Properties

Label 19.3.f.a.10.1
Level $19$
Weight $3$
Character 19.10
Analytic conductor $0.518$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,3,Mod(2,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.2"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 19.f (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.517712502285\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 216x^{8} + 905x^{6} + 1770x^{4} + 1395x^{2} + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 10.1
Root \(-2.88811i\) of defining polynomial
Character \(\chi\) \(=\) 19.10
Dual form 19.3.f.a.2.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.84423 + 0.501515i) q^{2} +(3.28392 + 3.91363i) q^{3} +(4.07936 - 1.48477i) q^{4} +(-3.00117 - 1.09234i) q^{5} +(-11.3030 - 9.48432i) q^{6} +(3.87208 - 6.70664i) q^{7} +(-0.853313 + 0.492661i) q^{8} +(-2.96949 + 16.8408i) q^{9} +(9.08386 + 1.60173i) q^{10} +(-3.45312 - 5.98097i) q^{11} +(19.2071 + 11.0892i) q^{12} +(3.92326 - 4.67556i) q^{13} +(-7.64961 + 21.0171i) q^{14} +(-5.58062 - 15.3326i) q^{15} +(-11.1222 + 9.33260i) q^{16} +(0.218340 + 1.23827i) q^{17} -49.3885i q^{18} +(-12.9229 + 13.9283i) q^{19} -13.8647 q^{20} +(38.9629 - 6.87021i) q^{21} +(12.8210 + 15.2795i) q^{22} +(-1.77889 + 0.647464i) q^{23} +(-4.73030 - 1.72169i) q^{24} +(-11.3373 - 9.51310i) q^{25} +(-8.81380 + 15.2659i) q^{26} +(-35.8406 + 20.6926i) q^{27} +(5.83782 - 33.1079i) q^{28} +(11.5950 + 2.04451i) q^{29} +(23.5621 + 40.8108i) q^{30} +(-24.9929 - 14.4296i) q^{31} +(29.4870 - 35.1412i) q^{32} +(12.0675 - 33.1553i) q^{33} +(-1.24202 - 3.41242i) q^{34} +(-18.9467 + 15.8982i) q^{35} +(12.8911 + 73.1088i) q^{36} +43.6204i q^{37} +(29.7704 - 46.0964i) q^{38} +31.1821 q^{39} +(3.09909 - 0.546454i) q^{40} +(19.6019 + 23.3607i) q^{41} +(-107.374 + 39.0809i) q^{42} +(-5.57351 - 2.02859i) q^{43} +(-22.9668 - 19.2715i) q^{44} +(27.3079 - 47.2986i) q^{45} +(4.73487 - 2.73368i) q^{46} +(13.9320 - 79.0123i) q^{47} +(-73.0486 - 12.8804i) q^{48} +(-5.48600 - 9.50203i) q^{49} +(37.0168 + 21.3716i) q^{50} +(-4.12911 + 4.92088i) q^{51} +(9.06229 - 24.8984i) q^{52} +(26.8107 + 73.6617i) q^{53} +(91.5612 - 76.8290i) q^{54} +(3.83016 + 21.7219i) q^{55} +7.63048i q^{56} +(-96.9481 - 4.83580i) q^{57} -34.0042 q^{58} +(-74.2124 + 13.0856i) q^{59} +(-45.5307 - 54.2614i) q^{60} +(26.7312 - 9.72936i) q^{61} +(78.3222 + 28.5069i) q^{62} +(101.447 + 85.1244i) q^{63} +(-37.2060 + 64.4427i) q^{64} +(-16.8817 + 9.74665i) q^{65} +(-17.6950 + 100.353i) q^{66} +(126.717 + 22.3436i) q^{67} +(2.72923 + 4.72716i) q^{68} +(-8.37569 - 4.83570i) q^{69} +(45.9156 - 54.7201i) q^{70} +(-1.86033 + 5.11121i) q^{71} +(-5.76291 - 15.8335i) q^{72} +(3.22765 - 2.70832i) q^{73} +(-21.8763 - 124.067i) q^{74} -75.6101i q^{75} +(-32.0368 + 76.0062i) q^{76} -53.4830 q^{77} +(-88.6891 + 15.6383i) q^{78} +(-57.2275 - 68.2011i) q^{79} +(43.5739 - 15.8596i) q^{80} +(-54.0567 - 19.6750i) q^{81} +(-67.4681 - 56.6125i) q^{82} +(10.4759 - 18.1448i) q^{83} +(148.743 - 85.8768i) q^{84} +(0.697331 - 3.95476i) q^{85} +(16.8697 + 2.97458i) q^{86} +(30.0757 + 52.0926i) q^{87} +(5.89318 + 3.40243i) q^{88} +(-94.4270 + 112.534i) q^{89} +(-53.9489 + 148.223i) q^{90} +(-16.1661 - 44.4160i) q^{91} +(-6.29542 + 5.28248i) q^{92} +(-25.6024 - 145.199i) q^{93} +231.716i q^{94} +(53.9983 - 27.6852i) q^{95} +234.362 q^{96} +(68.4359 - 12.0671i) q^{97} +(20.3688 + 24.2746i) q^{98} +(110.979 - 40.3929i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{5} - 36 q^{6} + 6 q^{7} - 9 q^{8} - 24 q^{9} + 51 q^{10} - 18 q^{11} + 63 q^{12} + 21 q^{13} + 9 q^{14} + 63 q^{15} - 12 q^{16} - 3 q^{17} - 24 q^{19} - 90 q^{20} + 30 q^{21} - 78 q^{22}+ \cdots + 462 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/19\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.84423 + 0.501515i −1.42212 + 0.250757i −0.831199 0.555975i \(-0.812345\pi\)
−0.590917 + 0.806733i \(0.701234\pi\)
\(3\) 3.28392 + 3.91363i 1.09464 + 1.30454i 0.949025 + 0.315201i \(0.102072\pi\)
0.145616 + 0.989341i \(0.453484\pi\)
\(4\) 4.07936 1.48477i 1.01984 0.371191i
\(5\) −3.00117 1.09234i −0.600235 0.218468i 0.0239902 0.999712i \(-0.492363\pi\)
−0.624225 + 0.781245i \(0.714585\pi\)
\(6\) −11.3030 9.48432i −1.88383 1.58072i
\(7\) 3.87208 6.70664i 0.553154 0.958091i −0.444890 0.895585i \(-0.646757\pi\)
0.998045 0.0625061i \(-0.0199093\pi\)
\(8\) −0.853313 + 0.492661i −0.106664 + 0.0615826i
\(9\) −2.96949 + 16.8408i −0.329944 + 1.87120i
\(10\) 9.08386 + 1.60173i 0.908386 + 0.160173i
\(11\) −3.45312 5.98097i −0.313920 0.543725i 0.665288 0.746587i \(-0.268309\pi\)
−0.979207 + 0.202862i \(0.934976\pi\)
\(12\) 19.2071 + 11.0892i 1.60059 + 0.924103i
\(13\) 3.92326 4.67556i 0.301789 0.359659i −0.593743 0.804655i \(-0.702350\pi\)
0.895533 + 0.444996i \(0.146795\pi\)
\(14\) −7.64961 + 21.0171i −0.546401 + 1.50122i
\(15\) −5.58062 15.3326i −0.372041 1.02218i
\(16\) −11.1222 + 9.33260i −0.695135 + 0.583287i
\(17\) 0.218340 + 1.23827i 0.0128435 + 0.0728393i 0.990556 0.137110i \(-0.0437813\pi\)
−0.977712 + 0.209949i \(0.932670\pi\)
\(18\) 49.3885i 2.74380i
\(19\) −12.9229 + 13.9283i −0.680153 + 0.733071i
\(20\) −13.8647 −0.693237
\(21\) 38.9629 6.87021i 1.85538 0.327153i
\(22\) 12.8210 + 15.2795i 0.582773 + 0.694522i
\(23\) −1.77889 + 0.647464i −0.0773432 + 0.0281506i −0.380402 0.924821i \(-0.624214\pi\)
0.303059 + 0.952972i \(0.401992\pi\)
\(24\) −4.73030 1.72169i −0.197096 0.0717371i
\(25\) −11.3373 9.51310i −0.453491 0.380524i
\(26\) −8.81380 + 15.2659i −0.338992 + 0.587152i
\(27\) −35.8406 + 20.6926i −1.32743 + 0.766391i
\(28\) 5.83782 33.1079i 0.208494 1.18243i
\(29\) 11.5950 + 2.04451i 0.399828 + 0.0705005i 0.369947 0.929053i \(-0.379376\pi\)
0.0298814 + 0.999553i \(0.490487\pi\)
\(30\) 23.5621 + 40.8108i 0.785404 + 1.36036i
\(31\) −24.9929 14.4296i −0.806222 0.465472i 0.0394204 0.999223i \(-0.487449\pi\)
−0.845642 + 0.533750i \(0.820782\pi\)
\(32\) 29.4870 35.1412i 0.921467 1.09816i
\(33\) 12.0675 33.1553i 0.365683 1.00470i
\(34\) −1.24202 3.41242i −0.0365300 0.100365i
\(35\) −18.9467 + 15.8982i −0.541334 + 0.454233i
\(36\) 12.8911 + 73.1088i 0.358085 + 2.03080i
\(37\) 43.6204i 1.17893i 0.807794 + 0.589465i \(0.200662\pi\)
−0.807794 + 0.589465i \(0.799338\pi\)
\(38\) 29.7704 46.0964i 0.783432 1.21306i
\(39\) 31.1821 0.799541
\(40\) 3.09909 0.546454i 0.0774773 0.0136613i
\(41\) 19.6019 + 23.3607i 0.478096 + 0.569773i 0.950148 0.311798i \(-0.100931\pi\)
−0.472053 + 0.881570i \(0.656487\pi\)
\(42\) −107.374 + 39.0809i −2.55652 + 0.930498i
\(43\) −5.57351 2.02859i −0.129616 0.0471765i 0.276398 0.961043i \(-0.410859\pi\)
−0.406014 + 0.913867i \(0.633082\pi\)
\(44\) −22.9668 19.2715i −0.521974 0.437988i
\(45\) 27.3079 47.2986i 0.606841 1.05108i
\(46\) 4.73487 2.73368i 0.102932 0.0594278i
\(47\) 13.9320 79.0123i 0.296426 1.68111i −0.364926 0.931037i \(-0.618906\pi\)
0.661351 0.750076i \(-0.269983\pi\)
\(48\) −73.0486 12.8804i −1.52185 0.268343i
\(49\) −5.48600 9.50203i −0.111959 0.193919i
\(50\) 37.0168 + 21.3716i 0.740335 + 0.427433i
\(51\) −4.12911 + 4.92088i −0.0809629 + 0.0964879i
\(52\) 9.06229 24.8984i 0.174275 0.478816i
\(53\) 26.8107 + 73.6617i 0.505862 + 1.38984i 0.885470 + 0.464696i \(0.153837\pi\)
−0.379608 + 0.925147i \(0.623941\pi\)
\(54\) 91.5612 76.8290i 1.69558 1.42276i
\(55\) 3.83016 + 21.7219i 0.0696393 + 0.394944i
\(56\) 7.63048i 0.136259i
\(57\) −96.9481 4.83580i −1.70084 0.0848386i
\(58\) −34.0042 −0.586280
\(59\) −74.2124 + 13.0856i −1.25784 + 0.221791i −0.762544 0.646936i \(-0.776050\pi\)
−0.495292 + 0.868726i \(0.664939\pi\)
\(60\) −45.5307 54.2614i −0.758846 0.904357i
\(61\) 26.7312 9.72936i 0.438216 0.159498i −0.113485 0.993540i \(-0.536201\pi\)
0.551701 + 0.834042i \(0.313979\pi\)
\(62\) 78.3222 + 28.5069i 1.26326 + 0.459789i
\(63\) 101.447 + 85.1244i 1.61027 + 1.35118i
\(64\) −37.2060 + 64.4427i −0.581344 + 1.00692i
\(65\) −16.8817 + 9.74665i −0.259718 + 0.149948i
