5305 q^{19} +87.3962 q^{20} -225.213 q^{22} -145.001 q^{23} -24.8595 q^{24} +104.688 q^{25} -48.2345 q^{26} -27.0000 q^{27} +140.357 q^{29} +168.696 q^{30} +175.791 q^{31} +218.955 q^{32} -182.096 q^{33} +391.957 q^{34} +51.8999 q^{36} -216.081 q^{37} -283.954 q^{38} -39.0000 q^{39} +125.585 q^{40} +151.463 q^{41} +330.182 q^{43} +350.028 q^{44} +136.399 q^{45} +538.005 q^{46} +344.637 q^{47} +230.637 q^{48} -388.428 q^{50} +316.917 q^{51} +74.9665 q^{52} -669.529 q^{53} +100.179 q^{54} +919.915 q^{55} -229.591 q^{57} -520.773 q^{58} +226.225 q^{59} -262.189 q^{60} +594.623 q^{61} -652.246 q^{62} -197.368 q^{64} +197.021 q^{65} +675.639 q^{66} -556.147 q^{67} -609.183 q^{68} +435.004 q^{69} -171.941 q^{71} +74.5784 q^{72} +97.9290 q^{73} +801.736 q^{74} -314.063 q^{75} +441.325 q^{76} +144.703 q^{78} +1115.36 q^{79} -1165.14 q^{80} +81.0000 q^{81} -561.980 q^{82} +275.245 q^{83} -1601.01 q^{85} -1225.09 q^{86} -421.071 q^{87} +502.978 q^{88} +191.166 q^{89} -506.088 q^{90} -836.172 q^{92} -527.373 q^{93} -1278.72 q^{94} +1159.85 q^{95} -656.866 q^{96} +934.640 q^{97} +546.288 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 12 q^{3} + 15 q^{4} + 24 q^{5} + 9 q^{6} - 39 q^{8} + 36 q^{9} + 26 q^{10} + 8 q^{11} - 45 q^{12} + 52 q^{13} - 72 q^{15} - 181 q^{16} + 6 q^{17} - 27 q^{18} + 332 q^{19} + 62 q^{20} - 176 q^{22}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.71034 −1.31180 −0.655902 0.754846i \(-0.727712\pi\)
−0.655902 + 0.754846i \(0.727712\pi\)
\(3\) −3.00000 −0.577350
\(4\) 5.76665 0.720832
\(5\) 15.1555 1.35554 0.677772 0.735272i \(-0.262945\pi\)
0.677772 + 0.735272i \(0.262945\pi\)
\(6\) 11.1310 0.757371
\(7\) 0 0
\(8\) 8.28649 0.366214
\(9\) 9.00000 0.333333
\(10\) −56.2319 −1.77821
\(11\) 60.6986 1.66376 0.831879 0.554958i \(-0.187266\pi\)
0.831879 + 0.554958i \(0.187266\pi\)
\(12\) −17.3000 −0.416172
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −45.4664 −0.782624
\(16\) −76.8789 −1.20123
\(17\) −105.639 −1.50713 −0.753565 0.657374i \(-0.771667\pi\)
−0.753565 + 0.657374i \(0.771667\pi\)
\(18\) −33.3931 −0.437268
\(19\) 76.5305 0.924068 0.462034 0.886862i \(-0.347120\pi\)
0.462034 + 0.886862i \(0.347120\pi\)
\(20\) 87.3962 0.977120
\(21\) 0 0
\(22\) −225.213 −2.18252
\(23\) −145.001 −1.31456 −0.657280 0.753647i \(-0.728293\pi\)
−0.657280 + 0.753647i \(0.728293\pi\)
\(24\) −24.8595 −0.211434
\(25\) 104.688 0.837502
\(26\) −48.2345 −0.363829
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 140.357 0.898747 0.449374 0.893344i \(-0.351647\pi\)
0.449374 + 0.893344i \(0.351647\pi\)
\(30\) 168.696 1.02665
\(31\) 175.791 1.01848 0.509242 0.860623i \(-0.329926\pi\)
0.509242 + 0.860623i \(0.329926\pi\)
\(32\) 218.955 1.20957
\(33\) −182.096 −0.960571
\(34\) 391.957 1.97706
\(35\) 0 0
\(36\) 51.8999 0.240277
\(37\) −216.081 −0.960096 −0.480048 0.877242i \(-0.659381\pi\)
−0.480048 + 0.877242i \(0.659381\pi\)
\(38\) −283.954 −1.21220
\(39\) −39.0000 −0.160128
\(40\) 125.585 0.496420
\(41\) 151.463 0.576941 0.288470 0.957489i \(-0.406853\pi\)
0.288470 + 0.957489i \(0.406853\pi\)
\(42\) 0 0
\(43\) 330.182 1.17098 0.585492 0.810678i \(-0.300901\pi\)
0.585492 + 0.810678i \(0.300901\pi\)
\(44\) 350.028 1.19929
\(45\) 136.399 0.451848
\(46\) 538.005 1.72445
\(47\) 344.637 1.06959 0.534793 0.844983i \(-0.320390\pi\)
0.534793 + 0.844983i \(0.320390\pi\)
\(48\) 230.637 0.693532
\(49\) 0 0
\(50\) −388.428 −1.09864
\(51\) 316.917 0.870142
\(52\) 74.9665 0.199923
\(53\) −669.529 −1.73522 −0.867612 0.497242i \(-0.834346\pi\)
−0.867612 + 0.497242i \(0.834346\pi\)
\(54\) 100.179 0.252457
\(55\) 919.915 2.25530
\(56\) 0 0
\(57\) −229.591 −0.533511
\(58\) −520.773 −1.17898
\(59\) 226.225 0.499186 0.249593 0.968351i \(-0.419703\pi\)
0.249593 + 0.968351i \(0.419703\pi\)
\(60\) −262.189 −0.564140
\(61\) 594.623 1.24809 0.624046 0.781387i \(-0.285488\pi\)
0.624046 + 0.781387i \(0.285488\pi\)
\(62\) −652.246 −1.33605
\(63\) 0 0
\(64\) −197.368 −0.385485
\(65\) 197.021 0.375961
\(66\) 675.639 1.26008
\(67\) −556.147 −1.01409 −0.507046 0.861919i \(-0.669263\pi\)
−0.507046 + 0.861919i \(0.669263\pi\)
\(68\) −609.183 −1.08639
\(69\) 435.004 0.758961
\(70\) 0 0
\(71\) −171.941 −0.287403 −0.143701 0.989621i \(-0.545901\pi\)
−0.143701 + 0.989621i \(0.545901\pi\)
\(72\) 74.5784 0.122071
\(73\) 97.9290 0.157010 0.0785050 0.996914i \(-0.474985\pi\)
0.0785050 + 0.996914i \(0.474985\pi\)
\(74\) 801.736 1.25946
\(75\) −314.063 −0.483532
\(76\) 441.325 0.666098
\(77\) 0 0
\(78\) 144.703 0.210057
\(79\) 1115.36 1.58845 0.794224 0.607626i \(-0.207878\pi\)
0.794224 + 0.607626i \(0.207878\pi\)
\(80\) −1165.14 −1.62833
\(81\) 81.0000 0.111111
\(82\) −561.980 −0.756833
\(83\) 275.245 0.364001 0.182001 0.983298i \(-0.441743\pi\)
