Properties

Label 2-1911-1.1-c3-0-64
Degree $2$
Conductor $1911$
Sign $1$
Analytic cond. $112.752$
Root an. cond. $10.6185$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.58·2-s − 3·3-s − 5.49·4-s + 1.38·5-s − 4.74·6-s − 21.3·8-s + 9·9-s + 2.19·10-s + 24.7·11-s + 16.4·12-s + 13·13-s − 4.16·15-s + 10.1·16-s + 126.·17-s + 14.2·18-s + 82.8·19-s − 7.62·20-s + 39.2·22-s − 67.3·23-s + 64.0·24-s − 123.·25-s + 20.5·26-s − 27·27-s − 228.·29-s − 6.59·30-s − 101.·31-s + 186.·32-s + ⋯
L(s)  = 1  + 0.559·2-s − 0.577·3-s − 0.686·4-s + 0.124·5-s − 0.323·6-s − 0.944·8-s + 0.333·9-s + 0.0694·10-s + 0.679·11-s + 0.396·12-s + 0.277·13-s − 0.0716·15-s + 0.158·16-s + 1.80·17-s + 0.186·18-s + 1.00·19-s − 0.0852·20-s + 0.380·22-s − 0.610·23-s + 0.545·24-s − 0.984·25-s + 0.155·26-s − 0.192·27-s − 1.46·29-s − 0.0401·30-s − 0.586·31-s + 1.03·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1911 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1911\)    =    \(3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(112.752\)
Root analytic conductor: \(10.6185\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1911,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.837765618\)
\(L(\frac12)\) \(\approx\) \(1.837765618\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
7 \( 1 \)
13 \( 1 - 13T \)
good2 \( 1 - 1.58T + 8T^{2} \)
5 \( 1 - 1.38T + 125T^{2} \)
11 \( 1 - 24.7T + 1.33e3T^{2} \)
17 \( 1 - 126.T + 4.91e3T^{2} \)
19 \( 1 - 82.8T + 6.85e3T^{2} \)
23 \( 1 + 67.3T + 1.21e4T^{2} \)
29 \( 1 + 228.T + 2.43e4T^{2} \)
31 \( 1 + 101.T + 2.97e4T^{2} \)
37 \( 1 + 188.T + 5.06e4T^{2} \)
41 \( 1 + 198.T + 6.89e4T^{2} \)
43 \( 1 - 283.T + 7.95e4T^{2} \)
47 \( 1 - 157.T + 1.03e5T^{2} \)
53 \( 1 - 7.59T + 1.48e5T^{2} \)
59 \( 1 + 229.T + 2.05e5T^{2} \)
61 \( 1 + 630.T + 2.26e5T^{2} \)
67 \( 1 + 45.9T + 3.00e5T^{2} \)
71 \( 1 - 440.T + 3.57e5T^{2} \)
73 \( 1 - 624.T + 3.89e5T^{2} \)
79 \( 1 - 55.3T + 4.93e5T^{2} \)
83 \( 1 - 782.T + 5.71e5T^{2} \)
89 \( 1 + 1.48e3T + 7.04e5T^{2} \)
97 \( 1 - 1.79e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.056321849985563958972504139852, −7.938977044408169718674309217183, −7.29740606884354544884488469771, −6.02090258876151115396179249555, −5.68889236444539654042881260926, −4.90747479108265822899630016034, −3.79647308798386831438939961472, −3.39621706456373784932037373592, −1.70434828845081433106645269823, −0.62142429161282153159575950116, 0.62142429161282153159575950116, 1.70434828845081433106645269823, 3.39621706456373784932037373592, 3.79647308798386831438939961472, 4.90747479108265822899630016034, 5.68889236444539654042881260926, 6.02090258876151115396179249555, 7.29740606884354544884488469771, 7.938977044408169718674309217183, 9.056321849985563958972504139852

Graph of the $Z$-function along the critical line