Properties

Label 1911.4.a.l
Level $1911$
Weight $4$
Character orbit 1911.a
Self dual yes
Analytic conductor $112.753$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-3,-12,15,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1038472.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 22x^{2} + 6x + 104 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - 3 q^{3} + (\beta_{2} - \beta_1 + 4) q^{4} + (\beta_{3} + \beta_1 + 6) q^{5} + ( - 3 \beta_1 + 3) q^{6} + (\beta_{3} - 2 \beta_1 - 9) q^{8} + 9 q^{9} + ( - 3 \beta_{3} + 6 \beta_{2} + \cdots + 4) q^{10}+ \cdots + (27 \beta_{3} - 72 \beta_{2} + \cdots + 36) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 12 q^{3} + 15 q^{4} + 24 q^{5} + 9 q^{6} - 39 q^{8} + 36 q^{9} + 26 q^{10} + 8 q^{11} - 45 q^{12} + 52 q^{13} - 72 q^{15} - 181 q^{16} + 6 q^{17} - 27 q^{18} + 332 q^{19} + 62 q^{20} - 176 q^{22}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 22x^{2} + 6x + 104 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu^{2} - 11\nu + 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 14\beta _1 + 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.33161
−2.71034
2.58295
4.45901
−4.33161 −3.00000 10.7629 −6.96257 12.9948 0 −11.9677 9.00000 30.1592
1.2 −3.71034 −3.00000 5.76665 15.1555 11.1310 0 8.28649 9.00000 −56.2319
1.3 1.58295 −3.00000 −5.49427 1.38810 −4.74885 0 −21.3608 9.00000 2.19729
1.4 3.45901 −3.00000 3.96474 14.4190 −10.3770 0 −13.9580 9.00000 49.8755
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.4.a.l 4
7.b odd 2 1 273.4.a.f 4
21.c even 2 1 819.4.a.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.4.a.f 4 7.b odd 2 1
819.4.a.g 4 21.c even 2 1
1911.4.a.l 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2}^{4} + 3T_{2}^{3} - 19T_{2}^{2} - 37T_{2} + 88 \) Copy content Toggle raw display
\( T_{5}^{4} - 24T_{5}^{3} + 44T_{5}^{2} + 1504T_{5} - 2112 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3 T^{3} + \cdots + 88 \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 24 T^{3} + \cdots - 2112 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 8 T^{3} + \cdots + 2244864 \) Copy content Toggle raw display
$13$ \( (T - 13)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 15592864 \) Copy content Toggle raw display
$19$ \( T^{4} - 332 T^{3} + \cdots + 38566912 \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots + 28332096 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 110171792 \) Copy content Toggle raw display
$31$ \( T^{4} - 184 T^{3} + \cdots + 884861952 \) Copy content Toggle raw display
$37$ \( T^{4} + 244 T^{3} + \cdots - 476435344 \) Copy content Toggle raw display
$41$ \( T^{4} - 296 T^{3} + \cdots - 585736128 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 15629953792 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 9913668544 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 2289233712 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 8780572864 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 133456059152 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 16010591232 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 12060510592 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 9634081264 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 3700506624 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 237457983936 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 52442520576 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 201413916944 \) Copy content Toggle raw display
show more
show less