0.182001 + 0.983298i \(0.441743\pi\)
\(84\) 0 0
\(85\) −1601.01 −2.04298
\(86\) −1225.09 −1.53610
\(87\) −421.071 −0.518892
\(88\) 502.978 0.609292
\(89\) 191.166 0.227680 0.113840 0.993499i \(-0.463685\pi\)
0.113840 + 0.993499i \(0.463685\pi\)
\(90\) −506.088 −0.592737
\(91\) 0 0
\(92\) −836.172 −0.947576
\(93\) −527.373 −0.588022
\(94\) −1278.72 −1.40309
\(95\) 1159.85 1.25262
\(96\) −656.866 −0.698345
\(97\) 934.640 0.978334 0.489167 0.872190i \(-0.337301\pi\)
0.489167 + 0.872190i \(0.337301\pi\)
\(98\) 0 0
\(99\) 546.288 0.554586
\(100\) 603.698 0.603698
\(101\) 134.586 0.132592 0.0662959 0.997800i \(-0.478882\pi\)
0.0662959 + 0.997800i \(0.478882\pi\)
\(102\) −1175.87 −1.14146
\(103\) 147.902 0.141487 0.0707436 0.997495i \(-0.477463\pi\)
0.0707436 + 0.997495i \(0.477463\pi\)
\(104\) 107.724 0.101570
\(105\) 0 0
\(106\) 2484.18 2.27628
\(107\) 1814.42 1.63931 0.819656 0.572856i \(-0.194165\pi\)
0.819656 + 0.572856i \(0.194165\pi\)
\(108\) −155.700 −0.138724
\(109\) −1754.09 −1.54139 −0.770696 0.637204i \(-0.780091\pi\)
−0.770696 + 0.637204i \(0.780091\pi\)
\(110\) −3413.20 −2.95851
\(111\) 648.244 0.554312
\(112\) 0 0
\(113\) −28.9646 −0.0241129 −0.0120565 0.999927i \(-0.503838\pi\)
−0.0120565 + 0.999927i \(0.503838\pi\)
\(114\) 851.863 0.699862
\(115\) −2197.56 −1.78194
\(116\) 809.391 0.647845
\(117\) 117.000 0.0924500
\(118\) −839.372 −0.654835
\(119\) 0 0
\(120\) −376.756 −0.286608
\(121\) 2353.32 1.76809
\(122\) −2206.26 −1.63725
\(123\) −454.389 −0.333097
\(124\) 1013.73 0.734156
\(125\) −307.841 −0.220273
\(126\) 0 0
\(127\) −2130.71 −1.48874 −0.744371 0.667767i \(-0.767250\pi\)
−0.744371 + 0.667767i \(0.767250\pi\)
\(128\) −1019.34 −0.703888
\(129\) −990.547 −0.676068
\(130\) −731.015 −0.493187
\(131\) 94.1770 0.0628113 0.0314057 0.999507i \(-0.490002\pi\)
0.0314057 + 0.999507i \(0.490002\pi\)
\(132\) −1050.08 −0.692410
\(133\) 0 0
\(134\) 2063.50 1.33029
\(135\) −409.197 −0.260875
\(136\) −875.375 −0.551932
\(137\) −244.222 −0.152302 −0.0761508 0.997096i \(-0.524263\pi\)
−0.0761508 + 0.997096i \(0.524263\pi\)
\(138\) −1614.01 −0.995609
\(139\) 1853.58 1.13107 0.565535 0.824724i \(-0.308670\pi\)
0.565535 + 0.824724i \(0.308670\pi\)
\(140\) 0 0
\(141\) −1033.91 −0.617525
\(142\) 637.959 0.377017
\(143\) 789.082 0.461443
\(144\) −691.910 −0.400411
\(145\) 2127.18 1.21829
\(146\) −363.350 −0.205966
\(147\) 0 0
\(148\) −1246.07 −0.692068
\(149\) 1768.75 0.972492 0.486246 0.873822i \(-0.338366\pi\)
0.486246 + 0.873822i \(0.338366\pi\)
\(150\) 1165.28 0.634300
\(151\) 1689.75 0.910664 0.455332 0.890322i \(-0.349521\pi\)
0.455332 + 0.890322i \(0.349521\pi\)
\(152\) 634.169 0.338407
\(153\) −950.750 −0.502376
\(154\) 0 0
\(155\) 2664.19 1.38060
\(156\) −224.899 −0.115425
\(157\) −1798.51 −0.914247 −0.457124 0.889403i \(-0.651120\pi\)
−0.457124 + 0.889403i \(0.651120\pi\)
\(158\) −4138.35 −2.08373
\(159\) 2008.59 1.00183
\(160\) 3318.37 1.63963
\(161\) 0 0
\(162\) −300.538 −0.145756
\(163\) −2830.21 −1.35999 −0.679997 0.733215i \(-0.738019\pi\)
−0.679997 + 0.733215i \(0.738019\pi\)
\(164\) 873.435 0.415877
\(165\) −2759.75 −1.30210
\(166\) −1021.26 −0.477499
\(167\) −1860.63 −0.862157 −0.431078 0.902314i \(-0.641867\pi\)
−0.431078 + 0.902314i \(0.641867\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 5940.28 2.67999
\(171\) 688.774 0.308023
\(172\) 1904.05 0.844083
\(173\) 197.699 0.0868830 0.0434415 0.999056i \(-0.486168\pi\)
0.0434415 + 0.999056i \(0.486168\pi\)
\(174\) 1562.32 0.680685
\(175\) 0 0
\(176\) −4666.45 −1.99856
\(177\) −678.675 −0.288205
\(178\) −709.290 −0.298672
\(179\) −3002.28 −1.25364 −0.626818 0.779166i \(-0.715643\pi\)
−0.626818 + 0.779166i \(0.715643\pi\)
\(180\) 786.566 0.325707
\(181\) 2208.28 0.906852 0.453426 0.891294i \(-0.350202\pi\)
0.453426 + 0.891294i \(0.350202\pi\)
\(182\) 0 0
\(183\) −1783.87 −0.720587
\(184\) −1201.55 −0.481411
\(185\) −3274.81 −1.30145
\(186\) 1956.74 0.771370
\(187\) −6412.14 −2.50750
\(188\) 1987.40 0.770991
\(189\) 0 0
\(190\) −4303.46 −1.64319
\(191\) −3275.07 −1.24071 −0.620355 0.784321i \(-0.713011\pi\)
−0.620355 + 0.784321i \(0.713011\pi\)
\(192\) 592.105 0.222560
\(193\) −3591.28 −1.33941 −0.669705 0.742627i \(-0.733580\pi\)
−0.669705 + 0.742627i \(0.733580\pi\)
\(194\) −3467.84 −1.28338
\(195\) −591.063 −0.217061
\(196\) 0 0
\(197\) 4405.13 1.59316 0.796579 0.604534i \(-0.206641\pi\)
0.796579 + 0.604534i \(0.206641\pi\)
\(198\) −2026.92 −0.727508
\(199\) −4726.98 −1.68385 −0.841927 0.539591i \(-0.818579\pi\)
−0.841927 + 0.539591i \(0.818579\pi\)
\(200\) 867.494 0.306705
\(201\) 1668.44 0.585486
\(202\) −499.359 −0.173935
\(203\) 0 0
\(204\) 1827.55 0.627226
\(205\) 2295.49 0.782069
\(206\) −548.766 −0.185604