\(66\) −17.6950 + 100.353i −0.268106 + 1.52050i
\(67\) 126.717 + 22.3436i 1.89130 + 0.333487i 0.994129 0.108204i \(-0.0345099\pi\)
0.897168 + 0.441690i \(0.145621\pi\)
\(68\) 2.72923 + 4.72716i 0.0401357 + 0.0695171i
\(69\) −8.37569 4.83570i −0.121387 0.0700827i
\(70\) 45.9156 54.7201i 0.655938 0.781716i
\(71\) −1.86033 + 5.11121i −0.0262018 + 0.0719889i −0.952104 0.305775i \(-0.901085\pi\)
0.925902 + 0.377764i \(0.123307\pi\)
\(72\) −5.76291 15.8335i −0.0800404 0.219909i
\(73\) 3.22765 2.70832i 0.0442143 0.0371002i −0.620413 0.784275i \(-0.713035\pi\)
0.664627 + 0.747175i \(0.268590\pi\)
\(74\) −21.8763 124.067i −0.295625 1.67658i
\(75\) 75.6101i 1.00813i
\(76\) −32.0368 + 76.0062i −0.421537 + 1.00008i
\(77\) −53.4830 −0.694584
\(78\) −88.6891 + 15.6383i −1.13704 + 0.200491i
\(79\) −57.2275 68.2011i −0.724399 0.863305i 0.270652 0.962677i \(-0.412761\pi\)
−0.995050 + 0.0993726i \(0.968316\pi\)
\(80\) 43.5739 15.8596i 0.544674 0.198245i
\(81\) −54.0567 19.6750i −0.667366 0.242901i
\(82\) −67.4681 56.6125i −0.822782 0.690396i
\(83\) 10.4759 18.1448i 0.126215 0.218611i −0.795992 0.605307i \(-0.793050\pi\)
0.922207 + 0.386696i \(0.126384\pi\)
\(84\) 148.743 85.8768i 1.77075 1.02234i
\(85\) 0.697331 3.95476i 0.00820390 0.0465266i
\(86\) 16.8697 + 2.97458i 0.196159 + 0.0345882i
\(87\) 30.0757 + 52.0926i 0.345697 + 0.598765i
\(88\) 5.89318 + 3.40243i 0.0669679 + 0.0386640i
\(89\) −94.4270 + 112.534i −1.06098 + 1.26442i −0.0979005 + 0.995196i \(0.531213\pi\)
−0.963077 + 0.269227i \(0.913232\pi\)
\(90\) −53.9489 + 148.223i −0.599432 + 1.64693i
\(91\) −16.1661 44.4160i −0.177650 0.488088i
\(92\) −6.29542 + 5.28248i −0.0684284 + 0.0574183i
\(93\) −25.6024 145.199i −0.275295 1.56128i
\(94\) 231.716i 2.46507i
\(95\) 53.9983 27.6852i 0.568403 0.291423i
\(96\) 234.362 2.44128
\(97\) 68.4359 12.0671i 0.705525 0.124403i 0.190637 0.981661i \(-0.438945\pi\)
0.514888 + 0.857257i \(0.327834\pi\)
\(98\) 20.3688 + 24.2746i 0.207845 + 0.247700i
\(99\) 110.979 40.3929i 1.12100 0.408009i
\(100\) −60.3735 21.9742i −0.603735 0.219742i
\(101\) −21.1489 17.7460i −0.209395 0.175703i 0.532058 0.846708i \(-0.321419\pi\)
−0.741453 + 0.671004i \(0.765863\pi\)
\(102\) 9.27625 16.0669i 0.0909436 0.157519i
\(103\) −112.587 + 65.0023i −1.09308 + 0.631090i −0.934395 0.356239i \(-0.884059\pi\)
−0.158686 + 0.987329i \(0.550726\pi\)
\(104\) −1.04431 + 5.92255i −0.0100414 + 0.0569476i
\(105\) −124.439 21.9420i −1.18513 0.208971i
\(106\) −113.198 196.065i −1.06791 1.84967i
\(107\) 69.4189 + 40.0790i 0.648775 + 0.374570i 0.787987 0.615692i \(-0.211124\pi\)
−0.139212 + 0.990263i \(0.544457\pi\)
\(108\) −115.483 + 137.627i −1.06929 + 1.27433i
\(109\) 36.3809 99.9557i 0.333770 0.917025i −0.653352 0.757054i \(-0.726638\pi\)
0.987122 0.159970i \(-0.0511399\pi\)
\(110\) −21.7877 59.8612i −0.198070 0.544193i
\(111\) −170.714 + 143.246i −1.53797 + 1.29051i
\(112\) 19.5245 + 110.729i 0.174326 + 0.988651i
\(113\) 37.9540i 0.335876i −0.985798 0.167938i \(-0.946289\pi\)
0.985798 0.167938i \(-0.0537109\pi\)
\(114\) 278.168 34.8668i 2.44007 0.305849i
\(115\) 6.04602 0.0525741
\(116\) 50.3359 8.87557i 0.433930 0.0765136i
\(117\) 67.0902 + 79.9550i 0.573421 + 0.683376i
\(118\) 204.514 74.4372i 1.73317 0.630823i
\(119\) 9.15005 + 3.33035i 0.0768912 + 0.0279861i
\(120\) 12.3158 + 10.3342i 0.102632 + 0.0861182i
\(121\) 36.6520 63.4831i 0.302909 0.524654i
\(122\) −71.1503 + 41.0786i −0.583199 + 0.336710i
\(123\) −27.0537 + 153.429i −0.219949 + 1.24739i
\(124\) −123.380 21.7551i −0.994997 0.175445i
\(125\) 63.5559 + 110.082i 0.508447 + 0.880656i
\(126\) −331.231 191.236i −2.62881 1.51775i
\(127\) 46.2134 55.0750i 0.363885 0.433662i −0.552774 0.833331i \(-0.686431\pi\)
0.916659 + 0.399670i \(0.130875\pi\)
\(128\) 10.7448 29.5210i 0.0839435 0.230633i
\(129\) −10.3638 28.4744i −0.0803397 0.220732i
\(130\) 43.1273 36.1881i 0.331749 0.278370i
\(131\) −20.7857 117.882i −0.158670 0.899861i −0.955354 0.295465i \(-0.904525\pi\)
0.796684 0.604396i \(-0.206586\pi\)
\(132\) 153.170i 1.16038i
\(133\) 43.3739 + 140.601i 0.326119 + 1.05715i
\(134\) −371.618 −2.77327
\(135\) 130.167 22.9520i 0.964201 0.170015i
\(136\) −0.796359 0.949063i −0.00585558 0.00697841i
\(137\) −154.803 + 56.3435i −1.12995 + 0.411267i −0.838273 0.545251i \(-0.816434\pi\)
−0.291673 + 0.956518i \(0.594212\pi\)
\(138\) 26.2476 + 9.55333i 0.190200 + 0.0692270i
\(139\) 162.817 + 136.619i 1.17134 + 0.982873i 0.999997 0.00233796i \(-0.000744198\pi\)
0.171345 + 0.985211i \(0.445189\pi\)
\(140\) −53.6854 + 92.9858i −0.383467 + 0.664184i
\(141\) 354.976 204.946i 2.51756 1.45352i
\(142\) 2.72786 15.4704i 0.0192103 0.108947i
\(143\) −41.5119 7.31966i −0.290293 0.0511865i
\(144\) −124.142 215.020i −0.862094 1.49319i
\(145\) −32.5654 18.8016i −0.224589 0.129666i
\(146\) −7.82191 + 9.32179i −0.0535747 + 0.0638479i
\(147\) 19.1718 52.6741i 0.130420 0.358327i
\(148\) 64.7661 + 177.943i 0.437609 + 1.20232i
\(149\) −44.5956 + 37.4201i −0.299299 + 0.251142i −0.780053 0.625714i \(-0.784808\pi\)
0.480753 + 0.876856i \(0.340363\pi\)
\(150\) 37.9196 + 215.053i 0.252797 + 1.43368i
\(151\) 54.6073i 0.361638i −0.983516 0.180819i \(-0.942125\pi\)
0.983516 0.180819i \(-0.0578748\pi\)
\(152\) 4.16533 18.2518i 0.0274035 0.120078i
\(153\) −21.5018 −0.140535
\(154\) 152.118 26.8225i 0.987778 0.174172i
\(155\) 59.2459 + 70.6065i 0.382232 + 0.455526i
\(156\) 127.203 46.2981i 0.815404 0.296783i
\(157\) 16.6392 + 6.05619i 0.105982 + 0.0385745i 0.394467 0.918910i \(-0.370929\pi\)
−0.288485 + 0.957485i \(0.593151\pi\)
\(158\) 196.972 + 165.279i 1.24666 + 1.04607i
\(159\) −200.240 + 346.826i −1.25937 + 2.18130i
\(160\) −126.882 + 73.2551i −0.793010 + 0.457844i
\(161\) −2.54571 + 14.4374i −0.0158119 + 0.0896735i
\(162\) 163.617 + 28.8501i 1.00998 + 0.178087i
\(163\) −101.967 176.611i −0.625562 1.08351i −0.988432 0.151666i \(-0.951536\pi\)
0.362869 0.931840i \(-0.381797\pi\)
\(164\) 114.648 + 66.1923i 0.699076 + 0.403612i
\(165\) −72.4335 + 86.3229i −0.438991 + 0.523169i
\(166\) −20.6960 + 56.8617i −0.124674 + 0.342540i
\(167\) −88.9415 244.365i −0.532584 1.46326i −0.855985 0.517000i \(-0.827049\pi\)
0.323402 0.946262i \(-0.395173\pi\)
\(168\) −29.8629 + 25.0579i −0.177755 + 0.149154i
\(169\) 22.8777 + 129.746i 0.135371 + 0.767726i
\(170\) 11.5980i 0.0682234i
\(171\) −196.190 258.992i −1.14731 1.51458i
\(172\) −25.7483 −0.149700
\(173\) −82.0048 + 14.4597i −0.474016 + 0.0835819i −0.405553 0.914072i \(-0.632921\pi\)
−0.0684637 + 0.997654i \(0.521810\pi\)
\(174\) −111.667 133.080i −0.641766 0.764827i
\(175\) −107.700 + 39.1995i −0.615427 + 0.223997i
\(176\) 94.2241 + 34.2948i 0.535364 + 0.194857i
\(177\) −294.920 247.467i −1.66621 1.39812i
\(178\) 212.135 367.428i 1.19177 2.06420i
\(179\) 196.975 113.723i 1.10042 0.635327i 0.164087 0.986446i \(-0.447532\pi\)
0.936331 + 0.351119i \(0.114199\pi\)
\(180\) 41.1713 233.494i 0.228729 1.29719i
\(181\) 37.4457 + 6.60269i 0.206883 + 0.0364790i 0.276129 0.961121i \(-0.410948\pi\)
−0.0692463 + 0.997600i \(0.522059\pi\)
\(182\) 68.2555 + 118.222i 0.375030 + 0.649571i
\(183\) 125.860 + 72.6655i 0.687761 + 0.397079i
\(184\) 1.19897 1.42888i 0.00651616 0.00776566i
\(185\) 47.6483 130.913i 0.257558 0.707635i
\(186\) 145.638 + 400.138i 0.783002 + 2.15128i
\(187\) 6.65210 5.58177i 0.0355727 0.0298491i
\(188\) −60.4811 343.005i −0.321708 1.82450i
\(189\) 320.493i 1.69573i
\(190\) −139.699 + 105.824i −0.735259 + 0.556969i
\(191\) 217.732 1.13996 0.569979 0.821659i \(-0.306951\pi\)
0.569979 + 0.821659i \(0.306951\pi\)
\(192\) −374.386 + 66.0144i −1.94993 + 0.343825i
\(193\) −108.364 129.143i −0.561469 0.669133i 0.408388 0.912809i \(-0.366091\pi\)
−0.969857 + 0.243676i \(0.921647\pi\)
\(194\) −188.596 + 68.6432i −0.972143 + 0.353831i
\(195\) −93.5829 34.0614i −0.479912 0.174674i
\(196\) −36.4876 30.6168i −0.186161 0.156208i
