Properties

Label 361.3.f.e.299.2
Level $361$
Weight $3$
Character 361.299
Analytic conductor $9.837$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,3,Mod(116,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.116"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 361.f (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,3,-9,-9,3,9,6,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83653754341\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 216x^{8} + 905x^{6} + 1770x^{4} + 1395x^{2} + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 299.2
Root \(0.918492i\) of defining polynomial
Character \(\chi\) \(=\) 361.299
Dual form 361.3.f.e.262.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.987791 + 2.71393i) q^{2} +(-5.03126 - 0.887147i) q^{3} +(-3.32553 + 2.79045i) q^{4} +(2.44658 + 2.05292i) q^{5} +(-2.56218 - 14.5308i) q^{6} +(3.87208 + 6.70664i) q^{7} +(-0.853313 - 0.492661i) q^{8} +(16.0693 + 5.84876i) q^{9} +(-3.15479 + 8.66771i) q^{10} +(-3.45312 + 5.98097i) q^{11} +(19.2071 - 11.0892i) q^{12} +(-6.01079 + 1.05986i) q^{13} +(-14.3766 + 17.1333i) q^{14} +(-10.4881 - 12.4993i) q^{15} +(-2.52119 + 14.2984i) q^{16} +(-1.18154 + 0.430046i) q^{17} +49.3885i q^{18} -13.8647 q^{20} +(-13.5317 - 37.1780i) q^{21} +(-19.6429 - 3.46358i) q^{22} +(1.45017 - 1.21684i) q^{23} +(3.85618 + 3.23572i) q^{24} +(-2.56995 - 14.5749i) q^{25} +(-8.81380 - 15.2659i) q^{26} +(-35.8406 - 20.6926i) q^{27} +(-31.5912 - 11.4983i) q^{28} +(-4.02691 + 11.0638i) q^{29} +(23.5621 - 40.8108i) q^{30} +(-24.9929 + 14.4296i) q^{31} +(-45.1766 + 7.96586i) q^{32} +(22.6795 - 27.0284i) q^{33} +(-2.33423 - 2.78183i) q^{34} +(-4.29487 + 24.3574i) q^{35} +(-69.7596 + 25.3904i) q^{36} -43.6204i q^{37} +31.1821 q^{39} +(-1.07630 - 2.95712i) q^{40} +(-30.0319 - 5.29544i) q^{41} +(87.5320 - 73.4481i) q^{42} +(4.54356 + 3.81250i) q^{43} +(-5.20616 - 29.5256i) q^{44} +(27.3079 + 47.2986i) q^{45} +(4.73487 + 2.73368i) q^{46} +(-75.3927 - 27.4407i) q^{47} +(25.3695 - 69.7022i) q^{48} +(-5.48600 + 9.50203i) q^{49} +(37.0168 - 21.3716i) q^{50} +(6.32616 - 1.11547i) q^{51} +(17.0315 - 20.2974i) q^{52} +(50.3876 + 60.0496i) q^{53} +(20.7552 - 117.709i) q^{54} +(-20.7268 + 7.54394i) q^{55} -7.63048i q^{56} -34.0042 q^{58} +(25.7737 + 70.8126i) q^{59} +(69.7571 + 12.3001i) q^{60} +(-21.7915 + 18.2852i) q^{61} +(-63.8488 - 53.5755i) q^{62} +(22.9962 + 130.418i) q^{63} +(-37.2060 - 64.4427i) q^{64} +(-16.8817 - 9.74665i) q^{65} +(95.7560 + 34.8523i) q^{66} +(-44.0083 + 120.912i) q^{67} +(2.72923 - 4.72716i) q^{68} +(-8.37569 + 4.83570i) q^{69} +(-70.3468 + 12.4040i) q^{70} +(-3.49628 + 4.16670i) q^{71} +(-10.8307 - 12.9076i) q^{72} +(0.731648 - 4.14938i) q^{73} +(118.383 - 43.0879i) q^{74} +75.6101i q^{75} -53.4830 q^{77} +(30.8014 + 84.6261i) q^{78} +(87.6776 + 15.4599i) q^{79} +(-35.5218 + 29.8063i) q^{80} +(44.0674 + 36.9769i) q^{81} +(-15.2938 - 86.7354i) q^{82} +(10.4759 + 18.1448i) q^{83} +(148.743 + 85.8768i) q^{84} +(-3.77359 - 1.37347i) q^{85} +(-5.85879 + 16.0969i) q^{86} +(30.0757 - 52.0926i) q^{87} +(5.89318 - 3.40243i) q^{88} +(144.671 - 25.5093i) q^{89} +(-101.391 + 120.833i) q^{90} +(-30.3824 - 36.2083i) q^{91} +(-1.42706 + 8.09323i) q^{92} +(138.547 - 50.4269i) q^{93} -231.716i q^{94} +234.362 q^{96} +(-23.7675 - 65.3008i) q^{97} +(-31.2069 - 5.50262i) q^{98} +(-90.4706 + 75.9138i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 9 q^{3} - 9 q^{4} + 3 q^{5} + 9 q^{6} + 6 q^{7} - 9 q^{8} + 39 q^{9} - 30 q^{10} - 18 q^{11} + 63 q^{12} - 51 q^{13} - 90 q^{14} - 54 q^{15} + 51 q^{16} - 75 q^{17} - 90 q^{20} + 48 q^{21}+ \cdots - 366 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/361\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987791 + 2.71393i 0.493895 + 1.35697i 0.897088 + 0.441852i \(0.145678\pi\)
−0.403193 + 0.915115i \(0.632100\pi\)
\(3\) −5.03126 0.887147i −1.67709 0.295716i −0.747485 0.664279i \(-0.768739\pi\)
−0.929603 + 0.368563i \(0.879850\pi\)
\(4\) −3.32553 + 2.79045i −0.831381 + 0.697612i
\(5\) 2.44658 + 2.05292i 0.489316 + 0.410585i 0.853781 0.520632i \(-0.174304\pi\)
−0.364465 + 0.931217i \(0.618748\pi\)
\(6\) −2.56218 14.5308i −0.427029 2.42180i
\(7\) 3.87208 + 6.70664i 0.553154 + 0.958091i 0.998045 + 0.0625061i \(0.0199093\pi\)
−0.444890 + 0.895585i \(0.646757\pi\)
\(8\) −0.853313 0.492661i −0.106664 0.0615826i
\(9\) 16.0693 + 5.84876i 1.78548 + 0.649862i
\(10\) −3.15479 + 8.66771i −0.315479 + 0.866771i
\(11\) −3.45312 + 5.98097i −0.313920 + 0.543725i −0.979207 0.202862i \(-0.934976\pi\)
0.665288 + 0.746587i \(0.268309\pi\)
\(12\) 19.2071 11.0892i 1.60059 0.924103i
\(13\) −6.01079 + 1.05986i −0.462368 + 0.0815280i −0.399980 0.916524i \(-0.630983\pi\)
−0.0623884 + 0.998052i \(0.519872\pi\)
\(14\) −14.3766 + 17.1333i −1.02690 + 1.22381i
\(15\) −10.4881 12.4993i −0.699209 0.833285i
\(16\) −2.52119 + 14.2984i −0.157574 + 0.893648i
\(17\) −1.18154 + 0.430046i −0.0695025 + 0.0252968i −0.376537 0.926401i \(-0.622885\pi\)
0.307035 + 0.951698i \(0.400663\pi\)
\(18\) 49.3885i 2.74380i
\(19\) 0 0
\(20\) −13.8647 −0.693237
\(21\) −13.5317 37.1780i −0.644365 1.77038i
\(22\) −19.6429 3.46358i −0.892860 0.157435i
\(23\) 1.45017 1.21684i 0.0630508 0.0529059i −0.610718 0.791848i \(-0.709119\pi\)
0.673768 + 0.738943i \(0.264675\pi\)
\(24\) 3.85618 + 3.23572i 0.160674 + 0.134822i
\(25\) −2.56995 14.5749i −0.102798 0.582996i
\(26\) −8.81380 15.2659i −0.338992 0.587152i
\(27\) −35.8406 20.6926i −1.32743 0.766391i
\(28\) −31.5912 11.4983i −1.12826 0.410652i
\(29\) −4.02691 + 11.0638i −0.138859 + 0.381512i −0.989557 0.144143i \(-0.953957\pi\)
0.850698 + 0.525655i \(0.176180\pi\)
\(30\) 23.5621 40.8108i 0.785404 1.36036i
\(31\) −24.9929 + 14.4296i −0.806222 + 0.465472i −0.845642 0.533750i \(-0.820782\pi\)
0.0394204 + 0.999223i \(0.487449\pi\)
\(32\) −45.1766 + 7.96586i −1.41177 + 0.248933i
\(33\) 22.6795 27.0284i 0.687259 0.819043i
\(34\) −2.33423 2.78183i −0.0686539 0.0818186i
\(35\) −4.29487 + 24.3574i −0.122711 + 0.695926i
\(36\) −69.7596 + 25.3904i −1.93777 + 0.705290i
\(37\) 43.6204i 1.17893i −0.807794 0.589465i \(-0.799338\pi\)
0.807794 0.589465i \(-0.200662\pi\)
\(38\) 0 0
\(39\) 31.1821 0.799541
\(40\) −1.07630 2.95712i −0.0269076 0.0739280i
\(41\) −30.0319 5.29544i −0.732485 0.129157i −0.205049 0.978752i \(-0.565735\pi\)
−0.527436 + 0.849595i \(0.676847\pi\)
\(42\) 87.5320 73.4481i 2.08410 1.74876i
\(43\) 4.54356 + 3.81250i 0.105664 + 0.0886629i 0.694089 0.719889i \(-0.255807\pi\)
−0.588425 + 0.808552i \(0.700252\pi\)
\(44\) −5.20616 29.5256i −0.118322 0.671037i
\(45\) 27.3079 + 47.2986i 0.606841 + 1.05108i
\(46\) 4.73487 + 2.73368i 0.102932 + 0.0594278i
\(47\) −75.3927 27.4407i −1.60410 0.583844i −0.623839 0.781553i \(-0.714428\pi\)
−0.980261 + 0.197709i \(0.936650\pi\)
\(48\) 25.3695 69.7022i 0.528532 1.45213i
\(49\) −5.48600 + 9.50203i −0.111959 + 0.193919i
\(50\) 37.0168 21.3716i 0.740335 0.427433i
\(51\) 6.32616 1.11547i 0.124042 0.0218720i
\(52\) 17.0315 20.2974i 0.327529 0.390334i
\(53\) 50.3876 + 60.0496i 0.950709 + 1.13301i 0.991005 + 0.133823i \(0.0427255\pi\)
−0.0402960 + 0.999188i \(0.512830\pi\)
\(54\) 20.7552 117.709i 0.384356 2.17979i
\(55\) −20.7268 + 7.54394i −0.376851 + 0.137163i
\(56\) 7.63048i 0.136259i
\(57\) 0 0
\(58\) −34.0042 −0.586280
\(59\) 25.7737 + 70.8126i 0.436842 + 1.20021i 0.941535 + 0.336915i \(0.109383\pi\)
−0.504693 + 0.863299i \(0.668394\pi\)
\(60\) 69.7571 + 12.3001i 1.16262 + 0.205001i