\(207\) −1305.01 −0.438186
\(208\) −999.426 −0.333162
\(209\) 4645.30 1.53742
\(210\) 0 0
\(211\) 2274.65 0.742147 0.371074 0.928603i \(-0.378990\pi\)
0.371074 + 0.928603i \(0.378990\pi\)
\(212\) −3860.94 −1.25080
\(213\) 515.822 0.165932
\(214\) −6732.11 −2.15046
\(215\) 5004.06 1.58732
\(216\) −223.735 −0.0704780
\(217\) 0 0
\(218\) 6508.29 2.02200
\(219\) −293.787 −0.0906497
\(220\) 5304.83 1.62569
\(221\) −1373.31 −0.418002
\(222\) −2405.21 −0.727149
\(223\) 1097.77 0.329650 0.164825 0.986323i \(-0.447294\pi\)
0.164825 + 0.986323i \(0.447294\pi\)
\(224\) 0 0
\(225\) 942.190 0.279167
\(226\) 107.469 0.0316314
\(227\) 3977.47 1.16297 0.581485 0.813557i \(-0.302472\pi\)
0.581485 + 0.813557i \(0.302472\pi\)
\(228\) −1323.97 −0.384572
\(229\) −3552.94 −1.02526 −0.512631 0.858609i \(-0.671329\pi\)
−0.512631 + 0.858609i \(0.671329\pi\)
\(230\) 8153.71 2.33756
\(231\) 0 0
\(232\) 1163.07 0.329134
\(233\) 634.762 0.178475 0.0892375 0.996010i \(-0.471557\pi\)
0.0892375 + 0.996010i \(0.471557\pi\)
\(234\) −434.110 −0.121276
\(235\) 5223.13 1.44987
\(236\) 1304.56 0.359829
\(237\) −3346.07 −0.917090
\(238\) 0 0
\(239\) 3389.03 0.917231 0.458616 0.888635i \(-0.348345\pi\)
0.458616 + 0.888635i \(0.348345\pi\)
\(240\) 3495.41 0.940114
\(241\) 2588.29 0.691810 0.345905 0.938270i \(-0.387572\pi\)
0.345905 + 0.938270i \(0.387572\pi\)
\(242\) −8731.64 −2.31939
\(243\) −243.000 −0.0641500
\(244\) 3428.98 0.899665
\(245\) 0 0
\(246\) 1685.94 0.436958
\(247\) 994.896 0.256290
\(248\) 1456.69 0.372984
\(249\) −825.736 −0.210156
\(250\) 1142.20 0.288956
\(251\) −2089.73 −0.525507 −0.262754 0.964863i \(-0.584631\pi\)
−0.262754 + 0.964863i \(0.584631\pi\)
\(252\) 0 0
\(253\) −8801.38 −2.18711
\(254\) 7905.67 1.95294
\(255\) 4803.02 1.17952
\(256\) 5361.04 1.30885
\(257\) 2521.89 0.612106 0.306053 0.952014i \(-0.400991\pi\)
0.306053 + 0.952014i \(0.400991\pi\)
\(258\) 3675.27 0.886870
\(259\) 0 0
\(260\) 1136.15 0.271004
\(261\) 1263.21 0.299582
\(262\) −349.429 −0.0823962
\(263\) −5959.98 −1.39737 −0.698685 0.715430i \(-0.746231\pi\)
−0.698685 + 0.715430i \(0.746231\pi\)
\(264\) −1508.94 −0.351775
\(265\) −10147.0 −2.35217
\(266\) 0 0
\(267\) −573.497 −0.131451
\(268\) −3207.11 −0.730990
\(269\) 5577.19 1.26412 0.632058 0.774921i \(-0.282210\pi\)
0.632058 + 0.774921i \(0.282210\pi\)
\(270\) 1518.26 0.342217
\(271\) −3916.45 −0.877887 −0.438943 0.898515i \(-0.644647\pi\)
−0.438943 + 0.898515i \(0.644647\pi\)
\(272\) 8121.41 1.81041
\(273\) 0 0
\(274\) 906.149 0.199790
\(275\) 6354.40 1.39340
\(276\) 2508.52 0.547083
\(277\) −1722.93 −0.373722 −0.186861 0.982386i \(-0.559831\pi\)
−0.186861 + 0.982386i \(0.559831\pi\)
\(278\) −6877.42 −1.48374
\(279\) 1582.12 0.339495
\(280\) 0 0
\(281\) 8339.06 1.77034 0.885172 0.465263i \(-0.154040\pi\)
0.885172 + 0.465263i \(0.154040\pi\)
\(282\) 3836.17 0.810073
\(283\) 2994.63 0.629018 0.314509 0.949254i \(-0.398160\pi\)
0.314509 + 0.949254i \(0.398160\pi\)
\(284\) −991.522 −0.207169
\(285\) −3479.56 −0.723198
\(286\) −2927.77 −0.605323
\(287\) 0 0
\(288\) 1970.60 0.403190
\(289\) 6246.58 1.27144
\(290\) −7892.55 −1.59816
\(291\) −2803.92 −0.564841
\(292\) 564.723 0.113178
\(293\) 8492.60 1.69332 0.846660 0.532134i \(-0.178610\pi\)
0.846660 + 0.532134i \(0.178610\pi\)
\(294\) 0 0
\(295\) 3428.54 0.676669
\(296\) −1790.56 −0.351601
\(297\) −1638.86 −0.320190
\(298\) −6562.66 −1.27572
\(299\) −1885.02 −0.364593
\(300\) −1811.09 −0.348545
\(301\) 0 0
\(302\) −6269.57 −1.19461
\(303\) −403.757 −0.0765519
\(304\) −5883.58 −1.11002
\(305\) 9011.78 1.69185
\(306\) 3527.61 0.659020
\(307\) −2554.72 −0.474936 −0.237468 0.971395i \(-0.576317\pi\)
−0.237468 + 0.971395i \(0.576317\pi\)
\(308\) 0 0
\(309\) −443.705 −0.0816877
\(310\) −9885.08 −1.81108
\(311\) 8271.35 1.50812 0.754060 0.656806i \(-0.228093\pi\)
0.754060 + 0.656806i \(0.228093\pi\)
\(312\) −323.173 −0.0586412
\(313\) 8332.72 1.50477 0.752385 0.658723i \(-0.228903\pi\)
0.752385 + 0.658723i \(0.228903\pi\)
\(314\) 6673.09 1.19931
\(315\) 0 0
\(316\) 6431.87 1.14500
\(317\) 9836.15 1.74276 0.871378 0.490613i \(-0.163227\pi\)
0.871378 + 0.490613i \(0.163227\pi\)
\(318\) −7452.55 −1.31421
\(319\) 8519.49 1.49530
\(320\) −2991.21 −0.522543
\(321\) −5443.25 −0.946457
\(322\) 0 0
\(323\) −8084.60 −1.39269
\(324\) 467.099 0.0800924
\(325\) 1360.94 0.232281
\(326\) 10501.0 1.78405
\(327\) 5262.28 0.889923
\(328\) 1255.10 0.211284
\(329\) 0 0
\(330\) 10239.6 1.70810
\(331\) −5544.06 −0.920632 −0.460316 0.887755i \(-0.652264\pi\)
−0.460316 + 0.887755i \(0.652264\pi\)
\(332\) 1587.24 0.262384
\(333\) −1944.73 −0.320032
\(334\) 6903.59 1.13098
\(335\) −8428.66 −1.37465
\(336\) 0 0
\(337\) −1457.50 −0.235594 −0.117797 0.993038i \(-0.537583\pi\)