\(197\) 106.287 184.094i 0.539527 0.934488i −0.459402 0.888228i \(-0.651936\pi\)
0.998929 0.0462599i \(-0.0147302\pi\)
\(198\) −295.391 + 170.544i −1.49187 + 0.861334i
\(199\) 2.18414 12.3869i 0.0109756 0.0622456i −0.978828 0.204684i \(-0.934383\pi\)
0.989804 + 0.142439i \(0.0454944\pi\)
\(200\) 14.3610 + 2.53223i 0.0718048 + 0.0126611i
\(201\) 328.684 + 569.297i 1.63524 + 2.83232i
\(202\) 69.0522 + 39.8673i 0.341843 + 0.197363i
\(203\) 58.6086 69.8470i 0.288712 0.344074i
\(204\) −9.53777 + 26.2048i −0.0467538 + 0.128455i
\(205\) −33.3111 91.5214i −0.162493 0.446446i
\(206\) 287.625 241.346i 1.39624 1.17158i
\(207\) −5.62143 31.8807i −0.0271567 0.154013i
\(208\) 88.6166i 0.426041i
\(209\) 127.929 + 29.1953i 0.612102 + 0.139690i
\(210\) 364.938 1.73780
\(211\) −279.496 + 49.2826i −1.32462 + 0.233567i −0.790824 0.612044i \(-0.790348\pi\)
−0.533800 + 0.845611i \(0.679236\pi\)
\(212\) 218.741 + 260.685i 1.03180 + 1.22965i
\(213\) −26.1126 + 9.50419i −0.122594 + 0.0446206i
\(214\) −217.544 79.1794i −1.01656 0.369997i
\(215\) 14.5112 + 12.1763i 0.0674938 + 0.0566340i
\(216\) 20.3888 35.3145i 0.0943927 0.163493i
\(217\) −193.549 + 111.745i −0.891930 + 0.514956i
\(218\) −53.3464 + 302.543i −0.244708 + 1.38781i
\(219\) 21.1987 + 3.73790i 0.0967976 + 0.0170680i
\(220\) 47.8766 + 82.9246i 0.217621 + 0.376930i
\(221\) 6.64621 + 3.83719i 0.0300733 + 0.0173628i
\(222\) 413.710 493.041i 1.86356 2.22090i
\(223\) −31.9018 + 87.6493i −0.143057 + 0.393046i −0.990441 0.137934i \(-0.955954\pi\)
0.847384 + 0.530980i \(0.178176\pi\)
\(224\) −121.503 333.828i −0.542426 1.49030i
\(225\) 193.874 162.680i 0.861664 0.723022i
\(226\) 19.0345 + 107.950i 0.0842234 + 0.477655i
\(227\) 1.80854i 0.00796716i −0.999992 0.00398358i \(-0.998732\pi\)
0.999992 0.00398358i \(-0.00126802\pi\)
\(228\) −402.666 + 124.218i −1.76608 + 0.544817i
\(229\) 111.104 0.485169 0.242584 0.970130i \(-0.422005\pi\)
0.242584 + 0.970130i \(0.422005\pi\)
\(230\) −17.1963 + 3.03217i −0.0747664 + 0.0131833i
\(231\) −175.634 209.312i −0.760320 0.906114i
\(232\) −10.9014 + 3.96780i −0.0469889 + 0.0171026i
\(233\) 136.206 + 49.5749i 0.584575 + 0.212768i 0.617342 0.786695i \(-0.288210\pi\)
−0.0327667 + 0.999463i \(0.510432\pi\)
\(234\) −230.919 193.764i −0.986832 0.828051i
\(235\) −128.121 + 221.911i −0.545194 + 0.944303i
\(236\) −283.310 + 163.569i −1.20047 + 0.693089i
\(237\) 78.9829 447.934i 0.333261 1.89002i
\(238\) −27.6951 4.88339i −0.116366 0.0205184i
\(239\) −40.4823 70.1174i −0.169382 0.293378i 0.768821 0.639464i \(-0.220844\pi\)
−0.938203 + 0.346086i \(0.887510\pi\)
\(240\) 205.162 + 118.450i 0.854841 + 0.493543i
\(241\) −129.396 + 154.208i −0.536913 + 0.639868i −0.964493 0.264110i \(-0.914922\pi\)
0.427580 + 0.903978i \(0.359366\pi\)
\(242\) −72.4090 + 198.942i −0.299211 + 0.822075i
\(243\) 26.8737 + 73.8348i 0.110591 + 0.303847i
\(244\) 94.6004 79.3791i 0.387706 0.325324i
\(245\) 6.08501 + 34.5098i 0.0248368 + 0.140856i
\(246\) 449.956i 1.82909i
\(247\) 14.4229 + 115.066i 0.0583923 + 0.465856i
\(248\) 28.4357 0.114660
\(249\) 105.414 18.5873i 0.423348 0.0746478i
\(250\) −235.975 281.224i −0.943901 1.12490i
\(251\) −238.298 + 86.7332i −0.949393 + 0.345551i −0.769868 0.638203i \(-0.779678\pi\)
−0.179525 + 0.983753i \(0.557456\pi\)
\(252\) 540.230 + 196.628i 2.14377 + 0.780268i
\(253\) 10.0152 + 8.40375i 0.0395857 + 0.0332164i
\(254\) −103.821 + 179.823i −0.408743 + 0.707964i
\(255\) 17.7674 10.2580i 0.0696763 0.0402276i
\(256\) 35.9307 203.773i 0.140354 0.795988i
\(257\) 220.707 + 38.9165i 0.858780 + 0.151426i 0.585663 0.810555i \(-0.300834\pi\)
0.273117 + 0.961981i \(0.411945\pi\)
\(258\) 43.7574 + 75.7901i 0.169602 + 0.293760i
\(259\) 292.546 + 168.902i 1.12952 + 0.652130i
\(260\) −54.3950 + 64.8254i −0.209212 + 0.249329i
\(261\) −68.8626 + 189.199i −0.263842 + 0.724899i
\(262\) 118.239 + 324.859i 0.451294 + 1.23992i
\(263\) 109.925 92.2383i 0.417967 0.350716i −0.409422 0.912345i \(-0.634270\pi\)
0.827389 + 0.561629i \(0.189825\pi\)
\(264\) 6.03691 + 34.2370i 0.0228671 + 0.129686i
\(265\) 250.358i 0.944747i
\(266\) −193.879 378.149i −0.728867 1.42161i
\(267\) −750.506 −2.81088
\(268\) 550.099 96.9973i 2.05261 0.361930i
\(269\) 60.6926 + 72.3307i 0.225623 + 0.268887i 0.866966 0.498367i \(-0.166067\pi\)
−0.641343 + 0.767254i \(0.721622\pi\)
\(270\) −358.715 + 130.561i −1.32857 + 0.483561i
\(271\) −308.312 112.216i −1.13768 0.414082i −0.296606 0.955000i \(-0.595855\pi\)
−0.841075 + 0.540918i \(0.818077\pi\)
\(272\) −13.9847 11.7345i −0.0514143 0.0431417i
\(273\) 120.740 209.127i 0.442269 0.766033i
\(274\) 412.037 237.890i 1.50379 0.868211i
\(275\) −17.7487 + 100.658i −0.0645406 + 0.366028i
\(276\) −41.3473 7.29065i −0.149809 0.0264154i
\(277\) −136.885 237.092i −0.494169 0.855927i 0.505808 0.862646i \(-0.331194\pi\)
−0.999977 + 0.00671948i \(0.997861\pi\)
\(278\) −531.605 306.922i −1.91225 1.10404i
\(279\) 317.223 378.052i 1.13700 1.35503i
\(280\) 8.33507 22.9004i 0.0297681 0.0817872i
\(281\) 32.5257 + 89.3636i 0.115750 + 0.318020i 0.984016 0.178078i \(-0.0569879\pi\)
−0.868267 + 0.496098i \(0.834766\pi\)
\(282\) −906.851 + 760.939i −3.21579 + 2.69836i
\(283\) 79.7073 + 452.042i 0.281651 + 1.59732i 0.717008 + 0.697065i \(0.245511\pi\)
−0.435357 + 0.900258i \(0.643378\pi\)
\(284\) 23.6126i 0.0831431i
\(285\) 285.676 + 120.413i 1.00237 + 0.422503i
\(286\) 121.740 0.425665
\(287\) 232.572 41.0087i 0.810355 0.142887i
\(288\) 504.246 + 600.937i 1.75085 + 2.08659i
\(289\) 270.086 98.3031i 0.934552 0.340149i
\(290\) 102.053 + 37.1441i 0.351906 + 0.128083i
\(291\) 271.964 + 228.205i 0.934586 + 0.784211i
\(292\) 9.14552 15.8405i 0.0313203 0.0542483i
\(293\) −186.848 + 107.877i −0.637708 + 0.368181i −0.783731 0.621100i \(-0.786686\pi\)
0.146023 + 0.989281i \(0.453353\pi\)
\(294\) −28.1122 + 159.432i −0.0956197 + 0.542286i
\(295\) 237.018 + 41.7927i 0.803452 + 0.141670i
\(296\) −21.4901 37.2219i −0.0726016 0.125750i
\(297\) 247.523 + 142.908i 0.833412 + 0.481171i
\(298\) 108.073 128.797i 0.362662 0.432204i
\(299\) −3.95181 + 10.8575i −0.0132167 + 0.0363127i
\(300\) −112.263 308.441i −0.374211 1.02814i
\(301\) −35.1861 + 29.5246i −0.116897 + 0.0980885i
\(302\) 27.3864 + 155.316i 0.0906834 + 0.514291i
\(303\) 141.046i 0.465497i
\(304\) 13.7429 275.517i 0.0452068 0.906307i
\(305\) −90.8527 −0.297878
\(306\) 61.1562 10.7835i 0.199857 0.0352402i
\(307\) 101.821 + 121.346i 0.331665 + 0.395262i 0.905944 0.423397i \(-0.139162\pi\)
−0.574280 + 0.818659i \(0.694718\pi\)
\(308\) −218.176 + 79.4097i −0.708365 + 0.257824i
\(309\) −624.123 227.162i −2.01982 0.735153i
\(310\) −203.919 171.109i −0.657804 0.551963i
\(311\) −12.3978 + 21.4736i −0.0398642 + 0.0690469i −0.885269 0.465079i \(-0.846026\pi\)
0.845405 + 0.534126i \(0.179359\pi\)
\(312\) −26.6081 + 15.3622i −0.0852823 + 0.0492378i
\(313\) −18.9179 + 107.289i −0.0604405 + 0.342775i 0.939559 + 0.342386i \(0.111235\pi\)
−1.00000 0.000389330i \(0.999876\pi\)
\(314\) −50.3631 8.88038i −0.160392 0.0282815i
\(315\) −211.476 366.288i −0.671354 1.16282i
\(316\) −334.714 193.247i −1.05922 0.611542i
\(317\) −309.103 + 368.375i −0.975090 + 1.16207i 0.0116787 + 0.999932i \(0.496282\pi\)
−0.986769 + 0.162135i \(0.948162\pi\)
\(318\) 395.591 1086.88i 1.24400 3.41785i
\(319\) −27.8107 76.4094i −0.0871810 0.239528i
\(320\) 182.055 152.762i 0.568922 0.477382i
\(321\) 71.1120 + 403.296i 0.221533 + 1.25637i
\(322\) 42.3401i 0.131491i
\(323\) −20.0686 12.9609i −0.0621320 0.0401266i
\(324\) −249.729 −0.770770
\(325\) −88.9581 + 15.6857i −0.273717 + 0.0482637i
\(326\) 378.590 + 451.186i 1.16132 + 1.38401i
\(327\) 510.661 185.866i 1.56166 0.568396i
\(328\) −28.2355 10.2769i −0.0860838 0.0313319i
\(329\) −475.961 399.379i −1.44669 1.21392i
\(330\) 162.725 281.849i 0.493107 0.854087i
\(331\) 1.38995 0.802488i 0.00419925 0.00242444i −0.497899 0.867235i \(-0.665895\pi\)
0.502098 + 0.864811i \(0.332562\pi\)