\(61\) −21.7915 + 18.2852i −0.357237 + 0.299758i −0.803688 0.595050i \(-0.797132\pi\)
0.446451 + 0.894808i \(0.352688\pi\)
\(62\) −63.8488 53.5755i −1.02982 0.864121i
\(63\) 22.9962 + 130.418i 0.365020 + 2.07013i
\(64\) −37.2060 64.4427i −0.581344 1.00692i
\(65\) −16.8817 9.74665i −0.259718 0.149948i
\(66\) 95.7560 + 34.8523i 1.45085 + 0.528065i
\(67\) −44.0083 + 120.912i −0.656840 + 1.80465i −0.0660687 + 0.997815i \(0.521046\pi\)
−0.590772 + 0.806839i \(0.701177\pi\)
\(68\) 2.72923 4.72716i 0.0401357 0.0695171i
\(69\) −8.37569 + 4.83570i −0.121387 + 0.0700827i
\(70\) −70.3468 + 12.4040i −1.00495 + 0.177201i
\(71\) −3.49628 + 4.16670i −0.0492433 + 0.0586859i −0.790104 0.612973i \(-0.789973\pi\)
0.740861 + 0.671659i \(0.234418\pi\)
\(72\) −10.8307 12.9076i −0.150427 0.179272i
\(73\) 0.731648 4.14938i 0.0100226 0.0568408i −0.979386 0.201996i \(-0.935257\pi\)
0.989409 + 0.145155i \(0.0463682\pi\)
\(74\) 118.383 43.0879i 1.59977 0.582269i
\(75\) 75.6101i 1.00813i
\(76\) 0 0
\(77\) −53.4830 −0.694584
\(78\) 30.8014 + 84.6261i 0.394890 + 1.08495i
\(79\) 87.6776 + 15.4599i 1.10984 + 0.195695i 0.698377 0.715730i \(-0.253906\pi\)
0.411466 + 0.911425i \(0.365017\pi\)
\(80\) −35.5218 + 29.8063i −0.444022 + 0.372579i
\(81\) 44.0674 + 36.9769i 0.544042 + 0.456505i
\(82\) −15.2938 86.7354i −0.186510 1.05775i
\(83\) 10.4759 + 18.1448i 0.126215 + 0.218611i 0.922207 0.386696i \(-0.126384\pi\)
−0.795992 + 0.605307i \(0.793050\pi\)
\(84\) 148.743 + 85.8768i 1.77075 + 1.02234i
\(85\) −3.77359 1.37347i −0.0443952 0.0161585i
\(86\) −5.85879 + 16.0969i −0.0681254 + 0.187173i
\(87\) 30.0757 52.0926i 0.345697 0.598765i
\(88\) 5.89318 3.40243i 0.0669679 0.0386640i
\(89\) 144.671 25.5093i 1.62551 0.286622i 0.714696 0.699435i \(-0.246565\pi\)
0.910815 + 0.412814i \(0.135454\pi\)
\(90\) −101.391 + 120.833i −1.12656 + 1.34259i
\(91\) −30.3824 36.2083i −0.333872 0.397893i
\(92\) −1.42706 + 8.09323i −0.0155115 + 0.0879699i
\(93\) 138.547 50.4269i 1.48975 0.542225i
\(94\) 231.716i 2.46507i
\(95\) 0 0
\(96\) 234.362 2.44128
\(97\) −23.7675 65.3008i −0.245026 0.673204i −0.999851 0.0172773i \(-0.994500\pi\)
0.754824 0.655927i \(-0.227722\pi\)
\(98\) −31.2069 5.50262i −0.318438 0.0561491i
\(99\) −90.4706 + 75.9138i −0.913844 + 0.766806i
\(100\) 49.2169 + 41.2979i 0.492169 + 0.412979i
\(101\) −4.79407 27.1885i −0.0474660 0.269193i 0.951834 0.306615i \(-0.0991965\pi\)
−0.999300 + 0.0374222i \(0.988085\pi\)
\(102\) 9.27625 + 16.0669i 0.0909436 + 0.157519i
\(103\) −112.587 65.0023i −1.09308 0.631090i −0.158686 0.987329i \(-0.550726\pi\)
−0.934395 + 0.356239i \(0.884059\pi\)
\(104\) 5.65124 + 2.05688i 0.0543388 + 0.0197777i
\(105\) 43.2172 118.738i 0.411593 1.13084i
\(106\) −113.198 + 196.065i −1.06791 + 1.84967i
\(107\) 69.4189 40.0790i 0.648775 0.374570i −0.139212 0.990263i \(-0.544457\pi\)
0.787987 + 0.615692i \(0.211124\pi\)
\(108\) 176.930 31.1976i 1.63824 0.288866i
\(109\) 68.3737 81.4846i 0.627282 0.747565i −0.355022 0.934858i \(-0.615527\pi\)
0.982304 + 0.187292i \(0.0599712\pi\)
\(110\) −40.9475 48.7993i −0.372250 0.443630i
\(111\) −38.6978 + 219.466i −0.348628 + 1.97717i
\(112\) −105.656 + 38.4557i −0.943359 + 0.343355i
\(113\) 37.9540i 0.335876i 0.985798 + 0.167938i \(0.0537109\pi\)
−0.985798 + 0.167938i \(0.946289\pi\)
\(114\) 0 0
\(115\) 6.04602 0.0525741
\(116\) −17.4815 48.0299i −0.150702 0.414051i
\(117\) −102.788 18.1243i −0.878532 0.154909i
\(118\) −166.722 + 139.896i −1.41290 + 1.18556i
\(119\) −7.45919 6.25900i −0.0626823 0.0525967i
\(120\) 2.79177 + 15.8329i 0.0232647 + 0.131941i
\(121\) 36.6520 + 63.4831i 0.302909 + 0.524654i
\(122\) −71.1503 41.0786i −0.583199 0.336710i
\(123\) 146.401 + 53.2854i 1.19025 + 0.433215i
\(124\) 42.8493 117.727i 0.345559 0.949415i
\(125\) 63.5559 110.082i 0.508447 0.880656i
\(126\) −331.231 + 191.236i −2.62881 + 1.51775i
\(127\) −70.8031 + 12.4845i −0.557505 + 0.0983031i −0.445299 0.895382i \(-0.646903\pi\)
−0.112206 + 0.993685i \(0.535792\pi\)
\(128\) 20.1936 24.0657i 0.157762 0.188014i
\(129\) −19.4776 23.2125i −0.150989 0.179942i
\(130\) 9.77617 55.4434i 0.0752013 0.426488i
\(131\) 112.482 40.9399i 0.858638 0.312518i 0.125081 0.992147i \(-0.460081\pi\)
0.733557 + 0.679628i \(0.237859\pi\)
\(132\) 153.170i 1.16038i
\(133\) 0 0
\(134\) −371.618 −2.77327
\(135\) −45.2066 124.204i −0.334863 0.920030i
\(136\) 1.22009 + 0.215135i 0.00897127 + 0.00158188i
\(137\) 126.196 105.891i 0.921141 0.772929i −0.0530650 0.998591i \(-0.516899\pi\)
0.974206 + 0.225662i \(0.0724546\pi\)
\(138\) −21.3972 17.9544i −0.155052 0.130104i
\(139\) 36.9075 + 209.313i 0.265522 + 1.50585i 0.767545 + 0.640995i \(0.221478\pi\)
−0.502023 + 0.864854i \(0.667411\pi\)
\(140\) −53.6854 92.9858i −0.383467 0.664184i
\(141\) 354.976 + 204.946i 2.51756 + 1.45352i
\(142\) −14.7617 5.37283i −0.103956 0.0378368i
\(143\) 14.4169 39.6102i 0.100818 0.276994i
\(144\) −124.142 + 215.020i −0.862094 + 1.49319i
\(145\) −32.5654 + 18.8016i −0.224589 + 0.129666i
\(146\) 11.9839 2.11308i 0.0820812 0.0144731i
\(147\) 36.0312 42.9403i 0.245110 0.292111i
\(148\) 121.721 + 145.061i 0.822436 + 0.980141i
\(149\) −10.1090 + 57.3310i −0.0678456 + 0.384772i 0.931911 + 0.362688i \(0.118141\pi\)
−0.999756 + 0.0220834i \(0.992970\pi\)
\(150\) −205.201 + 74.6870i −1.36801 + 0.497913i
\(151\) 54.6073i 0.361638i 0.983516 + 0.180819i \(0.0578748\pi\)
−0.983516 + 0.180819i \(0.942125\pi\)
\(152\) 0 0
\(153\) −21.5018 −0.140535
\(154\) −52.8300 145.149i −0.343052 0.942527i
\(155\) −90.7700 16.0052i −0.585613 0.103259i
\(156\) −103.697 + 87.0120i −0.664723 + 0.557769i
\(157\) −13.5644 11.3819i −0.0863977 0.0724963i 0.598566 0.801074i \(-0.295737\pi\)
−0.684964 + 0.728577i \(0.740182\pi\)
\(158\) 44.6499 + 253.222i 0.282595 + 1.60267i
\(159\) −200.240 346.826i −1.25937 2.18130i
\(160\) −126.882 73.2551i −0.793010 0.457844i
\(161\) 13.7760 + 5.01407i 0.0855654 + 0.0311433i
\(162\) −56.8236 + 156.121i −0.350763 + 0.963713i
\(163\) −101.967 + 176.611i −0.625562 + 1.08351i 0.362869 + 0.931840i \(0.381797\pi\)
−0.988432 + 0.151666i \(0.951536\pi\)
\(164\) 114.648 66.1923i 0.699076 0.403612i
\(165\) 110.975 19.5678i 0.672573 0.118593i
\(166\) −38.8957 + 46.3541i −0.234311 + 0.279241i
\(167\) −167.155 199.208i −1.00093 1.19286i −0.981188 0.193057i \(-0.938160\pi\)
−0.0197423 0.999805i \(-0.506285\pi\)
\(168\) −6.76936 + 38.3910i −0.0402938 + 0.228518i
\(169\) −123.802 + 45.0602i −0.732555 + 0.266628i
\(170\) 11.5980i 0.0682234i
\(171\) 0 0
\(172\) −25.7483 −0.149700
\(173\) 28.4800 + 78.2481i 0.164624 + 0.452301i 0.994386 0.105817i \(-0.0337458\pi\)
−0.829761 + 0.558118i \(0.811524\pi\)
\(174\) 171.084 + 30.1668i 0.983243 + 0.173372i
\(175\) 87.7976 73.6709i 0.501700 0.420977i
\(176\) −76.8122 64.4531i −0.436433 0.366211i
\(177\) −66.8529 379.142i −0.377700 2.14204i
\(178\) 212.135 + 367.428i 1.19177 + 2.06420i
\(179\) 196.975 + 113.723i 1.10042 + 0.635327i 0.936331 0.351119i \(-0.114199\pi\)
0.164087 + 0.986446i \(0.447532\pi\)
\(180\) −222.797 81.0915i −1.23776 0.450509i
\(181\) −13.0048 + 35.7303i −0.0718496 + 0.197405i −0.970419 0.241426i \(-0.922385\pi\)
0.898570 + 0.438831i \(0.144607\pi\)
\(182\) 68.2555 118.222i 0.375030 0.649571i
\(183\) 125.860 72.6655i 0.687761 0.397079i
\(184\) −1.83693 + 0.323901i −0.00998334 + 0.00176033i
\(185\) 89.5495 106.721i 0.484051 0.576870i
\(186\) 273.711 + 326.196i 1.47156 + 1.75374i
\(187\) 1.50791 8.55177i 0.00806368 0.0457314i
\(188\) 327.292 119.125i 1.74092 0.633641i
