Properties

Label 2-190-1.1-c3-0-14
Degree $2$
Conductor $190$
Sign $-1$
Analytic cond. $11.2103$
Root an. cond. $3.34818$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·3-s + 4·4-s + 5·5-s − 8·6-s − 20·7-s + 8·8-s − 11·9-s + 10·10-s − 44·11-s − 16·12-s + 42·13-s − 40·14-s − 20·15-s + 16·16-s − 86·17-s − 22·18-s + 19·19-s + 20·20-s + 80·21-s − 88·22-s − 164·23-s − 32·24-s + 25·25-s + 84·26-s + 152·27-s − 80·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.769·3-s + 1/2·4-s + 0.447·5-s − 0.544·6-s − 1.07·7-s + 0.353·8-s − 0.407·9-s + 0.316·10-s − 1.20·11-s − 0.384·12-s + 0.896·13-s − 0.763·14-s − 0.344·15-s + 1/4·16-s − 1.22·17-s − 0.288·18-s + 0.229·19-s + 0.223·20-s + 0.831·21-s − 0.852·22-s − 1.48·23-s − 0.272·24-s + 1/5·25-s + 0.633·26-s + 1.08·27-s − 0.539·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190\)    =    \(2 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(11.2103\)
Root analytic conductor: \(3.34818\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 190,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 - p T \)
19 \( 1 - p T \)
good3 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 + 4 p T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 + 86 T + p^{3} T^{2} \)
23 \( 1 + 164 T + p^{3} T^{2} \)
29 \( 1 + 162 T + p^{3} T^{2} \)
31 \( 1 + 312 T + p^{3} T^{2} \)
37 \( 1 - 226 T + p^{3} T^{2} \)
41 \( 1 - 34 T + p^{3} T^{2} \)
43 \( 1 + 432 T + p^{3} T^{2} \)
47 \( 1 - 580 T + p^{3} T^{2} \)
53 \( 1 - 506 T + p^{3} T^{2} \)
59 \( 1 - 364 T + p^{3} T^{2} \)
61 \( 1 - 518 T + p^{3} T^{2} \)
67 \( 1 - 924 T + p^{3} T^{2} \)
71 \( 1 - 320 T + p^{3} T^{2} \)
73 \( 1 + 542 T + p^{3} T^{2} \)
79 \( 1 + 1208 T + p^{3} T^{2} \)
83 \( 1 + 1120 T + p^{3} T^{2} \)
89 \( 1 + 1022 T + p^{3} T^{2} \)
97 \( 1 - 1166 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.58612399691585644828569213200, −10.84095871809509681032446392806, −9.899793101950890731014351743848, −8.578136134646510593071588527285, −7.05777051964957390216058301922, −5.98878204292262418958489604657, −5.45977410423522683416261940185, −3.84282973112482394919715116660, −2.40294405515677059811414395528, 0, 2.40294405515677059811414395528, 3.84282973112482394919715116660, 5.45977410423522683416261940185, 5.98878204292262418958489604657, 7.05777051964957390216058301922, 8.578136134646510593071588527285, 9.899793101950890731014351743848, 10.84095871809509681032446392806, 11.58612399691585644828569213200

Graph of the $Z$-function along the critical line