\(332\) 15.7942 89.5732i 0.0475728 0.269799i
\(333\) −734.605 129.531i −2.20602 0.388981i
\(334\) 375.523 + 650.424i 1.12432 + 1.94738i
\(335\) −355.893 205.475i −1.06237 0.613357i
\(336\) −369.235 + 440.037i −1.09891 + 1.30963i
\(337\) 102.475 281.546i 0.304079 0.835449i −0.689702 0.724093i \(-0.742258\pi\)
0.993781 0.111356i \(-0.0355194\pi\)
\(338\) −130.139 357.553i −0.385026 1.05785i
\(339\) 148.538 124.638i 0.438165 0.367664i
\(340\) −3.02723 17.1683i −0.00890362 0.0504949i
\(341\) 199.309i 0.584484i
\(342\) 687.899 + 638.242i 2.01140 + 1.86620i
\(343\) 294.495 0.858586
\(344\) 5.75535 1.01482i 0.0167307 0.00295007i
\(345\) 19.8547 + 23.6619i 0.0575498 + 0.0685851i
\(346\) 225.989 82.2532i 0.653147 0.237726i
\(347\) 363.902 + 132.449i 1.04871 + 0.381699i 0.808175 0.588942i \(-0.200455\pi\)
0.240533 + 0.970641i \(0.422678\pi\)
\(348\) 200.035 + 167.849i 0.574813 + 0.482325i
\(349\) −118.007 + 204.393i −0.338128 + 0.585654i −0.984081 0.177723i \(-0.943127\pi\)
0.645953 + 0.763377i \(0.276460\pi\)
\(350\) 286.664 165.505i 0.819039 0.472872i
\(351\) −43.8626 + 248.757i −0.124965 + 0.708710i
\(352\) −312.000 55.0141i −0.886365 0.156290i
\(353\) −151.713 262.775i −0.429782 0.744405i 0.567071 0.823669i \(-0.308076\pi\)
−0.996854 + 0.0792640i \(0.974743\pi\)
\(354\) 962.929 + 555.947i 2.72014 + 1.57047i
\(355\) 11.1663 13.3075i 0.0314545 0.0374860i
\(356\) −218.115 + 599.267i −0.612684 + 1.68334i
\(357\) 17.0143 + 46.7465i 0.0476592 + 0.130943i
\(358\) −503.208 + 422.242i −1.40561 + 1.17945i
\(359\) −27.4387 155.612i −0.0764308 0.433461i −0.998879 0.0473395i \(-0.984926\pi\)
0.922448 0.386121i \(-0.126185\pi\)
\(360\) 53.8140i 0.149483i
\(361\) −26.9974 359.989i −0.0747851 0.997200i
\(362\) −109.816 −0.303358
\(363\) 368.811 65.0314i 1.01601 0.179150i
\(364\) −131.895 157.186i −0.362348 0.431830i
\(365\) −12.6451 + 4.60245i −0.0346442 + 0.0126095i
\(366\) −394.418 143.557i −1.07765 0.392231i
\(367\) 101.679 + 85.3188i 0.277054 + 0.232476i 0.770717 0.637177i \(-0.219898\pi\)
−0.493663 + 0.869653i \(0.664342\pi\)
\(368\) 13.7426 23.8029i 0.0373441 0.0646818i
\(369\) −451.621 + 260.744i −1.22391 + 0.706622i
\(370\) −69.8681 + 396.242i −0.188833 + 1.07092i
\(371\) 597.836 + 105.415i 1.61142 + 0.284136i
\(372\) −320.027 554.304i −0.860289 1.49006i
\(373\) −278.822 160.978i −0.747513 0.431577i 0.0772818 0.997009i \(-0.475376\pi\)
−0.824794 + 0.565433i \(0.808709\pi\)
\(374\) −16.1208 + 19.2120i −0.0431036 + 0.0513689i
\(375\) −222.107 + 610.235i −0.592286 + 1.62729i
\(376\) 27.0379 + 74.2860i 0.0719093 + 0.197569i
\(377\) 55.0495 46.1920i 0.146020 0.122525i
\(378\) −160.732 911.556i −0.425217 2.41152i
\(379\) 241.981i 0.638471i −0.947675 0.319236i \(-0.896574\pi\)
0.947675 0.319236i \(-0.103426\pi\)
\(380\) 179.173 193.113i 0.471507 0.508192i
\(381\) 367.305 0.964054
\(382\) −619.280 + 109.196i −1.62115 + 0.285853i
\(383\) −265.553 316.474i −0.693350 0.826302i 0.298407 0.954439i \(-0.403545\pi\)
−0.991757 + 0.128137i \(0.959100\pi\)
\(384\) 150.819 54.8937i 0.392758 0.142952i
\(385\) 160.512 + 58.4215i 0.416913 + 0.151744i
\(386\) 372.978 + 312.965i 0.966263 + 0.810791i
\(387\) 50.7137 87.8386i 0.131043 0.226973i
\(388\) 261.258 150.837i 0.673345 0.388756i
\(389\) 14.4968 82.2154i 0.0372668 0.211351i −0.960488 0.278321i \(-0.910222\pi\)
0.997755 + 0.0669702i \(0.0213332\pi\)
\(390\) 283.254 + 49.9453i 0.726291 + 0.128065i
\(391\) −1.19014 2.06138i −0.00304383 0.00527208i
\(392\) 9.36255 + 5.40547i 0.0238840 + 0.0137895i
\(393\) 393.087 468.462i 1.00022 1.19202i
\(394\) −209.978 + 576.911i −0.532940 + 1.46424i
\(395\) 97.2511 + 267.195i 0.246205 + 0.676443i
\(396\) 392.748 329.554i 0.991787 0.832208i
\(397\) −114.052 646.820i −0.287284 1.62927i −0.697010 0.717061i \(-0.745487\pi\)
0.409726 0.912209i \(-0.365624\pi\)
\(398\) 36.3265i 0.0912726i
\(399\) −407.823 + 631.472i −1.02211 + 1.58264i
\(400\) 214.877 0.537192
\(401\) 342.020 60.3074i 0.852918 0.150393i 0.269937 0.962878i \(-0.412997\pi\)
0.582981 + 0.812485i \(0.301886\pi\)
\(402\) −1220.36 1454.37i −3.03573 3.61784i
\(403\) −165.520 + 60.2444i −0.410720 + 0.149490i
\(404\) −112.623 40.9913i −0.278769 0.101464i
\(405\) 140.742 + 118.096i 0.347510 + 0.291596i
\(406\) −131.667 + 228.054i −0.324303 + 0.561710i
\(407\) 260.893 150.626i 0.641014 0.370089i
\(408\) 1.09910 6.23330i 0.00269387 0.0152777i
\(409\) −65.6040 11.5678i −0.160401 0.0282830i 0.0928709 0.995678i \(-0.470396\pi\)
−0.253272 + 0.967395i \(0.581507\pi\)
\(410\) 140.644 + 243.602i 0.343033 + 0.594151i
\(411\) −728.868 420.812i −1.77340 1.02387i
\(412\) −362.771 + 432.334i −0.880512 + 1.04935i
\(413\) −199.596 + 548.384i −0.483282 + 1.32781i
\(414\) 31.9773 + 87.8568i 0.0772398 + 0.212215i
\(415\) −51.2601 + 43.0124i −0.123518 + 0.103644i
\(416\) −48.6197 275.736i −0.116874 0.662827i
\(417\) 1085.85i 2.60396i
\(418\) −378.502 18.8798i −0.905508 0.0451670i
\(419\) −154.857 −0.369586 −0.184793 0.982777i \(-0.559161\pi\)
−0.184793 + 0.982777i \(0.559161\pi\)
\(420\) −540.210 + 95.2537i −1.28622 + 0.226794i
\(421\) 339.565 + 404.678i 0.806567 + 0.961230i 0.999802 0.0199231i \(-0.00634215\pi\)
−0.193234 + 0.981153i \(0.561898\pi\)
\(422\) 770.234 280.342i 1.82520 0.664318i
\(423\) 1289.26 + 469.253i 3.04790 + 1.10935i
\(424\) −59.1681 49.6480i −0.139547 0.117094i
\(425\) 9.30439 16.1157i 0.0218927 0.0379192i
\(426\) 69.5036 40.1279i 0.163154 0.0941971i
\(427\) 38.2540 216.949i 0.0895879 0.508078i
\(428\) 342.693 + 60.4259i 0.800684 + 0.141182i
\(429\) −107.675 186.499i −0.250992 0.434730i
\(430\) −47.3797 27.3547i −0.110185 0.0636155i
\(431\) −225.422 + 268.647i −0.523020 + 0.623311i −0.961292 0.275531i \(-0.911146\pi\)
0.438272 + 0.898842i \(0.355591\pi\)
\(432\) 205.509 564.632i 0.475716 1.30702i
\(433\) 55.5822 + 152.711i 0.128365 + 0.352681i 0.987181 0.159604i \(-0.0510216\pi\)
−0.858816 + 0.512284i \(0.828799\pi\)
\(434\) 494.455 414.897i 1.13930 0.955985i
\(435\) −33.3596 189.192i −0.0766888 0.434924i
\(436\) 461.772i 1.05911i
\(437\) 13.9704 33.1442i 0.0319688 0.0758448i
\(438\) −62.1686 −0.141937
\(439\) −423.963 + 74.7562i −0.965748 + 0.170287i −0.634215 0.773156i \(-0.718677\pi\)
−0.331533 + 0.943444i \(0.607566\pi\)
\(440\) −13.9699 16.6486i −0.0317497 0.0378378i
\(441\) 176.313 64.1726i 0.399802 0.145516i
\(442\) −20.8278 7.58068i −0.0471216 0.0171509i
\(443\) −166.191 139.451i −0.375149 0.314787i 0.435645 0.900118i \(-0.356520\pi\)
−0.810794 + 0.585331i \(0.800965\pi\)
\(444\) −483.718 + 837.823i −1.08945 + 1.88699i
\(445\) 406.317 234.587i 0.913071 0.527162i
\(446\) 46.7785 265.294i 0.104885 0.594830i
\(447\) −292.897 51.6456i −0.655251 0.115538i
\(448\) 288.129 + 499.054i 0.643145 + 1.11396i
\(449\) 182.412 + 105.316i 0.406262 + 0.234556i 0.689183 0.724588i \(-0.257970\pi\)
−0.282920 + 0.959143i \(0.591303\pi\)
\(450\) −469.837 + 559.930i −1.04408 + 1.24429i
\(451\) 72.0318 197.906i 0.159716 0.438815i
\(452\) −56.3528 154.828i −0.124674 0.342540i
\(453\) 213.713 179.326i 0.471772 0.395864i
\(454\) 0.907011 + 5.14392i 0.00199782 + 0.0113302i
\(455\) 150.959i 0.331778i
\(456\) 85.1095 43.6361i 0.186644 0.0956932i
\(457\) 627.841 1.37383 0.686916 0.726737i \(-0.258964\pi\)
0.686916 + 0.726737i \(0.258964\pi\)
\(458\) −316.004 + 55.7201i −0.689966 + 0.121660i
\(459\) −33.4484 39.8623i −0.0728723 0.0868459i
\(460\) 24.6639 8.97693i 0.0536172 0.0195151i
\(461\) −709.636 258.286i −1.53934 0.560274i −0.573454 0.819238i \(-0.694397\pi\)
−0.965887 + 0.258964i \(0.916619\pi\)
\(462\) 604.517 + 507.250i 1.30848 + 1.09794i
\(463\) −6.58305 + 11.4022i −0.0142182 + 0.0246267i −0.873047 0.487636i \(-0.837859\pi\)
0.858829 + 0.512263i \(0.171193\pi\)
\(464\) −148.042 + 85.4722i −0.319056 + 0.184207i
\(465\) −81.7686 + 463.733i −0.175846 + 0.997275i
\(466\) −412.264 72.6932i −0.884686 0.155994i
\(467\) 9.80331 + 16.9798i 0.0209921 + 0.0363594i 0.876331 0.481710i \(-0.159984\pi\)