\(189\) 320.493i 1.69573i
\(190\) 0 0
\(191\) 217.732 1.13996 0.569979 0.821659i \(-0.306951\pi\)
0.569979 + 0.821659i \(0.306951\pi\)
\(192\) 130.023 + 357.235i 0.677203 + 1.86060i
\(193\) 166.023 + 29.2742i 0.860220 + 0.151680i 0.586321 0.810078i \(-0.300576\pi\)
0.273899 + 0.961759i \(0.411687\pi\)
\(194\) 153.745 129.007i 0.792498 0.664985i
\(195\) 76.2895 + 64.0145i 0.391228 + 0.328279i
\(196\) −8.27108 46.9076i −0.0421994 0.239325i
\(197\) 106.287 + 184.094i 0.539527 + 0.934488i 0.998929 + 0.0462599i \(0.0147302\pi\)
−0.459402 + 0.888228i \(0.651936\pi\)
\(198\) −295.391 170.544i −1.49187 0.861334i
\(199\) −11.8194 4.30192i −0.0593941 0.0216177i 0.312152 0.950032i \(-0.398950\pi\)
−0.371546 + 0.928414i \(0.621172\pi\)
\(200\) −4.98751 + 13.7031i −0.0249376 + 0.0685154i
\(201\) 328.684 569.297i 1.63524 2.83232i
\(202\) 69.0522 39.8673i 0.341843 0.197363i
\(203\) −89.7936 + 15.8330i −0.442333 + 0.0779953i
\(204\) −17.9251 + 21.3624i −0.0878684 + 0.104717i
\(205\) −62.6043 74.6089i −0.305387 0.363946i
\(206\) 65.1992 369.763i 0.316501 1.79497i
\(207\) 30.4202 11.0721i 0.146958 0.0534882i
\(208\) 88.6166i 0.426041i
\(209\) 0 0
\(210\) 364.938 1.73780
\(211\) 97.0678 + 266.692i 0.460037 + 1.26394i 0.925458 + 0.378851i \(0.123681\pi\)
−0.465421 + 0.885090i \(0.654097\pi\)
\(212\) −335.130 59.0925i −1.58080 0.278738i
\(213\) 21.2872 17.8620i 0.0999397 0.0838593i
\(214\) 177.343 + 148.809i 0.828706 + 0.695367i
\(215\) 3.28941 + 18.6552i 0.0152996 + 0.0867683i
\(216\) 20.3888 + 35.3145i 0.0943927 + 0.163493i
\(217\) −193.549 111.745i −0.891930 0.514956i
\(218\) 288.683 + 105.072i 1.32423 + 0.481981i
\(219\) −7.36223 + 20.2275i −0.0336175 + 0.0923632i
\(220\) 47.8766 82.9246i 0.217621 0.376930i
\(221\) 6.64621 3.83719i 0.0300733 0.0173628i
\(222\) −633.841 + 111.763i −2.85514 + 0.503438i
\(223\) −59.9557 + 71.4524i −0.268860 + 0.320414i −0.883534 0.468366i \(-0.844843\pi\)
0.614675 + 0.788781i \(0.289287\pi\)
\(224\) −228.352 272.139i −1.01943 1.21491i
\(225\) 43.9478 249.240i 0.195323 1.10773i
\(226\) −103.005 + 37.4906i −0.455773 + 0.165888i
\(227\) 1.80854i 0.00796716i 0.999992 + 0.00398358i \(0.00126802\pi\)
−0.999992 + 0.00398358i \(0.998732\pi\)
\(228\) 0 0
\(229\) 111.104 0.485169 0.242584 0.970130i \(-0.422005\pi\)
0.242584 + 0.970130i \(0.422005\pi\)
\(230\) 5.97220 + 16.4085i 0.0259661 + 0.0713413i
\(231\) 269.087 + 47.4473i 1.16488 + 0.205399i
\(232\) 8.88693 7.45702i 0.0383057 0.0321423i
\(233\) −111.036 93.1704i −0.476550 0.399873i 0.372627 0.927981i \(-0.378457\pi\)
−0.849177 + 0.528108i \(0.822901\pi\)
\(234\) −52.3450 296.863i −0.223697 1.26865i
\(235\) −128.121 221.911i −0.545194 0.944303i
\(236\) −283.310 163.569i −1.20047 0.693089i
\(237\) −427.414 155.566i −1.80343 0.656396i
\(238\) 9.61840 26.4263i 0.0404134 0.111035i
\(239\) −40.4823 + 70.1174i −0.169382 + 0.293378i −0.938203 0.346086i \(-0.887510\pi\)
0.768821 + 0.639464i \(0.220844\pi\)
\(240\) 205.162 118.450i 0.854841 0.493543i
\(241\) 198.246 34.9562i 0.822598 0.145046i 0.253521 0.967330i \(-0.418411\pi\)
0.569078 + 0.822284i \(0.307300\pi\)
\(242\) −136.084 + 162.179i −0.562332 + 0.670161i
\(243\) 50.5060 + 60.1907i 0.207844 + 0.247698i
\(244\) 21.4442 121.616i 0.0878859 0.498426i
\(245\) −32.9289 + 11.9851i −0.134404 + 0.0489189i
\(246\) 449.956i 1.82909i
\(247\) 0 0
\(248\) 28.4357 0.114660
\(249\) −36.6098 100.585i −0.147027 0.403954i
\(250\) 361.535 + 63.7484i 1.44614 + 0.254994i
\(251\) 194.262 163.005i 0.773952 0.649423i −0.167766 0.985827i \(-0.553655\pi\)
0.941718 + 0.336404i \(0.109211\pi\)
\(252\) −440.399 369.539i −1.74762 1.46642i
\(253\) 2.27026 + 12.8753i 0.00897336 + 0.0508905i
\(254\) −103.821 179.823i −0.408743 0.707964i
\(255\) 17.7674 + 10.2580i 0.0696763 + 0.0402276i
\(256\) −194.438 70.7696i −0.759523 0.276444i
\(257\) −76.6506 + 210.596i −0.298251 + 0.819439i 0.696541 + 0.717517i \(0.254721\pi\)
−0.994792 + 0.101922i \(0.967501\pi\)
\(258\) 43.7574 75.7901i 0.169602 0.293760i
\(259\) 292.546 168.902i 1.12952 0.652130i
\(260\) 83.3380 14.6947i 0.320531 0.0565182i
\(261\) −129.419 + 154.236i −0.495860 + 0.590943i
\(262\) 222.216 + 264.827i 0.848154 + 1.01079i
\(263\) 24.9180 141.317i 0.0947454 0.537328i −0.900080 0.435725i \(-0.856492\pi\)
0.994825 0.101602i \(-0.0323970\pi\)
\(264\) −32.6686 + 11.8904i −0.123745 + 0.0450394i
\(265\) 250.358i 0.944747i
\(266\) 0 0
\(267\) −750.506 −2.81088
\(268\) −191.047 524.898i −0.712863 1.95858i
\(269\) −92.9865 16.3960i −0.345675 0.0609518i −0.00188442 0.999998i \(-0.500600\pi\)
−0.343790 + 0.939046i \(0.611711\pi\)
\(270\) 292.427 245.375i 1.08306 0.908797i
\(271\) 251.338 + 210.898i 0.927446 + 0.778220i 0.975357 0.220632i \(-0.0708119\pi\)
−0.0479110 + 0.998852i \(0.515256\pi\)
\(272\) −3.17007 17.9784i −0.0116547 0.0660969i
\(273\) 120.740 + 209.127i 0.442269 + 0.766033i
\(274\) 412.037 + 237.890i 1.50379 + 0.868211i
\(275\) 96.0465 + 34.9580i 0.349260 + 0.127120i
\(276\) 14.3598 39.4532i 0.0520282 0.142946i
\(277\) −136.885 + 237.092i −0.494169 + 0.855927i −0.999977 0.00671948i \(-0.997861\pi\)
0.505808 + 0.862646i \(0.331194\pi\)
\(278\) −531.605 + 306.922i −1.91225 + 1.10404i
\(279\) −486.014 + 85.6974i −1.74199 + 0.307159i
\(280\) 15.6648 18.6686i 0.0559457 0.0666735i
\(281\) 61.1283 + 72.8499i 0.217539 + 0.259252i 0.863767 0.503892i \(-0.168099\pi\)
−0.646228 + 0.763144i \(0.723655\pi\)
\(282\) −205.567 + 1165.83i −0.728959 + 4.13413i
\(283\) −431.334 + 156.993i −1.52415 + 0.554744i −0.962180 0.272415i \(-0.912178\pi\)
−0.561968 + 0.827159i \(0.689955\pi\)
\(284\) 23.6126i 0.0831431i
\(285\) 0 0
\(286\) 121.740 0.425665
\(287\) −80.7714 221.917i −0.281433 0.773232i
\(288\) −772.549 136.221i −2.68246 0.472990i
\(289\) −220.176 + 184.749i −0.761854 + 0.639271i
\(290\) −83.1941 69.8081i −0.286876 0.240718i
\(291\) 61.6493 + 349.631i 0.211853 + 1.20148i
\(292\) 9.14552 + 15.8405i 0.0313203 + 0.0542483i
\(293\) −186.848 107.877i −0.637708 0.368181i 0.146023 0.989281i \(-0.453353\pi\)
−0.783731 + 0.621100i \(0.786686\pi\)
\(294\) 152.128 + 55.3702i 0.517444 + 0.188334i
\(295\) −82.3156 + 226.160i −0.279036 + 0.766645i
\(296\) −21.4901 + 37.2219i −0.0726016 + 0.125750i
\(297\) 247.523 142.908i 0.833412 0.481171i
\(298\) −165.578 + 29.1959i −0.555631 + 0.0979727i
\(299\) −7.42697 + 8.85111i −0.0248394 + 0.0296024i
\(300\) −210.986 251.443i −0.703287 0.838144i
\(301\) −7.97604 + 45.2344i −0.0264985 + 0.150280i
\(302\) −148.201 + 53.9406i −0.490731 + 0.178611i
\(303\) 141.046i 0.465497i
\(304\) 0 0
\(305\) −90.8527 −0.297878
\(306\) −21.2393 58.3546i −0.0694096 0.190701i
\(307\) −155.999 27.5068i −0.508140 0.0895987i −0.0863000 0.996269i \(-0.527504\pi\)
−0.421840 + 0.906670i \(0.638615\pi\)
\(308\) 177.859 149.241i 0.577464 0.484550i
\(309\) 508.790 + 426.925i 1.64657 + 1.38164i
\(310\) −46.2247 262.154i −0.149112 0.845657i
\(311\) −12.3978 21.4736i −0.0398642 0.0690469i 0.845405 0.534126i \(-0.179359\pi\)
−0.885269 + 0.465079i \(0.846026\pi\)
\(312\) −26.6081 15.3622i −0.0852823 0.0492378i
\(313\) 102.374 + 37.2610i 0.327072 + 0.119045i 0.500337 0.865831i \(-0.333209\pi\)
−0.173265 + 0.984875i \(0.555432\pi\)
\(314\) 17.4909 48.0559i 0.0557036 0.153044i
\(315\) −211.476 + 366.288i −0.671354 + 1.16282i
\(316\) −334.714 + 193.247i −1.05922 + 0.611542i
\(317\) 473.574 83.5039i 1.49392 0.263419i 0.633797 0.773499i \(-0.281495\pi\)
0.860127 + 0.510080i \(0.170384\pi\)