−0.117797 + 0.993038i \(0.537583\pi\)
\(338\) −627.048 −0.100908
\(339\) 86.8937 0.0139216
\(340\) −9232.44 −1.47265
\(341\) 10670.3 1.69451
\(342\) −2555.59 −0.404066
\(343\) 0 0
\(344\) 2736.05 0.428831
\(345\) 6592.68 1.02881
\(346\) −733.531 −0.113974
\(347\) 10176.2 1.57431 0.787156 0.616754i \(-0.211553\pi\)
0.787156 + 0.616754i \(0.211553\pi\)
\(348\) −2428.17 −0.374034
\(349\) 3374.59 0.517587 0.258793 0.965933i \(-0.416675\pi\)
0.258793 + 0.965933i \(0.416675\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) 13290.3 2.01243
\(353\) 735.069 0.110832 0.0554161 0.998463i \(-0.482351\pi\)
0.0554161 + 0.998463i \(0.482351\pi\)
\(354\) 2518.12 0.378069
\(355\) −2605.84 −0.389588
\(356\) 1102.39 0.164119
\(357\) 0 0
\(358\) 11139.5 1.64453
\(359\) −3669.38 −0.539450 −0.269725 0.962937i \(-0.586933\pi\)
−0.269725 + 0.962937i \(0.586933\pi\)
\(360\) 1130.27 0.165473
\(361\) −1002.09 −0.146098
\(362\) −8193.48 −1.18961
\(363\) −7059.97 −1.02081
\(364\) 0 0
\(365\) 1484.16 0.212834
\(366\) 6618.77 0.945269
\(367\) 1669.40 0.237444 0.118722 0.992928i \(-0.462120\pi\)
0.118722 + 0.992928i \(0.462120\pi\)
\(368\) 11147.5 1.57909
\(369\) 1363.17 0.192314
\(370\) 12150.7 1.70725
\(371\) 0 0
\(372\) −3041.18 −0.423865
\(373\) −6992.72 −0.970696 −0.485348 0.874321i \(-0.661307\pi\)
−0.485348 + 0.874321i \(0.661307\pi\)
\(374\) 23791.2 3.28935
\(375\) 923.524 0.127175
\(376\) 2855.83 0.391698
\(377\) 1824.64 0.249268
\(378\) 0 0
\(379\) −10282.8 −1.39365 −0.696824 0.717243i \(-0.745404\pi\)
−0.696824 + 0.717243i \(0.745404\pi\)
\(380\) 6688.48 0.902925
\(381\) 6392.14 0.859525
\(382\) 12151.6 1.62757
\(383\) 7316.05 0.976064 0.488032 0.872826i \(-0.337715\pi\)
0.488032 + 0.872826i \(0.337715\pi\)
\(384\) 3058.02 0.406390
\(385\) 0 0
\(386\) 13324.9 1.75704
\(387\) 2971.64 0.390328
\(388\) 5389.75 0.705214
\(389\) 6937.40 0.904216 0.452108 0.891963i \(-0.350672\pi\)
0.452108 + 0.891963i \(0.350672\pi\)
\(390\) 2193.05 0.284742
\(391\) 15317.8 1.98121
\(392\) 0 0
\(393\) −282.531 −0.0362641
\(394\) −16344.5 −2.08991
\(395\) 16903.7 2.15321
\(396\) 3150.25 0.399763
\(397\) 3311.46 0.418633 0.209317 0.977848i \(-0.432876\pi\)
0.209317 + 0.977848i \(0.432876\pi\)
\(398\) 17538.7 2.20889
\(399\) 0 0
\(400\) −8048.28 −1.00604
\(401\) −4028.27 −0.501651 −0.250825 0.968032i \(-0.580702\pi\)
−0.250825 + 0.968032i \(0.580702\pi\)
\(402\) −6190.49 −0.768044
\(403\) 2285.28 0.282477
\(404\) 776.109 0.0955764
\(405\) 1227.59 0.150616
\(406\) 0 0
\(407\) −13115.8 −1.59737
\(408\) 2626.13 0.318658
\(409\) −5789.43 −0.699924 −0.349962 0.936764i \(-0.613805\pi\)
−0.349962 + 0.936764i \(0.613805\pi\)
\(410\) −8517.07 −1.02592
\(411\) 732.667 0.0879314
\(412\) 852.898 0.101989
\(413\) 0 0
\(414\) 4842.04 0.574815
\(415\) 4171.47 0.493420
\(416\) 2846.42 0.335474
\(417\) −5560.74 −0.653023
\(418\) −17235.6 −2.01680
\(419\) −11609.2 −1.35357 −0.676784 0.736181i \(-0.736627\pi\)
−0.676784 + 0.736181i \(0.736627\pi\)
\(420\) 0 0
\(421\) 14600.6 1.69023 0.845116 0.534583i \(-0.179531\pi\)
0.845116 + 0.534583i \(0.179531\pi\)
\(422\) −8439.72 −0.973552
\(423\) 3101.74 0.356528
\(424\) −5548.04 −0.635464
\(425\) −11059.1 −1.26222
\(426\) −1913.88 −0.217671
\(427\) 0 0
\(428\) 10463.1 1.18167
\(429\) −2367.25 −0.266414
\(430\) −18566.8 −2.08226
\(431\) −5252.31 −0.586995 −0.293497 0.955960i \(-0.594819\pi\)
−0.293497 + 0.955960i \(0.594819\pi\)
\(432\) 2075.73 0.231177
\(433\) 11473.7 1.27342 0.636711 0.771102i \(-0.280294\pi\)
0.636711 + 0.771102i \(0.280294\pi\)
\(434\) 0 0
\(435\) −6381.53 −0.703381
\(436\) −10115.2 −1.11108
\(437\) −11097.0 −1.21474
\(438\) 1090.05 0.118915
\(439\) −18002.4 −1.95719 −0.978597 0.205788i \(-0.934024\pi\)
−0.978597 + 0.205788i \(0.934024\pi\)
\(440\) 7622.87 0.825922
\(441\) 0 0
\(442\) 5095.44 0.548338
\(443\) 6871.53 0.736967 0.368483 0.929634i \(-0.379877\pi\)
0.368483 + 0.929634i \(0.379877\pi\)
\(444\) 3738.20 0.399566
\(445\) 2897.20 0.308630
\(446\) −4073.10 −0.432437
\(447\) −5306.24 −0.561469
\(448\) 0 0
\(449\) −12304.6 −1.29330 −0.646650 0.762787i \(-0.723831\pi\)
−0.646650 + 0.762787i \(0.723831\pi\)
\(450\) −3495.85 −0.366213
\(451\) 9193.61 0.959889
\(452\) −167.029 −0.0173813
\(453\) −5069.26 −0.525772
\(454\) −14757.8 −1.52559
\(455\) 0 0
\(456\) −1902.51 −0.195379
\(457\) −2050.32 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(458\) 13182.6 1.34494
\(459\) 2852.25 0.290047
\(460\) −12672.6 −1.28448
\(461\) −16376.2 −1.65448 −0.827239 0.561851i \(-0.810089\pi\)
−0.827239 + 0.561851i \(0.810089\pi\)
\(462\) 0 0
\(463\) 3782.22 0.379643 0.189822 0.981819i \(-0.439209\pi\)
0.189822 + 0.981819i \(0.439209\pi\)
\(464\) −10790.5 −1.07960
\(465\) −7992.58 −0.797091
\(466\) −2355.19 −0.234124