−0.855339 + 0.518070i \(0.826651\pi\)
\(468\) 392.400 + 226.552i 0.838461 + 0.484086i
\(469\) 640.508 763.328i 1.36569 1.62756i
\(470\) 253.113 695.421i 0.538537 1.47962i
\(471\) 30.9403 + 85.0079i 0.0656907 + 0.180484i
\(472\) 56.8796 47.7277i 0.120508 0.101118i
\(473\) 7.11302 + 40.3400i 0.0150381 + 0.0852853i
\(474\) 1313.64i 2.77139i
\(475\) 279.012 34.9726i 0.587394 0.0736264i
\(476\) 42.2711 0.0888049
\(477\) −1320.14 + 232.776i −2.76759 + 0.488000i
\(478\) 150.306 + 179.127i 0.314447 + 0.374744i
\(479\) −716.826 + 260.903i −1.49650 + 0.544683i −0.955153 0.296113i \(-0.904309\pi\)
−0.541352 + 0.840796i \(0.682087\pi\)
\(480\) −703.363 256.003i −1.46534 0.533340i
\(481\) 203.950 + 171.134i 0.424012 + 0.355789i
\(482\) 290.695 503.498i 0.603101 1.04460i
\(483\) −64.8626 + 37.4485i −0.134291 + 0.0775330i
\(484\) 55.2591 313.390i 0.114172 0.647500i
\(485\) −218.570 38.5397i −0.450659 0.0794633i
\(486\) −113.464 196.526i −0.233465 0.404374i
\(487\) −220.903 127.539i −0.453601 0.261886i 0.255749 0.966743i \(-0.417678\pi\)
−0.709350 + 0.704857i \(0.751011\pi\)
\(488\) −18.0168 + 21.4716i −0.0369197 + 0.0439992i
\(489\) 356.341 979.038i 0.728713 2.00212i
\(490\) −34.6143 95.1021i −0.0706415 0.194086i
\(491\) 177.941 149.310i 0.362406 0.304095i −0.443343 0.896352i \(-0.646208\pi\)
0.805749 + 0.592257i \(0.201763\pi\)
\(492\) 117.445 + 666.062i 0.238709 + 1.35378i
\(493\) 14.8041i 0.0300287i
\(494\) −98.7295 320.042i −0.199857 0.647858i
\(495\) −377.189 −0.761997
\(496\) 412.641 72.7597i 0.831937 0.146693i
\(497\) 27.0757 + 32.2676i 0.0544783 + 0.0649247i
\(498\) −290.499 + 105.733i −0.583332 + 0.212315i
\(499\) 540.500 + 196.726i 1.08317 + 0.394240i 0.821085 0.570805i \(-0.193369\pi\)
0.262081 + 0.965046i \(0.415591\pi\)
\(500\) 422.713 + 354.699i 0.845427 + 0.709397i
\(501\) 664.275 1150.56i 1.32590 2.29652i
\(502\) 634.275 366.199i 1.26350 0.729480i
\(503\) 19.2056 108.920i 0.0381821 0.216541i −0.959747 0.280866i \(-0.909378\pi\)
0.997929 + 0.0643249i \(0.0204894\pi\)
\(504\) −128.504 22.6587i −0.254968 0.0449577i
\(505\) 44.0869 + 76.3607i 0.0873007 + 0.151209i
\(506\) −32.7001 18.8794i −0.0646247 0.0373111i
\(507\) −432.648 + 515.609i −0.853348 + 1.01698i
\(508\) 106.748 293.287i 0.210133 0.577337i
\(509\) 238.556 + 655.427i 0.468676 + 1.28768i 0.918805 + 0.394712i \(0.129156\pi\)
−0.450129 + 0.892964i \(0.648622\pi\)
\(510\) −45.3902 + 38.0869i −0.0890003 + 0.0746801i
\(511\) −5.66600 32.1335i −0.0110881 0.0628835i
\(512\) 723.259i 1.41262i
\(513\) 174.951 766.608i 0.341035 1.49436i
\(514\) −647.257 −1.25926
\(515\) 408.899 72.0999i 0.793978 0.140000i
\(516\) −84.5555 100.769i −0.163867 0.195289i
\(517\) −520.679 + 189.512i −1.00712 + 0.366560i
\(518\) −916.776 333.679i −1.76984 0.644169i
\(519\) −325.887 273.452i −0.627914 0.526882i
\(520\) 9.60358 16.6339i 0.0184684 0.0319882i
\(521\) −787.086 + 454.424i −1.51072 + 0.872215i −0.510799 + 0.859700i \(0.670650\pi\)
−0.999922 + 0.0125152i \(0.996016\pi\)
\(522\) 100.975 572.660i 0.193439 1.09705i
\(523\) −617.615 108.902i −1.18091 0.208226i −0.451479 0.892282i \(-0.649103\pi\)
−0.729430 + 0.684056i \(0.760215\pi\)
\(524\) −259.819 450.020i −0.495839 0.858818i
\(525\) −507.090 292.768i −0.965885 0.557654i
\(526\) −266.394 + 317.476i −0.506452 + 0.603567i
\(527\) 12.4108 34.0985i 0.0235500 0.0647030i
\(528\) 175.208 + 481.379i 0.331833 + 0.911704i
\(529\) −402.492 + 337.731i −0.760855 + 0.638433i
\(530\) 125.558 + 712.076i 0.236902 + 1.34354i
\(531\) 1288.66i 2.42685i
\(532\) 385.697 + 509.162i 0.724994 + 0.957071i
\(533\) 186.128 0.349208
\(534\) 2134.61 376.390i 3.99740 0.704849i
\(535\) −164.558 196.113i −0.307586 0.366566i
\(536\) −119.137 + 43.3623i −0.222270 + 0.0808998i
\(537\) 1091.92 + 397.427i 2.03337 + 0.740087i
\(538\) −208.899 175.287i −0.388288 0.325812i
\(539\) −37.8876 + 65.6232i −0.0702923 + 0.121750i
\(540\) 496.920 286.897i 0.920223 0.531291i
\(541\) −173.424 + 983.534i −0.320561 + 1.81799i 0.218629 + 0.975808i \(0.429842\pi\)
−0.539190 + 0.842184i \(0.681269\pi\)
\(542\) 933.187 + 164.546i 1.72175 + 0.303591i
\(543\) 97.1284 + 168.231i 0.178874 + 0.309818i
\(544\) 49.9524 + 28.8400i 0.0918243 + 0.0530148i
\(545\) −218.371 + 260.244i −0.400680 + 0.477512i
\(546\) −238.531 + 655.358i −0.436870 + 1.20029i
\(547\) 7.65225 + 21.0244i 0.0139895 + 0.0384358i 0.946491 0.322731i \(-0.104601\pi\)
−0.932501 + 0.361167i \(0.882379\pi\)
\(548\) −547.839 + 459.691i −0.999706 + 0.838853i
\(549\) 84.4724 + 479.067i 0.153866 + 0.872617i
\(550\) 295.195i 0.536718i
\(551\) −178.318 + 135.078i −0.323626 + 0.245151i
\(552\) 9.52944 0.0172635
\(553\) −678.989 + 119.724i −1.22783 + 0.216499i
\(554\) 508.237 + 605.694i 0.917396 + 1.09331i
\(555\) 668.816 243.429i 1.20507 0.438611i
\(556\) 867.035 + 315.575i 1.55942 + 0.567581i
\(557\) 725.066 + 608.403i 1.30173 + 1.09229i 0.989843 + 0.142168i \(0.0454072\pi\)
0.311892 + 0.950117i \(0.399037\pi\)
\(558\) −712.658 + 1234.36i −1.27716 + 2.21211i
\(559\) −31.3511 + 18.1006i −0.0560843 + 0.0323803i
\(560\) 62.3570 353.644i 0.111352 0.631507i
\(561\) 43.6900 + 7.70372i 0.0778787 + 0.0137321i
\(562\) −137.328 237.859i −0.244355 0.423236i
\(563\) 375.791 + 216.963i 0.667479 + 0.385369i 0.795121 0.606451i \(-0.207407\pi\)
−0.127642 + 0.991820i \(0.540741\pi\)
\(564\) 1143.78 1363.10i 2.02798 2.41685i
\(565\) −41.4586 + 113.907i −0.0733781 + 0.201605i
\(566\) −453.412 1245.74i −0.801081 2.20095i
\(567\) −341.265 + 286.355i −0.601878 + 0.505036i
\(568\) −0.930649 5.27798i −0.00163847 0.00929221i
\(569\) 966.317i 1.69827i −0.528174 0.849136i \(-0.677123\pi\)
0.528174 0.849136i \(-0.322877\pi\)
\(570\) −872.917 199.212i −1.53143 0.349495i
\(571\) −249.882 −0.437623 −0.218811 0.975767i \(-0.570218\pi\)
−0.218811 + 0.975767i \(0.570218\pi\)
\(572\) −180.210 + 31.7759i −0.315052 + 0.0555522i
\(573\) 715.015 + 852.122i 1.24785 + 1.48712i
\(574\) −640.921 + 233.276i −1.11659 + 0.406405i
\(575\) 26.3272 + 9.58231i 0.0457864 + 0.0166649i
\(576\) −974.786 817.942i −1.69234 1.42004i
\(577\) −452.337 + 783.471i −0.783946 + 1.35783i 0.145680 + 0.989332i \(0.453463\pi\)
−0.929626 + 0.368503i \(0.879870\pi\)
\(578\) −718.885 + 415.049i −1.24375 + 0.718077i
\(579\) 149.559 848.189i 0.258305 1.46492i
\(580\) −160.762 28.3467i −0.277176 0.0488735i
\(581\) −81.1269 140.516i −0.139633 0.241852i
\(582\) −887.978 512.674i −1.52574 0.880884i
\(583\) 347.988 414.716i 0.596893 0.711349i
\(584\) −1.41991 + 3.90118i −0.00243136 + 0.00668010i
\(585\) −114.012 313.244i −0.194892 0.535460i
\(586\) 477.338 400.534i 0.814570 0.683506i
\(587\) −119.086 675.372i −0.202873 1.15055i −0.900752 0.434333i \(-0.856984\pi\)
0.697880 0.716215i \(-0.254127\pi\)
\(588\) 243.342i 0.413847i
\(589\) 523.961 161.636i 0.889578 0.274425i
\(590\) −695.094 −1.17813
\(591\) 1069.51 188.584i 1.80967 0.319093i
\(592\) −407.092 485.153i −0.687655 0.819516i
\(593\) 1012.42 368.492i 1.70729 0.621403i 0.710669 0.703526i \(-0.248392\pi\)
0.996622 + 0.0821232i \(0.0261701\pi\)
\(594\) −775.684 282.326i −1.30586 0.475296i
\(595\) −23.8230 19.9899i −0.0400387 0.0335965i
\(596\) −126.361 + 218.864i −0.212016 + 0.367222i
\(597\) 55.6502 32.1296i 0.0932163 0.0538185i
\(598\) 5.79465 32.8631i 0.00969006 0.0549551i
\(599\) −592.388 104.454i −0.988961 0.174381i −0.344309 0.938856i \(-0.611887\pi\)
−0.644652 + 0.764476i \(0.722998\pi\)
\(600\) 37.2501 + 64.5191i 0.0620835 + 0.107532i
\(601\) 450.991 + 260.380i 0.750401 + 0.433244i 0.825839 0.563906i \(-0.190702\pi\)
−0.0754379 + 0.997151i \(0.524035\pi\)
\(602\) 85.2703 101.621i 0.141645 0.168806i
\(603\) −752.570 + 2067.67i −1.24804 + 3.42897i
\(604\) −81.0791 222.763i −0.134237 0.368813i
\(605\) −179.344 + 150.487i −0.296436 + 0.248740i
\(606\) 70.7364 + 401.166i 0.116727 + 0.661990i
\(607\) 841.425i 1.38620i −0.720840 0.693102i \(-0.756244\pi\)