\(318\) 743.468 886.031i 2.33795 2.78626i
\(319\) −52.2671 62.2895i −0.163847 0.195265i
\(320\) 41.2685 234.045i 0.128964 0.731391i
\(321\) −384.821 + 140.063i −1.19882 + 0.436334i
\(322\) 42.3401i 0.131491i
\(323\) 0 0
\(324\) −249.729 −0.770770
\(325\) 30.8948 + 84.8828i 0.0950610 + 0.261178i
\(326\) −580.034 102.276i −1.77924 0.313729i
\(327\) −416.295 + 349.313i −1.27307 + 1.06824i
\(328\) 23.0178 + 19.3142i 0.0701761 + 0.0588848i
\(329\) −107.892 611.884i −0.327938 1.85983i
\(330\) 162.725 + 281.849i 0.493107 + 0.854087i
\(331\) 1.38995 + 0.802488i 0.00419925 + 0.00242444i 0.502098 0.864811i \(-0.332562\pi\)
−0.497899 + 0.867235i \(0.665895\pi\)
\(332\) −85.4698 31.1084i −0.257439 0.0937001i
\(333\) 255.125 700.951i 0.766143 2.10496i
\(334\) 375.523 650.424i 1.12432 1.94738i
\(335\) −355.893 + 205.475i −1.06237 + 0.613357i
\(336\) 565.700 99.7482i 1.68363 0.296870i
\(337\) 192.589 229.519i 0.571481 0.681065i −0.400453 0.916317i \(-0.631147\pi\)
0.971934 + 0.235253i \(0.0755917\pi\)
\(338\) −244.581 291.480i −0.723611 0.862366i
\(339\) 33.6708 190.957i 0.0993239 0.563294i
\(340\) 16.3818 5.96248i 0.0481817 0.0175367i
\(341\) 199.309i 0.584484i
\(342\) 0 0
\(343\) 294.495 0.858586
\(344\) −1.99881 5.49169i −0.00581050 0.0159642i
\(345\) −30.4191 5.36371i −0.0881714 0.0155470i
\(346\) −184.228 + 154.585i −0.532450 + 0.446779i
\(347\) −296.655 248.923i −0.854915 0.717359i 0.105951 0.994371i \(-0.466211\pi\)
−0.960866 + 0.277013i \(0.910656\pi\)
\(348\) 45.3442 + 257.160i 0.130299 + 0.738965i
\(349\) −118.007 204.393i −0.338128 0.585654i 0.645953 0.763377i \(-0.276460\pi\)
−0.984081 + 0.177723i \(0.943127\pi\)
\(350\) 286.664 + 165.505i 0.819039 + 0.472872i
\(351\) 237.361 + 86.3925i 0.676243 + 0.246132i
\(352\) 108.357 297.707i 0.307831 0.845759i
\(353\) −151.713 + 262.775i −0.429782 + 0.744405i −0.996854 0.0792640i \(-0.974743\pi\)
0.567071 + 0.823669i \(0.308076\pi\)
\(354\) 962.929 555.947i 2.72014 1.57047i
\(355\) −17.1078 + 3.01657i −0.0481911 + 0.00849739i
\(356\) −409.923 + 488.527i −1.15147 + 1.37227i
\(357\) 31.9765 + 38.1081i 0.0895700 + 0.106745i
\(358\) −114.068 + 646.912i −0.318626 + 1.80702i
\(359\) 148.484 54.0436i 0.413603 0.150539i −0.126833 0.991924i \(-0.540481\pi\)
0.540437 + 0.841385i \(0.318259\pi\)
\(360\) 53.8140i 0.149483i
\(361\) 0 0
\(362\) −109.816 −0.303358
\(363\) −128.087 351.916i −0.352856 0.969465i
\(364\) 202.075 + 35.6312i 0.555150 + 0.0978879i
\(365\) 10.3084 8.64978i 0.0282422 0.0236980i
\(366\) 321.533 + 269.798i 0.878505 + 0.737153i
\(367\) 23.0487 + 130.716i 0.0628031 + 0.356174i 0.999973 + 0.00730175i \(0.00232424\pi\)
−0.937170 + 0.348872i \(0.886565\pi\)
\(368\) 13.7426 + 23.8029i 0.0373441 + 0.0646818i
\(369\) −451.621 260.744i −1.22391 0.706622i
\(370\) 378.089 + 137.613i 1.02186 + 0.371928i
\(371\) −207.626 + 570.448i −0.559639 + 1.53760i
\(372\) −320.027 + 554.304i −0.860289 + 1.49006i
\(373\) −278.822 + 160.978i −0.747513 + 0.431577i −0.824794 0.565433i \(-0.808709\pi\)
0.0772818 + 0.997009i \(0.475376\pi\)
\(374\) 24.6984 4.35500i 0.0660386 0.0116444i
\(375\) −417.425 + 497.468i −1.11313 + 1.32658i
\(376\) 50.8146 + 60.5585i 0.135145 + 0.161060i
\(377\) 12.4787 70.7703i 0.0331000 0.187720i
\(378\) 869.797 316.580i 2.30105 0.837514i
\(379\) 241.981i 0.638471i 0.947675 + 0.319236i \(0.103426\pi\)
−0.947675 + 0.319236i \(0.896574\pi\)
\(380\) 0 0
\(381\) 367.305 0.964054
\(382\) 215.074 + 590.910i 0.563020 + 1.54689i
\(383\) 406.851 + 71.7388i 1.06227 + 0.187307i 0.677365 0.735647i \(-0.263122\pi\)
0.384909 + 0.922955i \(0.374233\pi\)
\(384\) −122.949 + 103.166i −0.320179 + 0.268662i
\(385\) −130.850 109.796i −0.339871 0.285186i
\(386\) 84.5472 + 479.491i 0.219034 + 1.24220i
\(387\) 50.7137 + 87.8386i 0.131043 + 0.226973i
\(388\) 261.258 + 150.837i 0.673345 + 0.388756i
\(389\) −78.4491 28.5531i −0.201669 0.0734013i 0.239211 0.970968i \(-0.423111\pi\)
−0.440880 + 0.897566i \(0.645333\pi\)
\(390\) −98.3730 + 270.277i −0.252238 + 0.693019i
\(391\) −1.19014 + 2.06138i −0.00304383 + 0.00527208i
\(392\) 9.36255 5.40547i 0.0238840 0.0137895i
\(393\) −602.244 + 106.192i −1.53243 + 0.270208i
\(394\) −394.630 + 470.302i −1.00160 + 1.19366i
\(395\) 182.772 + 217.819i 0.462715 + 0.551442i
\(396\) 89.0287 504.907i 0.224820 1.27502i
\(397\) 617.189 224.638i 1.55463 0.565840i 0.585133 0.810937i \(-0.301042\pi\)
0.969498 + 0.245098i \(0.0788200\pi\)
\(398\) 36.3265i 0.0912726i
\(399\) 0 0
\(400\) 214.877 0.537192
\(401\) −118.782 326.352i −0.296215 0.813845i −0.995124 0.0986340i \(-0.968553\pi\)
0.698908 0.715211i \(-0.253670\pi\)
\(402\) 1869.71 + 329.680i 4.65101 + 0.820098i
\(403\) 134.933 113.223i 0.334822 0.280949i
\(404\) 91.8109 + 77.0385i 0.227255 + 0.190689i
\(405\) 31.9036 + 180.934i 0.0787742 + 0.446751i
\(406\) −131.667 228.054i −0.324303 0.561710i
\(407\) 260.893 + 150.626i 0.641014 + 0.370089i
\(408\) −5.94775 2.16480i −0.0145778 0.00530589i
\(409\) 22.7840 62.5986i 0.0557067 0.153053i −0.908718 0.417410i \(-0.862938\pi\)
0.964425 + 0.264358i \(0.0851600\pi\)
\(410\) 140.644 243.602i 0.343033 0.594151i
\(411\) −728.868 + 420.812i −1.77340 + 1.02387i
\(412\) 555.798 98.0021i 1.34902 0.237869i
\(413\) −375.117 + 447.047i −0.908273 + 1.08244i
\(414\) 60.0976 + 71.6215i 0.145163 + 0.172999i
\(415\) −11.6197 + 65.8988i −0.0279993 + 0.158792i
\(416\) 263.104 95.7622i 0.632462 0.230197i
\(417\) 1085.85i 2.60396i
\(418\) 0 0
\(419\) −154.857 −0.369586 −0.184793 0.982777i \(-0.559161\pi\)
−0.184793 + 0.982777i \(0.559161\pi\)
\(420\) 187.613 + 515.463i 0.446698 + 1.22729i
\(421\) −520.244 91.7330i −1.23573 0.217893i −0.482647 0.875815i \(-0.660325\pi\)
−0.753086 + 0.657922i \(0.771436\pi\)
\(422\) −627.900 + 526.871i −1.48792 + 1.24851i
\(423\) −1051.02 881.907i −2.48467 2.08489i
\(424\) −13.4123 76.0651i −0.0316328 0.179399i
\(425\) 9.30439 + 16.1157i 0.0218927 + 0.0379192i
\(426\) 69.5036 + 40.1279i 0.163154 + 0.0941971i
\(427\) −207.011 75.3457i −0.484802 0.176454i
\(428\) −119.016 + 326.993i −0.278075 + 0.764003i
\(429\) −107.675 + 186.499i −0.250992 + 0.434730i
\(430\) −47.3797 + 27.3547i −0.110185 + 0.0636155i
\(431\) 345.366 60.8974i 0.801313 0.141293i 0.242029 0.970269i \(-0.422187\pi\)
0.559284 + 0.828976i \(0.311076\pi\)
\(432\) 386.231 460.292i 0.894053 1.06549i
\(433\) 104.460 + 124.491i 0.241248 + 0.287508i 0.873059 0.487614i \(-0.162133\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(434\) 112.084 635.660i 0.258258 1.46465i
\(435\) 180.525 65.7056i 0.414999 0.151047i
\(436\) 461.772i 1.05911i
\(437\) 0 0
\(438\) −62.1686 −0.141937
\(439\) 147.241 + 404.541i 0.335401 + 0.921506i 0.986681 + 0.162669i \(0.0520101\pi\)
−0.651280 + 0.758838i \(0.725768\pi\)
\(440\) 21.4031 + 3.77394i 0.0486433 + 0.00857713i
\(441\) −143.731 + 120.605i −0.325922 + 0.273481i
\(442\) 16.9789 + 14.2470i 0.0384139 + 0.0322331i
\(443\) −37.6724 213.651i −0.0850394 0.482282i −0.997348 0.0727792i \(-0.976813\pi\)
0.912309 0.409503i \(-0.134298\pi\)
\(444\) −483.718 837.823i −1.08945 1.88699i
\(445\) 406.317 + 234.587i 0.913071 + 0.527162i
\(446\) −253.141 92.1357i −0.567580 0.206582i
\(447\) 101.722 279.479i 0.227566 0.625233i
\(448\) 288.129 499.054i 0.643145 1.11396i
\(449\) 182.412 105.316i 0.406262 0.234556i −0.282920 0.959143i \(-0.591303\pi\)
0.689183 + 0.724588i \(0.257970\pi\)
\(450\) 719.832 126.926i 1.59963 0.282057i
\(451\) 135.375 161.334i 0.300167 0.357726i
\(452\) −105.909 126.217i −0.234311 0.279241i