\(467\) 11644.1 1.15380 0.576902 0.816813i \(-0.304261\pi\)
0.576902 + 0.816813i \(0.304261\pi\)
\(468\) 674.698 0.0666409
\(469\) 0 0
\(470\) −19379.6 −1.90195
\(471\) 5395.53 0.527841
\(472\) 1874.61 0.182809
\(473\) 20041.6 1.94823
\(474\) 12415.1 1.20304
\(475\) 8011.80 0.773909
\(476\) 0 0
\(477\) −6025.76 −0.578408
\(478\) −12574.5 −1.20323
\(479\) −3460.09 −0.330053 −0.165027 0.986289i \(-0.552771\pi\)
−0.165027 + 0.986289i \(0.552771\pi\)
\(480\) −9955.11 −0.946638
\(481\) −2809.06 −0.266283
\(482\) −9603.43 −0.907519
\(483\) 0 0
\(484\) 13570.8 1.27449
\(485\) 14164.9 1.32618
\(486\) 901.614 0.0841523
\(487\) −300.273 −0.0279397 −0.0139699 0.999902i \(-0.504447\pi\)
−0.0139699 + 0.999902i \(0.504447\pi\)
\(488\) 4927.33 0.457069
\(489\) 8490.62 0.785193
\(490\) 0 0
\(491\) 7155.24 0.657661 0.328830 0.944389i \(-0.393346\pi\)
0.328830 + 0.944389i \(0.393346\pi\)
\(492\) −2620.31 −0.240107
\(493\) −14827.2 −1.35453
\(494\) −3691.41 −0.336203
\(495\) 8279.24 0.751766
\(496\) −13514.6 −1.22344
\(497\) 0 0
\(498\) 3063.77 0.275684
\(499\) −4180.65 −0.375053 −0.187527 0.982260i \(-0.560047\pi\)
−0.187527 + 0.982260i \(0.560047\pi\)
\(500\) −1775.21 −0.158780
\(501\) 5581.90 0.497766
\(502\) 7753.60 0.689363
\(503\) −11386.8 −1.00937 −0.504684 0.863304i \(-0.668391\pi\)
−0.504684 + 0.863304i \(0.668391\pi\)
\(504\) 0 0
\(505\) 2039.71 0.179734
\(506\) 32656.2 2.86906
\(507\) −507.000 −0.0444116
\(508\) −12287.1 −1.07313
\(509\) −19121.7 −1.66514 −0.832569 0.553921i \(-0.813131\pi\)
−0.832569 + 0.553921i \(0.813131\pi\)
\(510\) −17820.8 −1.54729
\(511\) 0 0
\(512\) −11736.6 −1.01307
\(513\) −2066.32 −0.177837
\(514\) −9357.09 −0.802964
\(515\) 2241.52 0.191792
\(516\) −5712.14 −0.487331
\(517\) 20919.0 1.77953
\(518\) 0 0
\(519\) −593.096 −0.0501619
\(520\) 1632.61 0.137682
\(521\) −22750.2 −1.91306 −0.956531 0.291632i \(-0.905802\pi\)
−0.956531 + 0.291632i \(0.905802\pi\)
\(522\) −4686.96 −0.392994
\(523\) 21994.0 1.83887 0.919436 0.393241i \(-0.128646\pi\)
0.919436 + 0.393241i \(0.128646\pi\)
\(524\) 543.086 0.0452764
\(525\) 0 0
\(526\) 22113.6 1.83308
\(527\) −18570.4 −1.53499
\(528\) 13999.3 1.15387
\(529\) 8858.38 0.728066
\(530\) 37648.9 3.08559
\(531\) 2036.02 0.166395
\(532\) 0 0
\(533\) 1969.02 0.160015
\(534\) 2127.87 0.172438
\(535\) 27498.3 2.22216
\(536\) −4608.50 −0.371375
\(537\) 9006.83 0.723787
\(538\) −20693.3 −1.65827
\(539\) 0 0
\(540\) −2359.70 −0.188047
\(541\) 14569.3 1.15782 0.578912 0.815390i \(-0.303477\pi\)
0.578912 + 0.815390i \(0.303477\pi\)
\(542\) 14531.4 1.15162
\(543\) −6624.84 −0.523571
\(544\) −23130.2 −1.82298
\(545\) −26584.1 −2.08942
\(546\) 0 0
\(547\) 12056.0 0.942372 0.471186 0.882034i \(-0.343826\pi\)
0.471186 + 0.882034i \(0.343826\pi\)
\(548\) −1408.35 −0.109784
\(549\) 5351.60 0.416031
\(550\) −23577.0 −1.82787
\(551\) 10741.6 0.830503
\(552\) 3604.65 0.277942
\(553\) 0 0
\(554\) 6392.68 0.490251
\(555\) 9824.43 0.751395
\(556\) 10689.0 0.815311
\(557\) −498.089 −0.0378900 −0.0189450 0.999821i \(-0.506031\pi\)
−0.0189450 + 0.999821i \(0.506031\pi\)
\(558\) −5870.21 −0.445351
\(559\) 4292.37 0.324773
\(560\) 0 0
\(561\) 19236.4 1.44770
\(562\) −30940.8 −2.32235
\(563\) 15747.8 1.17884 0.589422 0.807825i \(-0.299356\pi\)
0.589422 + 0.807825i \(0.299356\pi\)
\(564\) −5962.21 −0.445132
\(565\) −438.971 −0.0326861
\(566\) −11111.1 −0.825149
\(567\) 0 0
\(568\) −1424.78 −0.105251
\(569\) −2834.35 −0.208826 −0.104413 0.994534i \(-0.533296\pi\)
−0.104413 + 0.994534i \(0.533296\pi\)
\(570\) 12910.4 0.948695
\(571\) −1742.64 −0.127718 −0.0638590 0.997959i \(-0.520341\pi\)
−0.0638590 + 0.997959i \(0.520341\pi\)
\(572\) 4550.36 0.332623
\(573\) 9825.20 0.716324
\(574\) 0 0
\(575\) −15179.9 −1.10095
\(576\) −1776.32 −0.128495
\(577\) −13655.7 −0.985256 −0.492628 0.870240i \(-0.663964\pi\)
−0.492628 + 0.870240i \(0.663964\pi\)
\(578\) −23177.0 −1.66788
\(579\) 10773.8 0.773309
\(580\) 12266.7 0.878183
\(581\) 0 0
\(582\) 10403.5 0.740961
\(583\) −40639.5 −2.88699
\(584\) 811.487 0.0574993
\(585\) 1773.19 0.125320
\(586\) −31510.5 −2.22131
\(587\) −84.3437 −0.00593056 −0.00296528 0.999996i \(-0.500944\pi\)
−0.00296528 + 0.999996i \(0.500944\pi\)
\(588\) 0 0
\(589\) 13453.4 0.941149
\(590\) −12721.1 −0.887658
\(591\) −13215.4 −0.919811
\(592\) 16612.1 1.15330
\(593\) 10541.6 0.730003 0.365001 0.931007i \(-0.381068\pi\)
0.365001 + 0.931007i \(0.381068\pi\)
\(594\) 6080.75 0.420027
\(595\) 0 0
\(596\) 10199.7 0.701003
\(597\) 14181.0 0.972174
\(598\) 6994.06 0.478275
\(599\) −9072.15 −0.618828 −0.309414 0.950927i \(-0.600133\pi\)
−0.309414 + 0.950927i \(0.600133\pi\)
\(600\) −2602.48 −0.177076
\(601\) −1477.35 −0.100270 −0.0501349 0.998742i \(-0.515965\pi\)