0.720840 0.693102i \(-0.243756\pi\)
\(608\) 108.402 + 864.830i 0.178292 + 1.42242i
\(609\) 465.822 0.764896
\(610\) 258.406 45.5640i 0.423617 0.0746950i
\(611\) −314.768 375.126i −0.515169 0.613954i
\(612\) −87.7138 + 31.9252i −0.143323 + 0.0521654i
\(613\) −691.946 251.848i −1.12879 0.410845i −0.290935 0.956743i \(-0.593966\pi\)
−0.837852 + 0.545898i \(0.816189\pi\)
\(614\) −350.459 294.070i −0.570780 0.478941i
\(615\) 248.790 430.916i 0.404536 0.700677i
\(616\) 45.6377 26.3489i 0.0740872 0.0427743i
\(617\) 40.5128 229.760i 0.0656610 0.372382i −0.934216 0.356707i \(-0.883899\pi\)
0.999877 0.0156746i \(-0.00498958\pi\)
\(618\) 1889.07 + 333.095i 3.05676 + 0.538988i
\(619\) 449.457 + 778.482i 0.726102 + 1.25765i 0.958519 + 0.285029i \(0.0920032\pi\)
−0.232417 + 0.972616i \(0.574663\pi\)
\(620\) 346.520 + 200.063i 0.558903 + 0.322683i
\(621\) 50.3589 60.0154i 0.0810932 0.0966431i
\(622\) 24.4928 67.2935i 0.0393775 0.108189i
\(623\) 389.094 + 1069.03i 0.624549 + 1.71593i
\(624\) −346.812 + 291.010i −0.555789 + 0.466362i
\(625\) −6.24677 35.4272i −0.00999483 0.0566835i
\(626\) 314.641i 0.502622i
\(627\) 305.850 + 596.543i 0.487800 + 0.951424i
\(628\) 76.8695 0.122404
\(629\) −54.0138 + 9.52409i −0.0858725 + 0.0151416i
\(630\) 785.186 + 935.749i 1.24633 + 1.48532i
\(631\) −164.748 + 59.9632i −0.261090 + 0.0950289i −0.469248 0.883066i \(-0.655475\pi\)
0.208159 + 0.978095i \(0.433253\pi\)
\(632\) 82.4330 + 30.0031i 0.130432 + 0.0474733i
\(633\) −1110.72 932.001i −1.75469 1.47236i
\(634\) 694.416 1202.76i 1.09529 1.89710i
\(635\) −198.855 + 114.809i −0.313158 + 0.180802i
\(636\) −301.897 + 1712.14i −0.474680 + 2.69204i
\(637\) −65.9503 11.6288i −0.103533 0.0182556i
\(638\) 117.421 + 203.378i 0.184045 + 0.318775i
\(639\) −80.5528 46.5072i −0.126061 0.0727812i
\(640\) −64.4938 + 76.8608i −0.100772 + 0.120095i
\(641\) 133.795 367.598i 0.208728 0.573476i −0.790512 0.612446i \(-0.790186\pi\)
0.999240 + 0.0389705i \(0.0124078\pi\)
\(642\) −404.518 1111.40i −0.630090 1.73116i
\(643\) 17.1208 14.3661i 0.0266265 0.0223423i −0.629377 0.777100i \(-0.716690\pi\)
0.656004 + 0.754758i \(0.272246\pi\)
\(644\) 11.0513 + 62.6753i 0.0171605 + 0.0973219i
\(645\) 96.7773i 0.150042i
\(646\) 63.5799 + 26.7991i 0.0984208 + 0.0414847i
\(647\) −599.186 −0.926100 −0.463050 0.886332i \(-0.653245\pi\)
−0.463050 + 0.886332i \(0.653245\pi\)
\(648\) 55.8204 9.84264i 0.0861426 0.0151893i
\(649\) 334.529 + 398.676i 0.515453 + 0.614293i
\(650\) 245.151 89.2276i 0.377155 0.137273i
\(651\) −1072.93 390.514i −1.64812 0.599868i
\(652\) −678.186 569.065i −1.04016 0.872799i
\(653\) 152.832 264.713i 0.234046 0.405380i −0.724949 0.688803i \(-0.758137\pi\)
0.958995 + 0.283423i \(0.0914700\pi\)
\(654\) −1359.22 + 784.749i −2.07832 + 1.19992i
\(655\) −66.3852 + 376.489i −0.101351 + 0.574792i
\(656\) −436.032 76.8841i −0.664682 0.117201i
\(657\) 36.0258 + 62.3986i 0.0548338 + 0.0949750i
\(658\) 1554.04 + 897.224i 2.36176 + 1.36356i
\(659\) 28.8290 34.3571i 0.0437466 0.0521351i −0.743727 0.668483i \(-0.766944\pi\)
0.787474 + 0.616348i \(0.211388\pi\)
\(660\) −167.313 + 459.689i −0.253505 + 0.696499i
\(661\) −331.740 911.447i −0.501875 1.37889i −0.889441 0.457049i \(-0.848906\pi\)
0.387566 0.921842i \(-0.373316\pi\)
\(662\) −3.55088 + 2.97954i −0.00536387 + 0.00450082i
\(663\) 6.80830 + 38.6118i 0.0102689 + 0.0582380i
\(664\) 20.6442i 0.0310907i
\(665\) 23.4111 469.347i 0.0352047 0.705784i
\(666\) 2154.35 3.23475
\(667\) −21.9501 + 3.87039i −0.0329086 + 0.00580268i
\(668\) −725.649 864.794i −1.08630 1.29460i
\(669\) −447.790 + 162.982i −0.669342 + 0.243621i
\(670\) 1115.29 + 405.932i 1.66461 + 0.605869i
\(671\) −150.497 126.282i −0.224288 0.188200i
\(672\) 907.470 1571.78i 1.35040 2.33896i
\(673\) −374.338 + 216.124i −0.556224 + 0.321136i −0.751628 0.659587i \(-0.770731\pi\)
0.195405 + 0.980723i \(0.437398\pi\)
\(674\) −150.262 + 852.175i −0.222940 + 1.26436i
\(675\) 603.185 + 106.358i 0.893607 + 0.157567i
\(676\) 285.968 + 495.311i 0.423030 + 0.732709i
\(677\) 1085.71 + 626.838i 1.60371 + 0.925905i 0.990735 + 0.135806i \(0.0433625\pi\)
0.612980 + 0.790099i \(0.289971\pi\)
\(678\) −359.968 + 428.993i −0.530927 + 0.632734i
\(679\) 184.060 505.700i 0.271075 0.744771i
\(680\) 1.35331 + 3.71820i 0.00199017 + 0.00546794i
\(681\) 7.07797 5.93912i 0.0103935 0.00872118i
\(682\) −99.9563 566.880i −0.146564 0.831203i
\(683\) 708.508i 1.03735i 0.854972 + 0.518674i \(0.173574\pi\)
−0.854972 + 0.518674i \(0.826426\pi\)
\(684\) −1184.87 765.227i −1.73227 1.11875i
\(685\) 526.136 0.768082
\(686\) −837.611 + 147.693i −1.22101 + 0.215297i
\(687\) 364.856 + 434.818i 0.531086 + 0.632923i
\(688\) 80.9215 29.4530i 0.117618 0.0428096i
\(689\) 449.595 + 163.639i 0.652533 + 0.237503i
\(690\) −68.3380 57.3424i −0.0990406 0.0831050i
\(691\) −272.140 + 471.360i −0.393835 + 0.682142i −0.992952 0.118520i \(-0.962185\pi\)
0.599117 + 0.800661i \(0.295518\pi\)
\(692\) −313.058 + 180.744i −0.452396 + 0.261191i
\(693\) 158.817 900.698i 0.229174 1.29971i
\(694\) −1101.45 194.215i −1.58710 0.279848i
\(695\) −339.407 587.869i −0.488355 0.845855i
\(696\) −51.3279 29.6342i −0.0737470 0.0425779i
\(697\) −24.6469 + 29.3730i −0.0353614 + 0.0421421i
\(698\) 233.132 640.524i 0.333999 0.917656i
\(699\) 253.272 + 695.860i 0.362335 + 0.995507i
\(700\) −381.144 + 319.818i −0.544491 + 0.456882i
\(701\) 54.0234 + 306.382i 0.0770663 + 0.437064i 0.998788 + 0.0492134i \(0.0156714\pi\)
−0.921722 + 0.387851i \(0.873217\pi\)
\(702\) 729.520i 1.03920i
\(703\) −607.560 563.702i −0.864239 0.801853i
\(704\) 513.906 0.729981
\(705\) −1289.22 + 227.324i −1.82868 + 0.322445i
\(706\) 563.292 + 671.306i 0.797865 + 0.950858i
\(707\) −200.906 + 73.1240i −0.284168 + 0.103429i
\(708\) −1570.52 571.621i −2.21824 0.807375i
\(709\) 59.7767 + 50.1586i 0.0843112 + 0.0707455i 0.683969 0.729511i \(-0.260252\pi\)
−0.599658 + 0.800256i \(0.704697\pi\)
\(710\) −25.0857 + 43.4498i −0.0353320 + 0.0611969i
\(711\) 1318.50 761.236i 1.85443 1.07066i
\(712\) 25.1349 142.547i 0.0353018 0.200206i
\(713\) 53.8023 + 9.48680i 0.0754591 + 0.0133055i
\(714\) −71.8367 124.425i −0.100612 0.174265i
\(715\) 116.589 + 67.3126i 0.163061 + 0.0941435i
\(716\) 634.679 756.381i 0.886423 1.05640i
\(717\) 141.473 388.693i 0.197312 0.542110i
\(718\) 156.084 + 428.837i 0.217387 + 0.597266i
\(719\) 418.687 351.320i 0.582318 0.488623i −0.303390 0.952867i \(-0.598118\pi\)
0.885707 + 0.464244i \(0.153674\pi\)
\(720\) 137.697 + 780.916i 0.191245 + 1.08461i
\(721\) 1006.78i 1.39636i
\(722\) 257.327 + 1010.35i 0.356408 + 1.39938i
\(723\) −1028.44 −1.42246
\(724\) 162.558 28.6634i 0.224528 0.0395903i
\(725\) −112.006 133.484i −0.154491 0.184115i
\(726\) −1016.37 + 369.929i −1.39996 + 0.509544i
\(727\) 339.338 + 123.509i 0.466765 + 0.169889i 0.564686 0.825306i \(-0.308997\pi\)
−0.0979214 + 0.995194i \(0.531219\pi\)
\(728\) 35.6768 + 29.9364i 0.0490066 + 0.0411214i
\(729\) −459.577 + 796.012i −0.630422 + 1.09192i
\(730\) 33.6575 19.4321i 0.0461061 0.0266194i
\(731\) 1.29502 7.34442i 0.00177157 0.0100471i
\(732\) 621.321 + 109.556i 0.848799 + 0.149666i
\(733\) −333.779 578.122i −0.455360 0.788707i 0.543349 0.839507i \(-0.317156\pi\)
−0.998709 + 0.0508002i \(0.983823\pi\)
\(734\) −331.987 191.673i −0.452298 0.261135i
\(735\) −115.076 + 137.142i −0.156566 + 0.186588i
\(736\) −29.7015 + 81.6042i −0.0403553 + 0.110875i
\(737\) −303.932 835.045i −0.412390 1.13303i
\(738\) 1153.75 968.109i 1.56334 1.31180i
\(739\) −219.072 1242.42i −0.296443 1.68121i −0.661277 0.750142i \(-0.729985\pi\)
0.364834 0.931073i \(-0.381126\pi\)
\(740\) 604.786i 0.817278i
\(741\) −402.963 + 434.315i −0.543810 + 0.586120i
\(742\) −1753.25 −2.36287
\(743\) 1295.69 228.465i 1.74386 0.307490i 0.791209 0.611546i \(-0.209452\pi\)
0.952654 + 0.304056i \(0.0983410\pi\)
\(744\) 93.3805 + 111.287i 0.125511 + 0.149579i
\(745\) 174.715 63.5909i 0.234516 0.0853569i