\(453\) 48.4448 274.744i 0.106942 0.606499i
\(454\) −4.90827 + 1.78646i −0.0108112 + 0.00393494i
\(455\) 150.959i 0.331778i
\(456\) 0 0
\(457\) 627.841 1.37383 0.686916 0.726737i \(-0.258964\pi\)
0.686916 + 0.726737i \(0.258964\pi\)
\(458\) 109.747 + 301.528i 0.239623 + 0.658358i
\(459\) 51.2459 + 9.03604i 0.111647 + 0.0196864i
\(460\) −20.1062 + 16.8711i −0.0437091 + 0.0366763i
\(461\) 578.501 + 485.420i 1.25488 + 1.05297i 0.996208 + 0.0870063i \(0.0277300\pi\)
0.258674 + 0.965965i \(0.416714\pi\)
\(462\) 137.033 + 777.152i 0.296608 + 1.68215i
\(463\) −6.58305 11.4022i −0.0142182 0.0246267i 0.858829 0.512263i \(-0.171193\pi\)
−0.873047 + 0.487636i \(0.837859\pi\)
\(464\) −148.042 85.4722i −0.319056 0.184207i
\(465\) 442.489 + 161.053i 0.951589 + 0.346350i
\(466\) 143.178 393.377i 0.307248 0.844158i
\(467\) 9.80331 16.9798i 0.0209921 0.0363594i −0.855339 0.518070i \(-0.826651\pi\)
0.876331 + 0.481710i \(0.159984\pi\)
\(468\) 392.400 226.552i 0.838461 0.484086i
\(469\) −981.315 + 173.032i −2.09236 + 0.368939i
\(470\) 475.696 566.913i 1.01212 1.20620i
\(471\) 58.1488 + 69.2990i 0.123458 + 0.147132i
\(472\) 12.8936 73.1230i 0.0273169 0.154922i
\(473\) −38.4919 + 14.0099i −0.0813783 + 0.0296193i
\(474\) 1313.64i 2.77139i
\(475\) 0 0
\(476\) 42.2711 0.0888049
\(477\) 458.479 + 1259.66i 0.961173 + 2.64080i
\(478\) −230.282 40.6049i −0.481761 0.0849475i
\(479\) 584.362 490.338i 1.21996 1.02367i 0.221135 0.975243i \(-0.429024\pi\)
0.998827 0.0484261i \(-0.0154205\pi\)
\(480\) 573.386 + 481.128i 1.19455 + 1.00235i
\(481\) 46.2317 + 262.193i 0.0961158 + 0.545100i
\(482\) 290.695 + 503.498i 0.603101 + 1.04460i
\(483\) −64.8626 37.4485i −0.134291 0.0775330i
\(484\) −299.033 108.839i −0.617837 0.224874i
\(485\) 75.9084 208.557i 0.156512 0.430014i
\(486\) −113.464 + 196.526i −0.233465 + 0.404374i
\(487\) −220.903 + 127.539i −0.453601 + 0.261886i −0.709350 0.704857i \(-0.751011\pi\)
0.255749 + 0.966743i \(0.417678\pi\)
\(488\) 27.6034 4.86722i 0.0565642 0.00997380i
\(489\) 669.702 798.119i 1.36953 1.63215i
\(490\) −65.0537 77.5280i −0.132763 0.158220i
\(491\) 40.3360 228.757i 0.0821507 0.465900i −0.915784 0.401670i \(-0.868430\pi\)
0.997935 0.0642298i \(-0.0204591\pi\)
\(492\) −635.549 + 231.321i −1.29177 + 0.470164i
\(493\) 14.8041i 0.0300287i
\(494\) 0 0
\(495\) −377.189 −0.761997
\(496\) −143.309 393.737i −0.288929 0.793825i
\(497\) −41.4824 7.31447i −0.0834656 0.0147172i
\(498\) 236.817 198.713i 0.475537 0.399023i
\(499\) −440.620 369.724i −0.883006 0.740930i 0.0837892 0.996484i \(-0.473298\pi\)
−0.966795 + 0.255554i \(0.917742\pi\)
\(500\) 95.8213 + 543.430i 0.191643 + 1.08686i
\(501\) 664.275 + 1150.56i 1.32590 + 2.29652i
\(502\) 634.275 + 366.199i 1.26350 + 0.729480i
\(503\) −103.931 37.8276i −0.206621 0.0752040i 0.236636 0.971598i \(-0.423955\pi\)
−0.443258 + 0.896394i \(0.646177\pi\)
\(504\) 44.6289 122.617i 0.0885493 0.243287i
\(505\) 44.0869 76.3607i 0.0873007 0.151209i
\(506\) −32.7001 + 18.8794i −0.0646247 + 0.0373111i
\(507\) 662.854 116.879i 1.30741 0.230531i
\(508\) 200.620 239.090i 0.394922 0.470649i
\(509\) 448.339 + 534.309i 0.880822 + 1.04972i 0.998394 + 0.0566587i \(0.0180447\pi\)
−0.117571 + 0.993064i \(0.537511\pi\)
\(510\) −10.2891 + 58.3525i −0.0201747 + 0.114417i
\(511\) 30.6614 11.1598i 0.0600027 0.0218392i
\(512\) 723.259i 1.41262i
\(513\) 0 0
\(514\) −647.257 −1.25926
\(515\) −142.009 390.167i −0.275746 0.757605i
\(516\) 129.547 + 22.8426i 0.251059 + 0.0442685i
\(517\) 424.462 356.166i 0.821009 0.688908i
\(518\) 747.363 + 627.112i 1.44279 + 1.21064i
\(519\) −73.8726 418.953i −0.142336 0.807230i
\(520\) 9.60358 + 16.6339i 0.0184684 + 0.0319882i
\(521\) −787.086 454.424i −1.51072 0.872215i −0.999922 0.0125152i \(-0.996016\pi\)
−0.510799 0.859700i \(-0.670650\pi\)
\(522\) −546.426 198.883i −1.04679 0.381001i
\(523\) 214.496 589.322i 0.410125 1.12681i −0.546999 0.837133i \(-0.684230\pi\)
0.957125 0.289677i \(-0.0935478\pi\)
\(524\) −259.819 + 450.020i −0.495839 + 0.858818i
\(525\) −507.090 + 292.768i −0.965885 + 0.557654i
\(526\) 408.139 71.9660i 0.775930 0.136817i
\(527\) 23.3247 27.7973i 0.0442594 0.0527463i
\(528\) 329.283 + 392.424i 0.623642 + 0.743228i
\(529\) −91.2376 + 517.434i −0.172472 + 0.978136i
\(530\) −679.455 + 247.301i −1.28199 + 0.466606i
\(531\) 1288.66i 2.42685i
\(532\) 0 0
\(533\) 186.128 0.349208
\(534\) −741.343 2036.82i −1.38828 3.81427i
\(535\) 252.118 + 44.4552i 0.471249 + 0.0830938i
\(536\) 97.1213 81.4945i 0.181197 0.152042i
\(537\) −890.143 746.918i −1.65762 1.39091i
\(538\) −47.3535 268.555i −0.0880176 0.499173i
\(539\) −37.8876 65.6232i −0.0702923 0.121750i
\(540\) 496.920 + 286.897i 0.920223 + 0.531291i
\(541\) 938.477 + 341.578i 1.73471 + 0.631382i 0.998948 0.0458600i \(-0.0146028\pi\)
0.735760 + 0.677242i \(0.236825\pi\)
\(542\) −324.093 + 890.437i −0.597957 + 1.64287i
\(543\) 97.1284 168.231i 0.178874 0.309818i
\(544\) 49.9524 28.8400i 0.0918243 0.0530148i
\(545\) 334.563 58.9926i 0.613878 0.108243i
\(546\) −448.291 + 534.253i −0.821046 + 0.978485i
\(547\) 14.3815 + 17.1392i 0.0262916 + 0.0313332i 0.779030 0.626987i \(-0.215712\pi\)
−0.752738 + 0.658320i \(0.771267\pi\)
\(548\) −124.185 + 704.288i −0.226615 + 1.28520i
\(549\) −457.120 + 166.378i −0.832642 + 0.303057i
\(550\) 295.195i 0.536718i
\(551\) 0 0
\(552\) 9.52944 0.0172635
\(553\) 235.811 + 647.884i 0.426421 + 1.17158i
\(554\) −778.665 137.300i −1.40553 0.247833i
\(555\) −545.224 + 457.497i −0.982385 + 0.824319i
\(556\) −706.814 593.087i −1.27125 1.06670i
\(557\) 164.359 + 932.127i 0.295079 + 1.67348i 0.666880 + 0.745165i \(0.267629\pi\)
−0.371800 + 0.928313i \(0.621259\pi\)
\(558\) −712.658 1234.36i −1.27716 2.21211i
\(559\) −31.3511 18.1006i −0.0560843 0.0323803i
\(560\) −337.443 122.819i −0.602577 0.219320i
\(561\) −15.1734 + 41.6885i −0.0270470 + 0.0743110i
\(562\) −137.328 + 237.859i −0.244355 + 0.423236i
\(563\) 375.791 216.963i 0.667479 0.385369i −0.127642 0.991820i \(-0.540741\pi\)
0.795121 + 0.606451i \(0.207407\pi\)
\(564\) −1752.37 + 308.991i −3.10704 + 0.547856i
\(565\) −77.9167 + 92.8575i −0.137906 + 0.164350i
\(566\) −852.135 1015.54i −1.50554 1.79423i
\(567\) −77.3585 + 438.722i −0.136435 + 0.773760i
\(568\) 5.03619 1.83302i 0.00886652 0.00322715i
\(569\) 966.317i 1.69827i 0.528174 + 0.849136i \(0.322877\pi\)
−0.528174 + 0.849136i \(0.677123\pi\)
\(570\) 0 0
\(571\) −249.882 −0.437623 −0.218811 0.975767i \(-0.570218\pi\)
−0.218811 + 0.975767i \(0.570218\pi\)
\(572\) 62.5862 + 171.954i 0.109417 + 0.300619i
\(573\) −1095.47 193.160i −1.91181 0.337104i
\(574\) 522.484 438.416i 0.910251 0.763791i
\(575\) −21.4621 18.0089i −0.0373254 0.0313197i
\(576\) −220.966 1253.16i −0.383621 2.17563i
\(577\) −452.337 783.471i −0.783946 1.35783i −0.929626 0.368503i \(-0.879870\pi\)
0.145680 0.989332i \(-0.453463\pi\)
\(578\) −718.885 415.049i −1.24375 0.718077i
\(579\) −809.332 294.573i −1.39781 0.508761i
\(580\) 55.8320 153.397i 0.0962621 0.264478i
\(581\) −81.1269 + 140.516i −0.139633 + 0.241852i
\(582\) −887.978 + 512.674i −1.52574 + 0.880884i
\(583\) −533.149 + 94.0086i −0.914492 + 0.161250i
\(584\) −2.66856 + 3.18027i −0.00456945 + 0.00544566i
\(585\) −214.272 255.359i −0.366276 0.436511i
\(586\) 108.204 613.654i 0.184648 1.04719i
\(587\) 644.432 234.554i 1.09784 0.399581i 0.271321 0.962489i \(-0.412540\pi\)
0.826520 + 0.562908i \(0.190317\pi\)
\(588\) 243.342i 0.413847i
\(589\) 0 0
\(590\) −695.094 −1.17813