−0.0501349 + 0.998742i \(0.515965\pi\)
\(602\) 0 0
\(603\) −5005.32 −0.338031
\(604\) 9744.23 0.656435
\(605\) 35665.7 2.39672
\(606\) 1498.08 0.100421
\(607\) 5069.22 0.338968 0.169484 0.985533i \(-0.445790\pi\)
0.169484 + 0.985533i \(0.445790\pi\)
\(608\) 16756.8 1.11772
\(609\) 0 0
\(610\) −33436.8 −2.21937
\(611\) 4480.28 0.296650
\(612\) −5482.65 −0.362129
\(613\) 20244.6 1.33388 0.666942 0.745109i \(-0.267603\pi\)
0.666942 + 0.745109i \(0.267603\pi\)
\(614\) 9478.87 0.623023
\(615\) −6886.48 −0.451528
\(616\) 0 0
\(617\) −9849.08 −0.642640 −0.321320 0.946971i \(-0.604127\pi\)
−0.321320 + 0.946971i \(0.604127\pi\)
\(618\) 1646.30 0.107158
\(619\) 6625.35 0.430202 0.215101 0.976592i \(-0.430992\pi\)
0.215101 + 0.976592i \(0.430992\pi\)
\(620\) 15363.5 0.995181
\(621\) 3915.04 0.252987
\(622\) −30689.5 −1.97836
\(623\) 0 0
\(624\) 2998.28 0.192351
\(625\) −17751.4 −1.13609
\(626\) −30917.3 −1.97397
\(627\) −13935.9 −0.887633
\(628\) −10371.4 −0.659018
\(629\) 22826.6 1.44699
\(630\) 0 0
\(631\) 15303.0 0.965458 0.482729 0.875770i \(-0.339646\pi\)
0.482729 + 0.875770i \(0.339646\pi\)
\(632\) 9242.38 0.581712
\(633\) −6823.94 −0.428479
\(634\) −36495.5 −2.28615
\(635\) −32291.9 −2.01806
\(636\) 11582.8 0.722152
\(637\) 0 0
\(638\) −31610.2 −1.96154
\(639\) −1547.47 −0.0958010
\(640\) −15448.5 −0.954152
\(641\) 24708.8 1.52253 0.761264 0.648442i \(-0.224579\pi\)
0.761264 + 0.648442i \(0.224579\pi\)
\(642\) 20196.3 1.24157
\(643\) 17248.5 1.05788 0.528938 0.848660i \(-0.322590\pi\)
0.528938 + 0.848660i \(0.322590\pi\)
\(644\) 0 0
\(645\) −15012.2 −0.916441
\(646\) 29996.6 1.82694
\(647\) 15232.7 0.925592 0.462796 0.886465i \(-0.346846\pi\)
0.462796 + 0.886465i \(0.346846\pi\)
\(648\) 671.205 0.0406905
\(649\) 13731.5 0.830524
\(650\) −5049.56 −0.304708
\(651\) 0 0
\(652\) −16320.8 −0.980327
\(653\) −5254.75 −0.314907 −0.157454 0.987526i \(-0.550328\pi\)
−0.157454 + 0.987526i \(0.550328\pi\)
\(654\) −19524.9 −1.16740
\(655\) 1427.29 0.0851436
\(656\) −11644.3 −0.693040
\(657\) 881.361 0.0523366
\(658\) 0 0
\(659\) 17992.3 1.06355 0.531775 0.846885i \(-0.321525\pi\)
0.531775 + 0.846885i \(0.321525\pi\)
\(660\) −15914.5 −0.938592
\(661\) −22591.6 −1.32937 −0.664684 0.747125i \(-0.731434\pi\)
−0.664684 + 0.747125i \(0.731434\pi\)
\(662\) 20570.4 1.20769
\(663\) 4119.92 0.241334
\(664\) 2280.82 0.133302
\(665\) 0 0
\(666\) 7215.63 0.419820
\(667\) −20352.0 −1.18146
\(668\) −10729.6 −0.621470
\(669\) −3293.31 −0.190324
\(670\) 31273.2 1.80327
\(671\) 36092.8 2.07652
\(672\) 0 0
\(673\) 11400.1 0.652959 0.326480 0.945204i \(-0.394138\pi\)
0.326480 + 0.945204i \(0.394138\pi\)
\(674\) 5407.83 0.309053
\(675\) −2826.57 −0.161177
\(676\) 974.564 0.0554486
\(677\) −623.380 −0.0353892 −0.0176946 0.999843i \(-0.505633\pi\)
−0.0176946 + 0.999843i \(0.505633\pi\)
\(678\) −322.406 −0.0182624
\(679\) 0 0
\(680\) −13266.7 −0.748169
\(681\) −11932.4 −0.671441
\(682\) −39590.4 −2.22287
\(683\) 19072.4 1.06850 0.534249 0.845327i \(-0.320594\pi\)
0.534249 + 0.845327i \(0.320594\pi\)
\(684\) 3971.92 0.222033
\(685\) −3701.30 −0.206452
\(686\) 0 0
\(687\) 10658.8 0.591935
\(688\) −25384.1 −1.40663
\(689\) −8703.88 −0.481265
\(690\) −24461.1 −1.34959
\(691\) 12350.0 0.679905 0.339953 0.940443i \(-0.389589\pi\)
0.339953 + 0.940443i \(0.389589\pi\)
\(692\) 1140.06 0.0626280
\(693\) 0 0
\(694\) −37757.2 −2.06519
\(695\) 28091.9 1.53322
\(696\) −3489.20 −0.190026
\(697\) −16000.4 −0.869524
\(698\) −12520.9 −0.678972
\(699\) −1904.29 −0.103043
\(700\) 0 0
\(701\) 25539.0 1.37603 0.688014 0.725697i \(-0.258483\pi\)
0.688014 + 0.725697i \(0.258483\pi\)
\(702\) 1302.33 0.0700190
\(703\) −16536.8 −0.887194
\(704\) −11980.0 −0.641354
\(705\) −15669.4 −0.837083
\(706\) −2727.36 −0.145390
\(707\) 0 0
\(708\) −3913.68 −0.207747
\(709\) −233.244 −0.0123549 −0.00617747 0.999981i \(-0.501966\pi\)
−0.00617747 + 0.999981i \(0.501966\pi\)
\(710\) 9668.56 0.511063
\(711\) 10038.2 0.529482
\(712\) 1584.09 0.0833796
\(713\) −25489.9 −1.33886
\(714\) 0 0
\(715\) 11958.9 0.625507
\(716\) −17313.1 −0.903660
\(717\) −10167.1 −0.529564
\(718\) 13614.7 0.707653
\(719\) −14514.9 −0.752871 −0.376435 0.926443i \(-0.622850\pi\)
−0.376435 + 0.926443i \(0.622850\pi\)
\(720\) −10486.2 −0.542775
\(721\) 0 0
\(722\) 3718.09 0.191652
\(723\) −7764.86 −0.399417
\(724\) 12734.4 0.653688
\(725\) 14693.7 0.752702
\(726\) 26194.9 1.33910
\(727\) −29317.8 −1.49565 −0.747824 0.663897i \(-0.768901\pi\)
−0.747824 + 0.663897i \(0.768901\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −5506.74 −0.279197
\(731\) −34880.1 −1.76483
\(732\) −10286.9 −0.519422
\(733\) −17283.7 −0.870926 −0.435463 0.900207i \(-0.643415\pi\)
−0.435463 + 0.900207i \(0.643415\pi\)
\(734\) −6194.05 −0.311480