\(746\) 873.768 + 318.025i 1.17127 + 0.426307i
\(747\) 274.465 + 230.303i 0.367423 + 0.308304i
\(748\) 18.8487 32.6469i 0.0251988 0.0436455i
\(749\) 537.591 310.378i 0.717745 0.414390i
\(750\) 325.683 1847.04i 0.434244 2.46272i
\(751\) 931.147 + 164.186i 1.23988 + 0.218624i 0.754862 0.655883i \(-0.227704\pi\)
0.485013 + 0.874507i \(0.338815\pi\)
\(752\) 582.436 + 1008.81i 0.774516 + 1.34150i
\(753\) −1121.99 647.783i −1.49003 0.860269i
\(754\) −133.408 + 158.989i −0.176933 + 0.210861i
\(755\) −59.6497 + 163.886i −0.0790062 + 0.217068i
\(756\) 475.857 + 1307.41i 0.629441 + 1.72937i
\(757\) −227.801 + 191.148i −0.300926 + 0.252507i −0.780730 0.624869i \(-0.785152\pi\)
0.479804 + 0.877376i \(0.340708\pi\)
\(758\) 121.357 + 688.248i 0.160101 + 0.907979i
\(759\) 66.7930i 0.0880013i
\(760\) −32.4381 + 50.2270i −0.0426817 + 0.0660882i
\(761\) −402.072 −0.528348 −0.264174 0.964475i \(-0.585099\pi\)
−0.264174 + 0.964475i \(0.585099\pi\)
\(762\) −1044.70 + 184.209i −1.37100 + 0.241744i
\(763\) −529.497 631.030i −0.693967 0.827038i
\(764\) 888.208 323.281i 1.16258 0.423143i
\(765\) 64.5308 + 23.4873i 0.0843540 + 0.0307023i
\(766\) 914.010 + 766.945i 1.19322 + 1.00123i
\(767\) −229.972 + 398.323i −0.299833 + 0.519326i
\(768\) 915.485 528.555i 1.19204 0.688223i
\(769\) −151.090 + 856.875i −0.196476 + 1.11427i 0.713824 + 0.700325i \(0.246961\pi\)
−0.910301 + 0.413948i \(0.864150\pi\)
\(770\) −485.831 85.6652i −0.630950 0.111254i
\(771\) 572.479 + 991.562i 0.742514 + 1.28607i
\(772\) −633.800 365.925i −0.820985 0.473996i
\(773\) 684.938 816.277i 0.886078 1.05599i −0.111981 0.993710i \(-0.535720\pi\)
0.998059 0.0622759i \(-0.0198359\pi\)
\(774\) −100.189 + 275.267i −0.129443 + 0.355642i
\(775\) 146.080 + 401.352i 0.188491 + 0.517874i
\(776\) −52.4523 + 44.0127i −0.0675932 + 0.0567174i
\(777\) 299.682 + 1699.58i 0.385691 + 2.18736i
\(778\) 241.110i 0.309910i
\(779\) −578.689 28.8652i −0.742862 0.0370541i
\(780\) −432.332 −0.554271
\(781\) 36.9939 6.52303i 0.0473674 0.00835215i
\(782\) 4.41884 + 5.26617i 0.00565069 + 0.00673424i
\(783\) −457.878 + 166.654i −0.584774 + 0.212840i
\(784\) 149.695 + 54.4844i 0.190937 + 0.0694954i
\(785\) −43.3219 36.3514i −0.0551871 0.0463075i
\(786\) −883.088 + 1529.55i −1.12352 + 1.94600i
\(787\) −686.096 + 396.118i −0.871786 + 0.503326i −0.867941 0.496667i \(-0.834557\pi\)
−0.00384484 + 0.999993i \(0.501224\pi\)
\(788\) 160.246 908.797i 0.203357 1.15330i
\(789\) 721.972 + 127.303i 0.915047 + 0.161348i
\(790\) −410.607 711.192i −0.519755 0.900243i
\(791\) −254.544 146.961i −0.321800 0.185791i
\(792\) −74.7995 + 89.1426i −0.0944438 + 0.112554i
\(793\) 59.3833 163.154i 0.0748843 0.205743i
\(794\) 648.780 + 1782.51i 0.817103 + 2.24497i
\(795\) 979.808 822.156i 1.23246 1.03416i
\(796\) −9.48171 53.7735i −0.0119117 0.0675546i
\(797\) 194.822i 0.244444i 0.992503 + 0.122222i \(0.0390019\pi\)
−0.992503 + 0.122222i \(0.960998\pi\)
\(798\) 843.250 2000.58i 1.05670 2.50699i
\(799\) 100.880 0.126258
\(800\) −668.603 + 117.893i −0.835754 + 0.147366i
\(801\) −1614.76 1924.40i −2.01593 2.40249i
\(802\) −942.539 + 343.056i −1.17524 + 0.427751i
\(803\) −27.3438 9.95233i −0.0340521 0.0123939i
\(804\) 2186.09 + 1834.35i 2.71902 + 2.28153i
\(805\) 23.4107 40.5485i 0.0290816 0.0503708i
\(806\) 440.564 254.360i 0.546606 0.315583i
\(807\) −83.7653 + 475.057i −0.103798 + 0.588670i
\(808\) 26.7894 + 4.72369i 0.0331552 + 0.00584616i
\(809\) −304.775 527.886i −0.376731 0.652517i 0.613854 0.789420i \(-0.289618\pi\)
−0.990584 + 0.136903i \(0.956285\pi\)
\(810\) −459.529 265.309i −0.567320 0.327542i
\(811\) 348.318 415.109i 0.429492 0.511848i −0.507284 0.861779i \(-0.669350\pi\)
0.936776 + 0.349931i \(0.113795\pi\)
\(812\) 135.379 371.951i 0.166723 0.458068i
\(813\) −573.299 1575.13i −0.705165 1.93742i
\(814\) −666.497 + 559.258i −0.818793 + 0.687049i
\(815\) 113.100 + 641.424i 0.138773 + 0.787023i
\(816\) 93.2662i 0.114297i
\(817\) 100.281 51.4144i 0.122743 0.0629308i
\(818\) 192.394 0.235201
\(819\) 796.008 140.358i 0.971927 0.171377i
\(820\) −271.776 323.890i −0.331434 0.394987i
\(821\) −1424.58 + 518.505i −1.73518 + 0.631554i −0.998978 0.0452088i \(-0.985605\pi\)
−0.736202 + 0.676762i \(0.763382\pi\)
\(822\) 2284.11 + 831.348i 2.77872 + 1.01137i
\(823\) 513.192 + 430.619i 0.623563 + 0.523231i 0.898921 0.438110i \(-0.144352\pi\)
−0.275358 + 0.961342i \(0.588797\pi\)
\(824\) 64.0482 110.935i 0.0777283 0.134629i
\(825\) −452.222 + 261.090i −0.548148 + 0.316473i
\(826\) 292.673 1659.83i 0.354326 2.00948i
\(827\) −671.710 118.441i −0.812224 0.143217i −0.247916 0.968781i \(-0.579746\pi\)
−0.564308 + 0.825564i \(0.690857\pi\)
\(828\) −70.2672 121.706i −0.0848638 0.146988i
\(829\) −373.918 215.882i −0.451047 0.260412i 0.257225 0.966352i \(-0.417192\pi\)
−0.708272 + 0.705939i \(0.750525\pi\)
\(830\) 124.224 148.045i 0.149668 0.178367i
\(831\) 478.369 1314.31i 0.575654 1.58160i
\(832\) 155.337 + 426.784i 0.186703 + 0.512962i
\(833\) 10.5682 8.86781i 0.0126870 0.0106456i
\(834\) −544.570 3088.41i −0.652962 3.70313i
\(835\) 830.535i 0.994653i
\(836\) 565.218 70.8468i 0.676098 0.0847450i
\(837\) 1194.35 1.42694
\(838\) 440.448 77.6628i 0.525594 0.0926764i
\(839\) 108.202 + 128.950i 0.128966 + 0.153695i 0.826663 0.562697i \(-0.190236\pi\)
−0.697697 + 0.716393i \(0.745792\pi\)
\(840\) 116.995 42.5828i 0.139280 0.0506939i
\(841\) −660.017 240.227i −0.784800 0.285644i
\(842\) −1168.75 980.700i −1.38807 1.16473i
\(843\) −242.924 + 420.757i −0.288166 + 0.499118i
\(844\) −1066.99 + 616.027i −1.26421 + 0.729890i
\(845\) 73.0663 414.379i 0.0864689 0.490390i
\(846\) −3902.30 688.080i −4.61264 0.813334i
\(847\) −283.839 491.623i −0.335111 0.580429i
\(848\) −985.648 569.064i −1.16232 0.671066i
\(849\) −1507.37 + 1796.42i −1.77547 + 2.11592i
\(850\) −18.3816 + 50.5030i −0.0216254 + 0.0594153i
\(851\) −28.2427 77.5961i −0.0331876 0.0911823i
\(852\) −92.4110 + 77.5421i −0.108464 + 0.0910118i
\(853\) 89.0407 + 504.975i 0.104385 + 0.591999i 0.991464 + 0.130380i \(0.0416199\pi\)
−0.887079 + 0.461618i \(0.847269\pi\)
\(854\) 636.239i 0.745010i
\(855\) 305.894 + 991.588i 0.357771 + 1.15975i
\(856\) −78.9814 −0.0922680
\(857\) 850.500 149.966i 0.992415 0.174990i 0.346213 0.938156i \(-0.387467\pi\)
0.646202 + 0.763166i \(0.276356\pi\)
\(858\) 399.786 + 476.446i 0.465951 + 0.555298i
\(859\) 813.260 296.002i 0.946751 0.344589i 0.177923 0.984044i \(-0.443062\pi\)
0.768828 + 0.639455i \(0.220840\pi\)
\(860\) 77.2752 + 28.1259i 0.0898549 + 0.0327045i
\(861\) 924.241 + 775.530i 1.07345 + 0.900732i
\(862\) 506.421 877.147i 0.587495 1.01757i
\(863\) 1358.98 784.608i 1.57472 0.909163i 0.579138 0.815229i \(-0.303389\pi\)
0.995578 0.0939340i \(-0.0299443\pi\)
\(864\) −329.668 + 1869.64i −0.381560 + 2.16394i
\(865\) 261.906 + 46.1810i 0.302781 + 0.0533885i
\(866\) −234.675 406.470i −0.270988 0.469364i
\(867\) 1271.66 + 734.194i 1.46674 + 0.846822i
\(868\) −623.639 + 743.224i −0.718479 + 0.856249i
\(869\) −210.296 + 577.782i −0.241997 + 0.664882i
\(870\) 189.765 + 521.375i 0.218121 + 0.599281i
\(871\) 601.612 504.813i 0.690714 0.579578i
\(872\) 18.1999 + 103.217i 0.0208715 + 0.118368i
\(873\) 1188.35i 1.36123i
\(874\) −23.1126 + 101.276i −0.0264447 + 0.115876i
\(875\) 984.374 1.12500
\(876\) 92.0270 16.2268i 0.105054 0.0185238i
\(877\) 702.724 + 837.474i 0.801282 + 0.954931i 0.999683 0.0251902i \(-0.00801913\pi\)
−0.198401 + 0.980121i \(0.563575\pi\)
\(878\) 1168.36 425.248i 1.33070 0.484337i
\(879\) −1035.79 376.995i −1.17837 0.428891i
\(880\) −245.322 205.849i −0.278774 0.233920i
\(881\) 800.040 1385.71i 0.908104 1.57288i 0.0914086 0.995813i \(-0.470863\pi\)
0.816695 0.577069i \(-0.195804\pi\)
\(882\) −469.290 + 270.945i −0.532075 + 0.307194i
\(883\) 295.798 1677.55i 0.334992 1.89984i −0.0923160 0.995730i \(-0.529427\pi\)
0.427308 0.904106i \(-0.359462\pi\)
\(884\) 32.8096 + 5.78522i 0.0371149 + 0.00654436i
