Properties

Label 190.4.a.c
Level $190$
Weight $4$
Character orbit 190.a
Self dual yes
Analytic conductor $11.210$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [190,4,Mod(1,190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("190.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 190 = 2 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.2103629011\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - 4 q^{3} + 4 q^{4} + 5 q^{5} - 8 q^{6} - 20 q^{7} + 8 q^{8} - 11 q^{9} + 10 q^{10} - 44 q^{11} - 16 q^{12} + 42 q^{13} - 40 q^{14} - 20 q^{15} + 16 q^{16} - 86 q^{17} - 22 q^{18} + 19 q^{19}+ \cdots + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −4.00000 4.00000 5.00000 −8.00000 −20.0000 8.00000 −11.0000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 190.4.a.c 1
3.b odd 2 1 1710.4.a.b 1
4.b odd 2 1 1520.4.a.g 1
5.b even 2 1 950.4.a.a 1
5.c odd 4 2 950.4.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.4.a.c 1 1.a even 1 1 trivial
950.4.a.a 1 5.b even 2 1
950.4.b.a 2 5.c odd 4 2
1520.4.a.g 1 4.b odd 2 1
1710.4.a.b 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 4 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(190))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 4 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 20 \) Copy content Toggle raw display
$11$ \( T + 44 \) Copy content Toggle raw display
$13$ \( T - 42 \) Copy content Toggle raw display
$17$ \( T + 86 \) Copy content Toggle raw display
$19$ \( T - 19 \) Copy content Toggle raw display
$23$ \( T + 164 \) Copy content Toggle raw display
$29$ \( T + 162 \) Copy content Toggle raw display
$31$ \( T + 312 \) Copy content Toggle raw display
$37$ \( T - 226 \) Copy content Toggle raw display
$41$ \( T - 34 \) Copy content Toggle raw display
$43$ \( T + 432 \) Copy content Toggle raw display
$47$ \( T - 580 \) Copy content Toggle raw display
$53$ \( T - 506 \) Copy content Toggle raw display
$59$ \( T - 364 \) Copy content Toggle raw display
$61$ \( T - 518 \) Copy content Toggle raw display
$67$ \( T - 924 \) Copy content Toggle raw display
$71$ \( T - 320 \) Copy content Toggle raw display
$73$ \( T + 542 \) Copy content Toggle raw display
$79$ \( T + 1208 \) Copy content Toggle raw display
$83$ \( T + 1120 \) Copy content Toggle raw display
$89$ \( T + 1022 \) Copy content Toggle raw display
$97$ \( T - 1166 \) Copy content Toggle raw display
show more
show less