\(735\) 0 0
\(736\) −31748.8 −1.59005
\(737\) −33757.4 −1.68720
\(738\) −5057.82 −0.252278
\(739\) 9735.42 0.484605 0.242303 0.970201i \(-0.422097\pi\)
0.242303 + 0.970201i \(0.422097\pi\)
\(740\) −18884.7 −0.938129
\(741\) −2984.69 −0.147969
\(742\) 0 0
\(743\) −27912.2 −1.37819 −0.689097 0.724669i \(-0.741993\pi\)
−0.689097 + 0.724669i \(0.741993\pi\)
\(744\) −4370.07 −0.215342
\(745\) 26806.2 1.31826
\(746\) 25945.4 1.27336
\(747\) 2477.21 0.121334
\(748\) −36976.6 −1.80748
\(749\) 0 0
\(750\) −3426.59 −0.166829
\(751\) 13787.5 0.669923 0.334962 0.942232i \(-0.391277\pi\)
0.334962 + 0.942232i \(0.391277\pi\)
\(752\) −26495.3 −1.28482
\(753\) 6269.18 0.303402
\(754\) −6770.05 −0.326990
\(755\) 25609.0 1.23445
\(756\) 0 0
\(757\) −5456.19 −0.261966 −0.130983 0.991385i \(-0.541813\pi\)
−0.130983 + 0.991385i \(0.541813\pi\)
\(758\) 38152.8 1.82819
\(759\) 26404.1 1.26273
\(760\) 9611.11 0.458726
\(761\) −22816.7 −1.08687 −0.543433 0.839452i \(-0.682876\pi\)
−0.543433 + 0.839452i \(0.682876\pi\)
\(762\) −23717.0 −1.12753
\(763\) 0 0
\(764\) −18886.2 −0.894343
\(765\) −14409.1 −0.680994
\(766\) −27145.1 −1.28041
\(767\) 2940.92 0.138449
\(768\) −16083.1 −0.755664
\(769\) 39827.7 1.86765 0.933826 0.357727i \(-0.116448\pi\)
0.933826 + 0.357727i \(0.116448\pi\)
\(770\) 0 0
\(771\) −7565.68 −0.353400
\(772\) −20709.7 −0.965489
\(773\) 24985.2 1.16256 0.581278 0.813705i \(-0.302553\pi\)
0.581278 + 0.813705i \(0.302553\pi\)
\(774\) −11025.8 −0.512034
\(775\) 18403.2 0.852983
\(776\) 7744.88 0.358280
\(777\) 0 0
\(778\) −25740.1 −1.18616
\(779\) 11591.5 0.533132
\(780\) −3408.45 −0.156464
\(781\) −10436.6 −0.478169
\(782\) −56834.2 −2.59896
\(783\) −3789.64 −0.172964
\(784\) 0 0
\(785\) −27257.2 −1.23930
\(786\) 1048.29 0.0475715
\(787\) 7568.79 0.342819 0.171409 0.985200i \(-0.445168\pi\)
0.171409 + 0.985200i \(0.445168\pi\)
\(788\) 25402.8 1.14840
\(789\) 17879.9 0.806772
\(790\) −62718.6 −2.82459
\(791\) 0 0
\(792\) 4526.81 0.203097
\(793\) 7730.10 0.346159
\(794\) −12286.7 −0.549165
\(795\) 30441.0 1.35803
\(796\) −27258.9 −1.21378
\(797\) 3362.05 0.149423 0.0747113 0.997205i \(-0.476196\pi\)
0.0747113 + 0.997205i \(0.476196\pi\)
\(798\) 0 0
\(799\) −36407.1 −1.61200
\(800\) 22922.0 1.01302
\(801\) 1720.49 0.0758933
\(802\) 14946.3 0.658068
\(803\) 5944.16 0.261226
\(804\) 9621.32 0.422037
\(805\) 0 0
\(806\) −8479.19 −0.370554
\(807\) −16731.6 −0.729838
\(808\) 1115.24 0.0485570
\(809\) 38036.6 1.65302 0.826512 0.562920i \(-0.190322\pi\)
0.826512 + 0.562920i \(0.190322\pi\)
\(810\) −4554.79 −0.197579
\(811\) −939.922 −0.0406968 −0.0203484 0.999793i \(-0.506478\pi\)
−0.0203484 + 0.999793i \(0.506478\pi\)
\(812\) 0 0
\(813\) 11749.3 0.506848
\(814\) 48664.3 2.09543
\(815\) −42893.1 −1.84353
\(816\) −24364.2 −1.04524
\(817\) 25269.0 1.08207
\(818\) 21480.8 0.918163
\(819\) 0 0
\(820\) 13237.3 0.563740
\(821\) 17499.0 0.743874 0.371937 0.928258i \(-0.378694\pi\)
0.371937 + 0.928258i \(0.378694\pi\)
\(822\) −2718.45 −0.115349
\(823\) −45803.0 −1.93997 −0.969983 0.243172i \(-0.921812\pi\)
−0.969983 + 0.243172i \(0.921812\pi\)
\(824\) 1225.59 0.0518147
\(825\) −19063.2 −0.804480
\(826\) 0 0
\(827\) −4491.96 −0.188876 −0.0944382 0.995531i \(-0.530105\pi\)
−0.0944382 + 0.995531i \(0.530105\pi\)
\(828\) −7525.55 −0.315859
\(829\) −16649.1 −0.697525 −0.348762 0.937211i \(-0.613398\pi\)
−0.348762 + 0.937211i \(0.613398\pi\)
\(830\) −15477.6 −0.647271
\(831\) 5168.80 0.215769
\(832\) −2565.79 −0.106914
\(833\) 0 0
\(834\) 20632.3 0.856639
\(835\) −28198.8 −1.16869
\(836\) 26787.8 1.10822
\(837\) −4746.36 −0.196007
\(838\) 43074.0 1.77562
\(839\) −18189.8 −0.748487 −0.374243 0.927331i \(-0.622098\pi\)
−0.374243 + 0.927331i \(0.622098\pi\)
\(840\) 0 0
\(841\) −4688.88 −0.192254
\(842\) −54173.1 −2.21726
\(843\) −25017.2 −1.02211
\(844\) 13117.1 0.534963
\(845\) 2561.27 0.104273
\(846\) −11508.5 −0.467696
\(847\) 0 0
\(848\) 51472.7 2.08441
\(849\) −8983.88 −0.363164
\(850\) 41033.1 1.65579
\(851\) 31332.1 1.26210
\(852\) 2974.57 0.119609
\(853\) −16854.3 −0.676530 −0.338265 0.941051i \(-0.609840\pi\)
−0.338265 + 0.941051i \(0.609840\pi\)
\(854\) 0 0
\(855\) 10438.7 0.417539
\(856\) 15035.1 0.600339
\(857\) −13915.7 −0.554670 −0.277335 0.960773i \(-0.589451\pi\)
−0.277335 + 0.960773i \(0.589451\pi\)
\(858\) 8783.30 0.349484
\(859\) −33490.9 −1.33026 −0.665131 0.746727i \(-0.731624\pi\)
−0.665131 + 0.746727i \(0.731624\pi\)
\(860\) 28856.7 1.14419
\(861\) 0 0
\(862\) 19487.9 0.770022
\(863\) 46684.7 1.84144 0.920721 0.390222i \(-0.127602\pi\)
0.920721 + 0.390222i \(0.127602\pi\)
\(864\) −5911.80 −0.232782
\(865\) 2996.22 0.117774
\(866\) −42571.5 −1.67048
\(867\) −18739.7 −0.734066
\(868\) 0 0
\(869\) 67700.6 2.64279