\(885\) 614.789 + 1064.84i 0.694676 + 1.20321i
\(886\) 542.622 + 313.283i 0.612440 + 0.353593i
\(887\) −276.588 + 329.625i −0.311824 + 0.371618i −0.899081 0.437783i \(-0.855764\pi\)
0.587256 + 0.809401i \(0.300208\pi\)
\(888\) 75.1009 206.338i 0.0845731 0.232363i
\(889\) −190.426 523.192i −0.214203 0.588517i
\(890\) −1038.01 + 870.993i −1.16630 + 0.978644i
\(891\) 68.9882 + 391.252i 0.0774278 + 0.439115i
\(892\) 404.920i 0.453946i
\(893\) 920.469 + 1215.12i 1.03076 + 1.36071i
\(894\) 858.968 0.960814
\(895\) −715.380 + 126.141i −0.799308 + 0.140940i
\(896\) −156.382 186.369i −0.174534 0.208001i
\(897\) −55.4696 + 20.1893i −0.0618391 + 0.0225076i
\(898\) −571.639 208.059i −0.636569 0.231692i
\(899\) −260.291 218.410i −0.289534 0.242948i
\(900\) 549.342 951.488i 0.610380 1.05721i
\(901\) −85.3592 + 49.2821i −0.0947383 + 0.0546972i
\(902\) −105.622 + 599.015i −0.117098 + 0.664096i
\(903\) −231.097 40.7486i −0.255921 0.0451258i
\(904\) 18.6984 + 32.3867i 0.0206841 + 0.0358260i
\(905\) −105.169 60.7192i −0.116209 0.0670931i
\(906\) −517.914 + 617.226i −0.571649 + 0.681264i
\(907\) −110.421 + 303.380i −0.121743 + 0.334487i −0.985562 0.169316i \(-0.945844\pi\)
0.863818 + 0.503803i \(0.168066\pi\)
\(908\) −2.68527 7.37771i −0.00295734 0.00812523i
\(909\) 361.660 303.468i 0.397865 0.333849i
\(910\) −75.7082 429.363i −0.0831958 0.471827i
\(911\) 1176.87i 1.29185i 0.763401 + 0.645924i \(0.223528\pi\)
−0.763401 + 0.645924i \(0.776472\pi\)
\(912\) 1123.40 850.994i 1.23180 0.933107i
\(913\) −144.698 −0.158486
\(914\) −1785.72 + 314.871i −1.95375 + 0.344498i
\(915\) −298.353 355.564i −0.326069 0.388594i
\(916\) 453.232 164.963i 0.494795 0.180091i
\(917\) −871.075 317.045i −0.949918 0.345742i
\(918\) 115.126 + 96.6026i 0.125410 + 0.105232i
\(919\) −227.393 + 393.857i −0.247436 + 0.428571i −0.962814 0.270167i \(-0.912921\pi\)
0.715378 + 0.698738i \(0.246255\pi\)
\(920\) −5.15915 + 2.97864i −0.00560777 + 0.00323765i
\(921\) −140.529 + 796.979i −0.152583 + 0.865341i
\(922\) 2147.90 + 378.733i 2.32961 + 0.410774i
\(923\) 16.5992 + 28.7507i 0.0179840 + 0.0311492i
\(924\) −1027.25 593.085i −1.11175 0.641867i
\(925\) 414.965 494.536i 0.448611 0.534634i
\(926\) 13.0054 35.7319i 0.0140447 0.0385874i
\(927\) −760.366 2089.09i −0.820244 2.25360i
\(928\) 413.748 347.176i 0.445850 0.374112i
\(929\) −226.600 1285.11i −0.243918 1.38333i −0.822991 0.568054i \(-0.807696\pi\)
0.579073 0.815276i \(-0.303415\pi\)
\(930\) 1359.97i 1.46233i
\(931\) 203.242 + 46.3829i 0.218306 + 0.0498205i
\(932\) 629.240 0.675151
\(933\) −124.753 + 21.9973i −0.133712 + 0.0235770i
\(934\) −36.3985 43.3781i −0.0389706 0.0464433i
\(935\) −26.0613 + 9.48553i −0.0278730 + 0.0101450i
\(936\) −96.6397 35.1740i −0.103248 0.0375790i
\(937\) −502.126 421.334i −0.535887 0.449662i 0.334242 0.942487i \(-0.391520\pi\)
−0.870128 + 0.492825i \(0.835964\pi\)
\(938\) −1438.93 + 2492.30i −1.53404 + 2.65704i
\(939\) −482.013 + 278.290i −0.513326 + 0.296369i
\(940\) −193.164 + 1095.49i −0.205493 + 1.16541i
\(941\) −218.980 38.6121i −0.232710 0.0410331i 0.0560769 0.998426i \(-0.482141\pi\)
−0.288787 + 0.957393i \(0.593252\pi\)
\(942\) −130.634 226.265i −0.138677 0.240196i
\(943\) −49.9950 28.8646i −0.0530169 0.0306093i
\(944\) 703.279 838.135i 0.744999 0.887855i
\(945\) 350.087 961.856i 0.370462 1.01784i
\(946\) −40.4622 111.169i −0.0427718 0.117515i
\(947\) −1082.21 + 908.079i −1.14277 + 0.958901i −0.999526 0.0307861i \(-0.990199\pi\)
−0.143247 + 0.989687i \(0.545754\pi\)
\(948\) −342.878 1944.56i −0.361685 2.05122i
\(949\) 25.7165i 0.0270985i
\(950\) −776.035 + 239.399i −0.816879 + 0.251999i
\(951\) −2456.76 −2.58334
\(952\) −9.44859 + 1.66604i −0.00992499 + 0.00175004i
\(953\) −367.047 437.430i −0.385149 0.459003i 0.538283 0.842764i \(-0.319073\pi\)
−0.923432 + 0.383761i \(0.874629\pi\)
\(954\) 3638.04 1324.14i 3.81346 1.38799i
\(955\) −653.452 237.837i −0.684243 0.249044i
\(956\) −269.250 225.927i −0.281642 0.236326i
\(957\) 207.710 359.764i 0.217042 0.375928i
\(958\) 1907.97 1101.57i 1.99162 1.14986i
\(959\) −221.532 + 1256.37i −0.231003 + 1.31009i
\(960\) 1195.71 + 210.836i 1.24553 + 0.219621i
\(961\) −64.0710 110.974i −0.0666712 0.115478i
\(962\) −665.907 384.462i −0.692211 0.399648i
\(963\) −881.103 + 1050.06i −0.914956 + 1.09040i
\(964\) −298.890 + 821.194i −0.310052 + 0.851861i
\(965\) 184.150 + 505.949i 0.190829 + 0.524300i
\(966\) 165.703 139.042i 0.171536 0.143935i
\(967\) 274.705 + 1557.93i 0.284080 + 1.61110i 0.708554 + 0.705657i \(0.249348\pi\)
−0.424474 + 0.905440i \(0.639541\pi\)
\(968\) 72.2279i 0.0746156i
\(969\) −15.1797 121.104i −0.0156653 0.124978i
\(970\) 640.990 0.660815
\(971\) −802.138 + 141.439i −0.826095 + 0.145663i −0.570684 0.821170i \(-0.693322\pi\)
−0.255411 + 0.966833i \(0.582211\pi\)
\(972\) 219.255 + 261.298i 0.225571 + 0.268825i
\(973\) 1546.70 562.951i 1.58962 0.578573i
\(974\) 692.263 + 251.963i 0.710742 + 0.258689i
\(975\) −353.520 296.638i −0.362584 0.304244i
\(976\) −206.508 + 357.683i −0.211586 + 0.366478i
\(977\) 818.544 472.586i 0.837813 0.483712i −0.0187071 0.999825i \(-0.505955\pi\)
0.856520 + 0.516113i \(0.172622\pi\)
\(978\) −522.513 + 2963.32i −0.534267 + 3.02998i
\(979\) 999.128 + 176.173i 1.02056 + 0.179952i
\(980\) 76.0619 + 131.743i 0.0776142 + 0.134432i
\(981\) 1575.30 + 909.502i 1.60581 + 0.927118i
\(982\) −431.225 + 513.914i −0.439129 + 0.523334i
\(983\) −5.72777 + 15.7369i −0.00582683 + 0.0160091i −0.942572 0.334003i \(-0.891600\pi\)
0.936745 + 0.350012i \(0.113823\pi\)
\(984\) −52.5033 144.252i −0.0533570 0.146597i
\(985\) −520.078 + 436.398i −0.527998 + 0.443043i
\(986\) −7.42449 42.1064i −0.00752991 0.0427043i
\(987\) 3174.26i 3.21607i
\(988\) 229.683 + 447.982i 0.232472 + 0.453423i
\(989\) 11.2281 0.0113530
\(990\) 1072.81 189.166i 1.08365 0.191076i
\(991\) 249.716 + 297.600i 0.251984 + 0.300302i 0.877177 0.480168i \(-0.159424\pi\)
−0.625193 + 0.780470i \(0.714980\pi\)
\(992\) −1244.04 + 452.793i −1.25407 + 0.456444i
\(993\) 7.70513 + 2.80444i 0.00775945 + 0.00282421i
\(994\) −93.1922 78.1976i −0.0937547 0.0786696i
\(995\) −20.0856 + 34.7893i −0.0201866 + 0.0349642i
\(996\) 402.423 232.339i 0.404039 0.233272i
\(997\) 255.596 1449.56i 0.256366 1.45392i −0.536177 0.844105i \(-0.680132\pi\)
0.792543 0.609816i \(-0.208757\pi\)
\(998\) −1635.97 288.465i −1.63925 0.289043i
\(999\) −902.619 1563.38i −0.903522 1.56495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 19.3.f.a.10.1 yes 12
3.2 odd 2 171.3.ba.b.10.2 12
4.3 odd 2 304.3.z.a.257.1 12
19.2 odd 18 inner 19.3.f.a.2.1 12
19.3 odd 18 361.3.f.e.299.2 12
19.4 even 9 361.3.d.d.293.1 12
19.5 even 9 361.3.f.b.307.1 12
19.6 even 9 361.3.b.c.360.12 12
19.7 even 3 361.3.f.e.262.2 12
19.8 odd 6 361.3.f.b.127.1 12
19.9 even 9 361.3.d.f.69.6 12
19.10 odd 18 361.3.d.d.69.1 12
19.11 even 3 361.3.f.f.127.2 12
19.12 odd 6 361.3.f.c.262.1 12
19.13 odd 18 361.3.b.c.360.1 12
19.14 odd 18 361.3.f.f.307.2 12
19.15 odd 18 361.3.d.f.293.6 12
19.16 even 9 361.3.f.c.299.1 12
19.17 even 9 361.3.f.g.116.2 12
19.18 odd 2 361.3.f.g.333.2 12
57.2 even 18 171.3.ba.b.154.2 12
76.59 even 18 304.3.z.a.97.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.3.f.a.2.1 12 19.2 odd 18 inner
19.3.f.a.10.1 yes 12 1.1 even 1 trivial
171.3.ba.b.10.2 12 3.2 odd 2
171.3.ba.b.154.2 12 57.2 even 18
304.3.z.a.97.1 12 76.59 even 18
304.3.z.a.257.1 12 4.3 odd 2
361.3.b.c.360.1 12 19.13 odd 18
361.3.b.c.360.12 12 19.6 even 9
361.3.d.d.69.1 12 19.10 odd 18
361.3.d.d.293.1 12 19.4 even 9
361.3.d.f.69.6 12 19.9 even 9
361.3.d.f.293.6 12 19.15 odd 18
361.3.f.b.127.1 12 19.8 odd 6
361.3.f.b.307.1 12 19.5 even 9
361.3.f.c.262.1 12 19.12 odd 6
361.3.f.c.299.1 12 19.16 even 9
361.3.f.e.262.2 12 19.7 even 3
361.3.f.e.299.2 12 19.3 odd 18
361.3.f.f.127.2 12 19.11 even 3
361.3.f.f.307.2 12 19.14 odd 18
361.3.f.g.116.2 12 19.17 even 9
361.3.f.g.333.2 12 19.18 odd 2