\(591\) −371.438 1020.52i −0.628491 1.72676i
\(592\) 623.701 + 109.975i 1.05355 + 0.185769i
\(593\) −825.335 + 692.539i −1.39180 + 1.16786i −0.427190 + 0.904162i \(0.640497\pi\)
−0.964606 + 0.263694i \(0.915059\pi\)
\(594\) 632.343 + 530.599i 1.06455 + 0.893264i
\(595\) −5.40024 30.6263i −0.00907604 0.0514728i
\(596\) −126.361 218.864i −0.212016 0.367222i
\(597\) 55.6502 + 32.1296i 0.0932163 + 0.0538185i
\(598\) −31.3576 11.4132i −0.0524375 0.0190857i
\(599\) 205.734 565.250i 0.343463 0.943656i −0.640919 0.767608i \(-0.721447\pi\)
0.984382 0.176047i \(-0.0563312\pi\)
\(600\) 37.2501 64.5191i 0.0620835 0.107532i
\(601\) 450.991 260.380i 0.750401 0.433244i −0.0754379 0.997151i \(-0.524035\pi\)
0.825839 + 0.563906i \(0.190702\pi\)
\(602\) −130.642 + 23.0357i −0.217013 + 0.0382652i
\(603\) −1414.37 + 1685.58i −2.34555 + 2.79532i
\(604\) −152.379 181.598i −0.252283 0.300659i
\(605\) −40.6540 + 230.560i −0.0671967 + 0.381091i
\(606\) −382.788 + 139.323i −0.631664 + 0.229907i
\(607\) 841.425i 1.38620i 0.720840 + 0.693102i \(0.243756\pi\)
−0.720840 + 0.693102i \(0.756244\pi\)
\(608\) 0 0
\(609\) 465.822 0.764896
\(610\) −89.7435 246.568i −0.147121 0.404210i
\(611\) 482.253 + 85.0341i 0.789284 + 0.139172i
\(612\) 71.5049 59.9997i 0.116838 0.0980388i
\(613\) 564.080 + 473.319i 0.920195 + 0.772135i 0.974031 0.226414i \(-0.0727003\pi\)
−0.0538359 + 0.998550i \(0.517145\pi\)
\(614\) −79.4426 450.541i −0.129385 0.733781i
\(615\) 248.790 + 430.916i 0.404536 + 0.700677i
\(616\) 45.6377 + 26.3489i 0.0740872 + 0.0427743i
\(617\) −219.234 79.7947i −0.355323 0.129327i 0.158190 0.987409i \(-0.449434\pi\)
−0.513513 + 0.858082i \(0.671656\pi\)
\(618\) −656.069 + 1802.53i −1.06160 + 2.91672i
\(619\) 449.457 778.482i 0.726102 1.25765i −0.232417 0.972616i \(-0.574663\pi\)
0.958519 0.285029i \(-0.0920032\pi\)
\(620\) 346.520 200.063i 0.558903 0.322683i
\(621\) −77.1543 + 13.6044i −0.124242 + 0.0219072i
\(622\) 46.0314 54.8581i 0.0740055 0.0881963i
\(623\) 731.257 + 871.479i 1.17377 + 1.39884i
\(624\) −78.6159 + 445.853i −0.125987 + 0.714508i
\(625\) 33.8042 12.3037i 0.0540868 0.0196860i
\(626\) 314.641i 0.502622i
\(627\) 0 0
\(628\) 76.8695 0.122404
\(629\) 18.7588 + 51.5394i 0.0298232 + 0.0819386i
\(630\) −1202.98 212.117i −1.90948 0.336694i
\(631\) 134.303 112.694i 0.212842 0.178596i −0.530133 0.847914i \(-0.677858\pi\)
0.742976 + 0.669318i \(0.233414\pi\)
\(632\) −67.2000 56.3875i −0.106329 0.0892207i
\(633\) −251.779 1427.91i −0.397755 2.25578i
\(634\) 694.416 + 1202.76i 1.09529 + 1.89710i
\(635\) −198.855 114.809i −0.313158 0.180802i
\(636\) 1633.71 + 594.620i 2.56872 + 0.934937i
\(637\) 22.9043 62.9291i 0.0359565 0.0987897i
\(638\) 117.421 203.378i 0.184045 0.318775i
\(639\) −80.5528 + 46.5072i −0.126061 + 0.0727812i
\(640\) 98.8103 17.4229i 0.154391 0.0272233i
\(641\) 251.452 299.669i 0.392281 0.467502i −0.533370 0.845882i \(-0.679074\pi\)
0.925650 + 0.378381i \(0.123519\pi\)
\(642\) −760.245 906.024i −1.18418 1.41125i
\(643\) 3.88097 22.0101i 0.00603573 0.0342303i −0.981641 0.190737i \(-0.938912\pi\)
0.987677 + 0.156507i \(0.0500233\pi\)
\(644\) −59.8040 + 21.7669i −0.0928634 + 0.0337995i
\(645\) 96.7773i 0.150042i
\(646\) 0 0
\(647\) −599.186 −0.926100 −0.463050 0.886332i \(-0.653245\pi\)
−0.463050 + 0.886332i \(0.653245\pi\)
\(648\) −19.3862 53.2632i −0.0299170 0.0821963i
\(649\) −512.528 90.3725i −0.789719 0.139249i
\(650\) −199.849 + 167.693i −0.307460 + 0.257989i
\(651\) 874.660 + 733.927i 1.34356 + 1.12738i
\(652\) −153.732 871.859i −0.235786 1.33721i
\(653\) 152.832 + 264.713i 0.234046 + 0.405380i 0.958995 0.283423i \(-0.0914700\pi\)
−0.724949 + 0.688803i \(0.758137\pi\)
\(654\) −1359.22 784.749i −2.07832 1.19992i
\(655\) 359.242 + 130.753i 0.548460 + 0.199623i
\(656\) 151.432 416.057i 0.230842 0.634233i
\(657\) 36.0258 62.3986i 0.0548338 0.0949750i
\(658\) 1554.04 897.224i 2.36176 1.36356i
\(659\) −44.1686 + 7.78811i −0.0670237 + 0.0118181i −0.207059 0.978328i \(-0.566389\pi\)
0.140036 + 0.990146i \(0.455278\pi\)
\(660\) −314.446 + 374.742i −0.476433 + 0.567791i
\(661\) −623.467 743.019i −0.943217 1.12408i −0.992122 0.125279i \(-0.960017\pi\)
0.0489043 0.998803i \(-0.484427\pi\)
\(662\) −0.804919 + 4.56492i −0.00121589 + 0.00689565i
\(663\) −36.8430 + 13.4097i −0.0555701 + 0.0202259i
\(664\) 20.6442i 0.0310907i
\(665\) 0 0
\(666\) 2154.35 3.23475
\(667\) 7.62317 + 20.9445i 0.0114290 + 0.0314010i
\(668\) 1111.76 + 196.033i 1.66431 + 0.293463i
\(669\) 365.042 306.306i 0.545653 0.457857i
\(670\) −909.192 762.903i −1.35700 1.13866i
\(671\) −34.1149 193.475i −0.0508419 0.288339i
\(672\) 907.470 + 1571.78i 1.35040 + 2.33896i
\(673\) −374.338 216.124i −0.556224 0.321136i 0.195405 0.980723i \(-0.437398\pi\)
−0.751628 + 0.659587i \(0.770731\pi\)
\(674\) 813.136 + 295.957i 1.20643 + 0.439106i
\(675\) −209.484 + 575.552i −0.310346 + 0.852670i
\(676\) 285.968 495.311i 0.423030 0.732709i
\(677\) 1085.71 626.838i 1.60371 0.925905i 0.612980 0.790099i \(-0.289971\pi\)
0.990735 0.135806i \(-0.0433625\pi\)
\(678\) 551.503 97.2449i 0.813427 0.143429i
\(679\) 345.919 412.250i 0.509454 0.607143i
\(680\) 2.54340 + 3.03110i 0.00374029 + 0.00445750i
\(681\) 1.60445 9.09926i 0.00235601 0.0133616i
\(682\) 540.911 196.876i 0.793125 0.288674i
\(683\) 708.508i 1.03735i −0.854972 0.518674i \(-0.826426\pi\)
0.854972 0.518674i \(-0.173574\pi\)
\(684\) 0 0
\(685\) 526.136 0.768082
\(686\) 290.899 + 799.240i 0.424052 + 1.16507i
\(687\) −558.992 98.5653i −0.813670 0.143472i
\(688\) −65.9678 + 55.3535i −0.0958834 + 0.0804557i
\(689\) −366.513 307.541i −0.531950 0.446359i
\(690\) −15.4910 87.8537i −0.0224507 0.127324i
\(691\) −272.140 471.360i −0.393835 0.682142i 0.599117 0.800661i \(-0.295518\pi\)
−0.992952 + 0.118520i \(0.962185\pi\)
\(692\) −313.058 180.744i −0.452396 0.261191i
\(693\) −859.436 312.809i −1.24017 0.451384i
\(694\) 382.528 1050.99i 0.551193 1.51439i
\(695\) −339.407 + 587.869i −0.488355 + 0.845855i
\(696\) −51.3279 + 29.6342i −0.0737470 + 0.0425779i
\(697\) 37.7612 6.65833i 0.0541768 0.00955284i
\(698\) 438.144 522.160i 0.627713 0.748080i
\(699\) 475.996 + 567.270i 0.680967 + 0.811545i
\(700\) −86.3983 + 489.989i −0.123426 + 0.699984i
\(701\) −292.347 + 106.405i −0.417042 + 0.151791i −0.542014 0.840369i \(-0.682338\pi\)
0.124972 + 0.992160i \(0.460116\pi\)
\(702\) 729.520i 1.03920i
\(703\) 0 0
\(704\) 513.906 0.729981
\(705\) 447.740 + 1230.16i 0.635092 + 1.74490i
\(706\) −863.014 152.173i −1.22240 0.215542i
\(707\) 163.780 137.428i 0.231655 0.194382i
\(708\) 1280.30 + 1074.30i 1.80833 + 1.51737i
\(709\) 13.5503 + 76.8474i 0.0191118 + 0.108388i 0.992871 0.119191i \(-0.0380300\pi\)
−0.973760 + 0.227579i \(0.926919\pi\)
\(710\) −25.0857 43.4498i −0.0353320 0.0611969i
\(711\) 1318.50 + 761.236i 1.85443 + 1.07066i
\(712\) −136.017 49.5060i −0.191035 0.0695309i
\(713\) −18.6854 + 51.3376i −0.0262067 + 0.0720022i
\(714\) −71.8367 + 124.425i −0.100612 + 0.174265i
\(715\) 116.589 67.3126i 0.163061 0.0941435i
\(716\) −972.384 + 171.458i −1.35808 + 0.239466i
\(717\) 265.881 316.865i 0.370825 0.441932i
\(718\) 293.342 + 349.591i 0.408554 + 0.486895i
\(719\) 94.9085 538.253i 0.132001 0.748613i −0.844901 0.534923i \(-0.820341\pi\)
0.976901 0.213690i \(-0.0685483\pi\)
\(720\) −745.141 + 271.209i −1.03492 + 0.376679i
\(721\) 1006.78i 1.39636i
\(722\) 0 0
\(723\) −1028.44 −1.42246
\(724\) −56.4558 155.111i −0.0779777 0.214242i
\(725\) 171.603 + 30.2583i 0.236694 + 0.0417356i