\(870\) 23677.7 0.922699
\(871\) −7229.91 −0.281259
\(872\) −14535.3 −0.564480
\(873\) 8411.76 0.326111
\(874\) 41173.8 1.59350
\(875\) 0 0
\(876\) −1694.17 −0.0653432
\(877\) 24804.1 0.955045 0.477523 0.878619i \(-0.341535\pi\)
0.477523 + 0.878619i \(0.341535\pi\)
\(878\) 66795.1 2.56746
\(879\) −25477.8 −0.977639
\(880\) −70722.1 −2.70914
\(881\) 15752.6 0.602406 0.301203 0.953560i \(-0.402612\pi\)
0.301203 + 0.953560i \(0.402612\pi\)
\(882\) 0 0
\(883\) 14761.2 0.562575 0.281287 0.959624i \(-0.409239\pi\)
0.281287 + 0.959624i \(0.409239\pi\)
\(884\) −7919.38 −0.301309
\(885\) −10285.6 −0.390675
\(886\) −25495.7 −0.966757
\(887\) −12017.3 −0.454905 −0.227452 0.973789i \(-0.573040\pi\)
−0.227452 + 0.973789i \(0.573040\pi\)
\(888\) 5371.67 0.202997
\(889\) 0 0
\(890\) −10749.6 −0.404863
\(891\) 4916.59 0.184862
\(892\) 6330.45 0.237623
\(893\) 26375.3 0.988370
\(894\) 19688.0 0.736537
\(895\) −45500.9 −1.69936
\(896\) 0 0
\(897\) 5655.05 0.210498
\(898\) 45654.4 1.69656
\(899\) 24673.5 0.915360
\(900\) 5433.28 0.201233
\(901\) 70728.3 2.61521
\(902\) −34111.4 −1.25919
\(903\) 0 0
\(904\) −240.015 −0.00883049
\(905\) 33467.5 1.22928
\(906\) 18808.7 0.689710
\(907\) 22681.8 0.830361 0.415181 0.909739i \(-0.363718\pi\)
0.415181 + 0.909739i \(0.363718\pi\)
\(908\) 22936.7 0.838305
\(909\) 1211.27 0.0441973
\(910\) 0 0
\(911\) −41767.9 −1.51903 −0.759513 0.650492i \(-0.774563\pi\)
−0.759513 + 0.650492i \(0.774563\pi\)
\(912\) 17650.7 0.640871
\(913\) 16707.0 0.605610
\(914\) 7607.39 0.275306
\(915\) −27035.3 −0.976787
\(916\) −20488.6 −0.739041
\(917\) 0 0
\(918\) −10582.8 −0.380485
\(919\) −19326.8 −0.693726 −0.346863 0.937916i \(-0.612753\pi\)
−0.346863 + 0.937916i \(0.612753\pi\)
\(920\) −18210.1 −0.652574
\(921\) 7664.15 0.274204
\(922\) 60761.2 2.17035
\(923\) −2235.23 −0.0797112
\(924\) 0 0
\(925\) −22621.1 −0.804083
\(926\) −14033.4 −0.498018
\(927\) 1331.12 0.0471624
\(928\) 30732.0 1.08710
\(929\) 14276.7 0.504201 0.252101 0.967701i \(-0.418879\pi\)
0.252101 + 0.967701i \(0.418879\pi\)
\(930\) 29655.2 1.04563
\(931\) 0 0
\(932\) 3660.45 0.128650
\(933\) −24814.0 −0.870713
\(934\) −43203.8 −1.51357
\(935\) −97178.9 −3.39903
\(936\) 969.519 0.0338565
\(937\) 15265.0 0.532214 0.266107 0.963943i \(-0.414262\pi\)
0.266107 + 0.963943i \(0.414262\pi\)
\(938\) 0 0
\(939\) −24998.2 −0.868780
\(940\) 30120.0 1.04511
\(941\) 22508.7 0.779768 0.389884 0.920864i \(-0.372515\pi\)
0.389884 + 0.920864i \(0.372515\pi\)
\(942\) −20019.3 −0.692424
\(943\) −21962.4 −0.758423
\(944\) −17391.9 −0.599639
\(945\) 0 0
\(946\) −74361.3 −2.55570
\(947\) 17943.5 0.615720 0.307860 0.951432i \(-0.400387\pi\)
0.307860 + 0.951432i \(0.400387\pi\)
\(948\) −19295.6 −0.661068
\(949\) 1273.08 0.0435467
\(950\) −29726.5 −1.01522
\(951\) −29508.5 −1.00618
\(952\) 0 0
\(953\) −5504.20 −0.187092 −0.0935460 0.995615i \(-0.529820\pi\)
−0.0935460 + 0.995615i \(0.529820\pi\)
\(954\) 22357.6 0.758758
\(955\) −49635.1 −1.68184
\(956\) 19543.4 0.661169
\(957\) −25558.5 −0.863310
\(958\) 12838.1 0.432965
\(959\) 0 0
\(960\) 8973.63 0.301690
\(961\) 1111.51 0.0373104
\(962\) 10422.6 0.349311
\(963\) 16329.8 0.546437
\(964\) 14925.7 0.498678
\(965\) −54427.5 −1.81563
\(966\) 0 0
\(967\) −27534.1 −0.915652 −0.457826 0.889042i \(-0.651372\pi\)
−0.457826 + 0.889042i \(0.651372\pi\)
\(968\) 19500.8 0.647499
\(969\) 24253.8 0.804070
\(970\) −52556.6 −1.73968
\(971\) 26329.7 0.870194 0.435097 0.900383i \(-0.356714\pi\)
0.435097 + 0.900383i \(0.356714\pi\)
\(972\) −1401.30 −0.0462414
\(973\) 0 0
\(974\) 1114.11 0.0366515
\(975\) −4082.82 −0.134108
\(976\) −45714.0 −1.49925
\(977\) 55209.8 1.80790 0.903950 0.427638i \(-0.140654\pi\)
0.903950 + 0.427638i \(0.140654\pi\)
\(978\) −31503.1 −1.03002
\(979\) 11603.5 0.378804
\(980\) 0 0
\(981\) −15786.8 −0.513797
\(982\) −26548.4 −0.862722
\(983\) −16795.9 −0.544971 −0.272486 0.962160i \(-0.587846\pi\)
−0.272486 + 0.962160i \(0.587846\pi\)
\(984\) −3765.29 −0.121985
\(985\) 66761.7 2.15960
\(986\) 55013.9 1.77688
\(987\) 0 0
\(988\) 5737.22 0.184742
\(989\) −47876.9 −1.53933
\(990\) −30718.8 −0.986170
\(991\) −61142.2 −1.95988 −0.979942 0.199282i \(-0.936139\pi\)
−0.979942 + 0.199282i \(0.936139\pi\)
\(992\) 38490.4 1.23193
\(993\) 16632.2 0.531527
\(994\) 0 0
\(995\) −71639.6 −2.28254
\(996\) −4761.73 −0.151487
\(997\) −7852.57 −0.249442 −0.124721 0.992192i \(-0.539804\pi\)
−0.124721 + 0.992192i \(0.539804\pi\)
\(998\) 15511.7 0.491997
\(999\) 5834.20 0.184771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.4.a.l.1.2 4
7.6 odd 2 273.4.a.f.1.2 4
21.20 even 2 819.4.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.4.a.f.1.2 4 7.6 odd 2
819.4.a.g.1.3 4 21.20 even 2
1911.4.a.l.1.2 4 1.1 even 1 trivial