\(726\) 828.553 695.238i 1.14126 0.957629i
\(727\) −276.631 232.121i −0.380510 0.319286i 0.432392 0.901686i \(-0.357670\pi\)
−0.812903 + 0.582399i \(0.802114\pi\)
\(728\) 8.08727 + 45.8652i 0.0111089 + 0.0630016i
\(729\) −459.577 796.012i −0.630422 1.09192i
\(730\) 33.6575 + 19.4321i 0.0461061 + 0.0266194i
\(731\) −7.00797 2.55069i −0.00958682 0.00348932i
\(732\) −215.782 + 592.857i −0.294785 + 0.809914i
\(733\) −333.779 + 578.122i −0.455360 + 0.788707i −0.998709 0.0508002i \(-0.983823\pi\)
0.543349 + 0.839507i \(0.317156\pi\)
\(734\) −331.987 + 191.673i −0.452298 + 0.261135i
\(735\) 176.306 31.0876i 0.239873 0.0422960i
\(736\) −55.8206 + 66.5244i −0.0758432 + 0.0903864i
\(737\) −571.204 680.735i −0.775040 0.923657i
\(738\) 261.533 1483.23i 0.354381 2.00980i
\(739\) 1185.50 431.487i 1.60420 0.583880i 0.623916 0.781492i \(-0.285541\pi\)
0.980280 + 0.197612i \(0.0633186\pi\)
\(740\) 604.786i 0.817278i
\(741\) 0 0
\(742\) −1753.25 −2.36287
\(743\) −449.989 1236.33i −0.605637 1.66397i −0.739647 0.672995i \(-0.765008\pi\)
0.134010 0.990980i \(-0.457215\pi\)
\(744\) −143.067 25.2266i −0.192295 0.0339067i
\(745\) −142.429 + 119.512i −0.191179 + 0.160419i
\(746\) −712.302 597.692i −0.954828 0.801196i
\(747\) 62.2161 + 352.845i 0.0832879 + 0.472349i
\(748\) 18.8487 + 32.6469i 0.0251988 + 0.0436455i
\(749\) 537.591 + 310.378i 0.717745 + 0.414390i
\(750\) −1762.42 641.470i −2.34990 0.855293i
\(751\) −323.384 + 888.490i −0.430604 + 1.18308i 0.514838 + 0.857287i \(0.327852\pi\)
−0.945443 + 0.325788i \(0.894370\pi\)
\(752\) 582.436 1008.81i 0.774516 1.34150i
\(753\) −1121.99 + 647.783i −1.49003 + 0.860269i
\(754\) 204.392 36.0399i 0.271077 0.0477982i
\(755\) −112.105 + 133.601i −0.148483 + 0.176955i
\(756\) 894.319 + 1065.81i 1.18296 + 1.40980i
\(757\) −51.6383 + 292.855i −0.0682144 + 0.386863i 0.931517 + 0.363697i \(0.118486\pi\)
−0.999732 + 0.0231658i \(0.992625\pi\)
\(758\) −656.719 + 239.026i −0.866384 + 0.315338i
\(759\) 66.7930i 0.0880013i
\(760\) 0 0
\(761\) −402.072 −0.528348 −0.264174 0.964475i \(-0.585099\pi\)
−0.264174 + 0.964475i \(0.585099\pi\)
\(762\) 362.820 + 996.840i 0.476142 + 1.30819i
\(763\) 811.236 + 143.043i 1.06322 + 0.187474i
\(764\) −724.073 + 607.570i −0.947740 + 0.795248i
\(765\) −52.6060 44.1416i −0.0687660 0.0577015i
\(766\) 207.189 + 1175.03i 0.270482 + 1.53398i
\(767\) −229.972 398.323i −0.299833 0.519326i
\(768\) 915.485 + 528.555i 1.19204 + 0.688223i
\(769\) 817.621 + 297.590i 1.06323 + 0.386983i 0.813640 0.581370i \(-0.197483\pi\)
0.249587 + 0.968352i \(0.419705\pi\)
\(770\) 168.727 463.575i 0.219127 0.602045i
\(771\) 572.479 991.562i 0.742514 1.28607i
\(772\) −633.800 + 365.925i −0.820985 + 0.473996i
\(773\) −1049.39 + 185.035i −1.35755 + 0.239373i −0.804588 0.593834i \(-0.797614\pi\)
−0.552962 + 0.833206i \(0.686503\pi\)
\(774\) −188.294 + 224.400i −0.243274 + 0.289922i
\(775\) 274.541 + 327.185i 0.354247 + 0.422175i
\(776\) −11.8900 + 67.4314i −0.0153221 + 0.0868961i
\(777\) −1621.72 + 590.257i −2.08715 + 0.759662i
\(778\) 241.110i 0.309910i
\(779\) 0 0
\(780\) −432.332 −0.554271
\(781\) −12.8479 35.2992i −0.0164505 0.0451975i
\(782\) −6.77006 1.19374i −0.00865737 0.00152653i
\(783\) 373.266 313.207i 0.476712 0.400009i
\(784\) −122.032 102.397i −0.155653 0.130609i
\(785\) −9.82027 55.6935i −0.0125099 0.0709472i
\(786\) −883.088 1529.55i −1.12352 1.94600i
\(787\) −686.096 396.118i −0.871786 0.503326i −0.00384484 0.999993i \(-0.501224\pi\)
−0.867941 + 0.496667i \(0.834557\pi\)
\(788\) −867.164 315.622i −1.10046 0.400536i
\(789\) −250.738 + 688.898i −0.317793 + 0.873128i
\(790\) −410.607 + 711.192i −0.519755 + 0.900243i
\(791\) −254.544 + 146.961i −0.321800 + 0.185791i
\(792\) 114.599 20.2070i 0.144696 0.0255139i
\(793\) 111.604 133.004i 0.140736 0.167723i
\(794\) 1219.31 + 1453.11i 1.53565 + 1.83012i
\(795\) 222.104 1259.62i 0.279377 1.58442i
\(796\) 51.3100 18.6753i 0.0644598 0.0234615i
\(797\) 194.822i 0.244444i −0.992503 0.122222i \(-0.960998\pi\)
0.992503 0.122222i \(-0.0390019\pi\)
\(798\) 0 0
\(799\) 100.880 0.126258
\(800\) 232.203 + 637.974i 0.290254 + 0.797467i
\(801\) 2473.96 + 436.225i 3.08859 + 0.544601i
\(802\) 768.365 644.735i 0.958061 0.803909i
\(803\) 22.2909 + 18.7043i 0.0277595 + 0.0232930i
\(804\) 495.547 + 2810.39i 0.616352 + 3.49551i
\(805\) 23.4107 + 40.5485i 0.0290816 + 0.0503708i
\(806\) 440.564 + 254.360i 0.546606 + 0.315583i
\(807\) 453.294 + 164.985i 0.561702 + 0.204443i
\(808\) −9.30386 + 25.5622i −0.0115147 + 0.0316363i
\(809\) −304.775 + 527.886i −0.376731 + 0.652517i −0.990584 0.136903i \(-0.956285\pi\)
0.613854 + 0.789420i \(0.289618\pi\)
\(810\) −459.529 + 265.309i −0.567320 + 0.327542i
\(811\) −533.654 + 94.0976i −0.658020 + 0.116027i −0.492681 0.870210i \(-0.663983\pi\)
−0.165339 + 0.986237i \(0.552872\pi\)
\(812\) 254.430 303.218i 0.313337 0.373421i
\(813\) −1077.45 1284.05i −1.32528 1.57940i
\(814\) −151.083 + 856.833i −0.185605 + 1.05262i
\(815\) −612.040 + 222.764i −0.750969 + 0.273330i
\(816\) 93.2662i 0.114297i
\(817\) 0 0
\(818\) 192.394 0.235201
\(819\) −276.451 759.542i −0.337547 0.927402i
\(820\) 416.385 + 73.4198i 0.507786 + 0.0895364i
\(821\) 1161.33 974.471i 1.41453 1.18693i 0.460337 0.887744i \(-0.347729\pi\)
0.954194 0.299188i \(-0.0967158\pi\)
\(822\) −1862.02 1562.42i −2.26524 1.90076i
\(823\) 116.331 + 659.747i 0.141350 + 0.801637i 0.970226 + 0.242203i \(0.0778701\pi\)
−0.828875 + 0.559433i \(0.811019\pi\)
\(824\) 64.0482 + 110.935i 0.0777283 + 0.134629i
\(825\) −452.222 261.090i −0.548148 0.316473i
\(826\) −1583.79 576.453i −1.91742 0.697885i
\(827\) 233.282 640.938i 0.282083 0.775016i −0.715031 0.699093i \(-0.753587\pi\)
0.997114 0.0759229i \(-0.0241903\pi\)
\(828\) −70.2672 + 121.706i −0.0848638 + 0.146988i
\(829\) −373.918 + 215.882i −0.451047 + 0.260412i −0.708272 0.705939i \(-0.750525\pi\)
0.257225 + 0.966352i \(0.417192\pi\)
\(830\) −190.323 + 33.5590i −0.229304 + 0.0404326i
\(831\) 899.039 1071.43i 1.08188 1.28933i
\(832\) 291.938 + 347.918i 0.350887 + 0.418170i
\(833\) 2.39563 13.5863i 0.00287590 0.0163101i
\(834\) 2946.93 1072.59i 3.53349 1.28608i
\(835\) 830.535i 0.994653i
\(836\) 0 0
\(837\) 1194.35 1.42694
\(838\) −152.966 420.270i −0.182537 0.501516i
\(839\) −165.775 29.2306i −0.197587 0.0348399i 0.0739789 0.997260i \(-0.476430\pi\)
−0.271566 + 0.962420i \(0.587541\pi\)
\(840\) −95.3755 + 80.0296i −0.113542 + 0.0952733i
\(841\) 538.051 + 451.478i 0.639775 + 0.536835i
\(842\) −264.935 1502.52i −0.314649 1.78446i
\(843\) −242.924 420.757i −0.288166 0.499118i
\(844\) −1066.99 616.027i −1.26421 0.729890i
\(845\) −395.396 143.912i −0.467924 0.170311i
\(846\) 1355.25 3723.53i 1.60195 4.40133i
\(847\) −283.839 + 491.623i −0.335111 + 0.580429i
\(848\) −985.648 + 569.064i −1.16232 + 0.671066i
\(849\) 2309.43 407.215i 2.72018 0.479640i
\(850\) −34.5461 + 41.1704i −0.0406424 + 0.0484358i
\(851\) −53.0789 63.2569i −0.0623724 0.0743325i
\(852\) −20.9479 + 118.801i −0.0245867 + 0.139438i
\(853\) −481.841 + 175.376i −0.564879 + 0.205599i −0.608645 0.793443i \(-0.708287\pi\)
0.0437662 + 0.999042i \(0.486064\pi\)
\(854\) 636.239i 0.745010i
\(855\) 0 0
\(856\) −78.9814 −0.0922680
\(857\) −295.375 811.537i −0.344662 0.946951i −0.984023 0.178044i \(-0.943023\pi\)
0.639360 0.768907i \(-0.279199\pi\)
\(858\) −612.507 108.002i −0.713878 0.125876i
\(859\) −662.975 + 556.302i −0.771799 + 0.647616i −0.941169 0.337936i \(-0.890271\pi\)
0.169370 + 0.985553i \(0.445827\pi\)
\(860\) −62.9953 52.8594i −0.0732504 0.0614644i
\(861\) 209.508 + 1188.18i 0.243331 + 1.38000i
\(862\) 506.421 + 877.147i 0.587495 + 1.01757i
\(863\) 1358.98 + 784.608i 1.57472 + 0.909163i 0.995578 + 0.0939340i \(0.0299443\pi\)
0.579138 + 0.815229i \(0.303389\pi\)
\(864\) 1783.99 + 649.320i 2.06480 + 0.751527i
\(865\) −90.9589 + 249.907i −0.105155 + 0.288910i
\(866\) −234.675 + 406.470i −0.270988 + 0.469364i
\(867\) 1271.66 734.194i 1.46674 0.846822i
\(868\) 955.471 168.475i 1.10077 0.194096i
\(869\) −395.226 + 471.012i −0.454806 + 0.542017i
\(870\) 356.641 + 425.029i 0.409933 + 0.488539i
\(871\) 136.374 773.418i 0.156572 0.887965i
\(872\) −98.4884 + 35.8469i −0.112945 + 0.0411088i
\(873\) 1188.35i 1.36123i
\(874\) 0 0
\(875\) 984.374 1.12500
\(876\) −31.9606 87.8111i −0.0364847 0.100241i
\(877\) −1076.64 189.840i −1.22764 0.216465i −0.478026 0.878346i \(-0.658648\pi\)
−0.749609 + 0.661880i \(0.769759\pi\)
\(878\) −952.454 + 799.204i −1.08480 + 0.910255i
\(879\) 844.381 + 708.520i 0.960615 + 0.806052i
\(880\) −55.6099 315.379i −0.0631930 0.358386i
\(881\) 800.040 + 1385.71i 0.908104 + 1.57288i 0.816695 + 0.577069i \(0.195804\pi\)
0.0914086 + 0.995813i \(0.470863\pi\)
\(882\) −469.290 270.945i −0.532075 0.307194i
\(883\) −1600.70 582.609i −1.81280 0.659806i −0.996633 0.0819931i \(-0.973871\pi\)
−0.816169 0.577813i \(-0.803906\pi\)
\(884\) −11.3947 + 31.3066i −0.0128899 + 0.0354147i
\(885\) 614.789 1064.84i 0.694676 1.20321i
\(886\) 542.622 313.283i 0.612440 0.353593i
\(887\) 423.758 74.7199i 0.477743 0.0842389i 0.0704088 0.997518i \(-0.477570\pi\)
0.407334 + 0.913279i \(0.366459\pi\)
\(888\) 141.143 168.208i 0.158945 0.189424i
\(889\) −357.884 426.510i −0.402569 0.479763i
\(890\) −235.298 + 1334.44i −0.264379 + 1.49937i
\(891\) −373.328 + 135.880i −0.418999 + 0.152503i
\(892\) 404.920i 0.453946i
\(893\) 0 0
\(894\) 858.968 0.960814
\(895\) 248.449 + 682.608i 0.277597 + 0.762690i
\(896\) 239.591 + 42.2464i 0.267401 + 0.0471500i
\(897\) 45.2193 37.9435i 0.0504117 0.0423004i
\(898\) 466.004 + 391.024i 0.518936 + 0.435439i
\(899\) −59.0032 334.624i −0.0656320 0.372218i
\(900\) 549.342 + 951.488i 0.610380 + 1.05721i
\(901\) −85.3592 49.2821i −0.0947383 0.0546972i
\(902\) 571.573 + 208.036i 0.633673 + 0.230638i
\(903\) 80.2591 220.510i 0.0888805 0.244197i
\(904\) 18.6984 32.3867i 0.0206841 0.0358260i
\(905\) −105.169 + 60.7192i −0.116209 + 0.0670931i
\(906\) 793.490 139.914i 0.875817 0.154430i
\(907\) −207.524 + 247.318i −0.228803 + 0.272677i −0.868216 0.496187i \(-0.834733\pi\)
0.639413 + 0.768864i \(0.279178\pi\)
\(908\) −5.04665 6.01436i −0.00555798 0.00662374i
\(909\) 81.9816 464.941i 0.0901887 0.511486i
\(910\) 409.693 149.116i 0.450212 0.163864i
\(911\) 1176.87i 1.29185i −0.763401 0.645924i \(-0.776472\pi\)
0.763401 0.645924i \(-0.223528\pi\)
\(912\) 0 0
\(913\) −144.698 −0.158486
\(914\) 620.176 + 1703.92i 0.678529 + 1.86424i
\(915\) 457.104 + 80.5998i 0.499567 + 0.0880872i
\(916\) −369.478 + 310.029i −0.403360 + 0.338459i
\(917\) 710.107 + 595.850i 0.774380 + 0.649782i
\(918\) 26.0971 + 148.004i 0.0284282 + 0.161224i
\(919\) −227.393 393.857i −0.247436 0.428571i 0.715378 0.698738i \(-0.246255\pi\)
−0.962814 + 0.270167i \(0.912921\pi\)
\(920\) −5.15915 2.97864i −0.00560777 0.00323765i
\(921\) 760.469 + 276.788i 0.825699 + 0.300530i
\(922\) −745.959 + 2049.50i −0.809066 + 2.22289i
\(923\) 16.5992 28.7507i 0.0179840 0.0311492i
\(924\) −1027.25 + 593.085i −1.11175 + 0.641867i
\(925\) −635.764 + 112.102i −0.687312 + 0.121192i
\(926\) 24.4421 29.1289i 0.0263953 0.0314567i
\(927\) −1429.02 1703.04i −1.54155 1.83715i
\(928\) 93.7891 531.905i 0.101066 0.573173i
\(929\) 1226.24 446.315i 1.31996 0.480425i 0.416513 0.909130i \(-0.363252\pi\)
0.903445 + 0.428704i \(0.141030\pi\)
\(930\) 1359.97i 1.46233i
\(931\) 0 0
\(932\) 629.240 0.675151
\(933\) 43.3262 + 119.038i 0.0464375 + 0.127586i
\(934\) 55.7658 + 9.83301i 0.0597064 + 0.0105278i
\(935\) 21.2454 17.8270i 0.0227223 0.0190663i
\(936\) 78.7814 + 66.1054i 0.0841682 + 0.0706255i
\(937\) −113.823 645.521i −0.121476 0.688923i −0.983339 0.181782i \(-0.941813\pi\)
0.861863 0.507141i \(-0.169298\pi\)
\(938\) −1438.93 2492.30i −1.53404 2.65704i
\(939\) −482.013 278.290i −0.513326 0.296369i
\(940\) 1045.30 + 380.458i 1.11202 + 0.404743i
\(941\) 76.0510 208.948i 0.0808193 0.222049i −0.892701 0.450649i \(-0.851193\pi\)
0.973520 + 0.228600i \(0.0734148\pi\)
\(942\) −130.634 + 226.265i −0.138677 + 0.240196i
\(943\) −49.9950 + 28.8646i −0.0530169 + 0.0306093i
\(944\) −1077.49 + 189.990i −1.14140 + 0.201260i
\(945\) 657.948 784.112i 0.696241 0.829748i
\(946\) −76.0440 90.6257i −0.0803847 0.0957988i
\(947\) −245.316 + 1391.26i −0.259046 + 1.46912i 0.526425 + 0.850222i \(0.323532\pi\)
−0.785470 + 0.618899i \(0.787579\pi\)
\(948\) 1855.47 675.337i 1.95725 0.712381i
\(949\) 25.7165i 0.0270985i
\(950\) 0 0
\(951\) −2456.76 −2.58334
\(952\) 3.28146 + 9.01574i 0.00344691 + 0.00947031i
\(953\) 562.349 + 99.1573i 0.590083 + 0.104048i 0.460713 0.887549i \(-0.347594\pi\)
0.129369 + 0.991596i \(0.458705\pi\)
\(954\) −2965.76 + 2488.57i −3.10876 + 2.60856i
\(955\) 532.699 + 446.987i 0.557800 + 0.468050i
\(956\) −61.0339 346.141i −0.0638430 0.362072i
\(957\) 207.710 + 359.764i 0.217042 + 0.375928i
\(958\) 1907.97 + 1101.57i 1.99162 + 1.14986i
\(959\) 1198.82 + 436.333i 1.25007 + 0.454988i
\(960\) −415.265 + 1140.93i −0.432568 + 1.18847i
\(961\) −64.0710 + 110.974i −0.0666712 + 0.115478i
\(962\) −665.907 + 384.462i −0.692211 + 0.399648i
\(963\) 1349.93 238.029i 1.40179 0.247174i
\(964\) −561.730 + 669.443i −0.582707 + 0.694443i
\(965\) 346.090 + 412.453i 0.358642 + 0.427413i
\(966\) 37.5619 213.024i 0.0388840 0.220522i
\(967\) −1486.56 + 541.064i −1.53729 + 0.559528i −0.965394 0.260797i \(-0.916015\pi\)
−0.571897 + 0.820325i \(0.693792\pi\)
\(968\) 72.2279i 0.0746156i
\(969\) 0 0
\(970\) 640.990 0.660815
\(971\) 278.580 + 765.391i 0.286900 + 0.788251i 0.996496 + 0.0836420i \(0.0266552\pi\)
−0.709596 + 0.704609i \(0.751123\pi\)
\(972\) −335.918 59.2314i −0.345595 0.0609376i
\(973\) −1260.88 + 1058.00i −1.29587 + 1.08736i
\(974\) −564.338 473.536i −0.579402 0.486176i
\(975\) −80.1364 454.476i −0.0821912 0.466129i
\(976\) −206.508 357.683i −0.211586 0.366478i
\(977\) 818.544 + 472.586i 0.837813 + 0.483712i 0.856520 0.516113i \(-0.172622\pi\)
−0.0187071 + 0.999825i \(0.505955\pi\)
\(978\) 2827.57 + 1029.15i 2.89117 + 1.05230i
\(979\) −346.994 + 953.357i −0.354437 + 0.973807i
\(980\) 76.0619 131.743i 0.0776142 0.134432i
\(981\) 1575.30 909.502i 1.60581 0.927118i
\(982\) 660.675 116.495i 0.672785 0.118630i
\(983\) −10.7647 + 12.8289i −0.0109509 + 0.0130507i −0.771492 0.636239i \(-0.780489\pi\)
0.760541 + 0.649290i \(0.224934\pi\)
\(984\) −98.6739 117.595i −0.100278 0.119507i
\(985\) −117.892 + 668.600i −0.119687 + 0.678782i
\(986\) 40.1775 14.6234i 0.0407479 0.0148310i
\(987\) 3174.26i 3.21607i
\(988\) 0 0
\(989\) 11.2281 0.0113530
\(990\) −372.584 1023.67i −0.376347 1.03401i
\(991\) −382.587 67.4604i −0.386061 0.0680730i −0.0227508 0.999741i \(-0.507242\pi\)
−0.363310 + 0.931668i \(0.618354\pi\)
\(992\) 1014.15 850.972i 1.02233 0.857835i
\(993\) −6.28128 5.27062i −0.00632556 0.00530777i
\(994\) −21.1250 119.806i −0.0212525 0.120529i
\(995\) −20.0856 34.7893i −0.0201866 0.0349642i
\(996\) 402.423 + 232.339i 0.404039 + 0.233272i
\(997\) −1383.15 503.427i −1.38732 0.504942i −0.462928 0.886396i \(-0.653201\pi\)
−0.924388 + 0.381454i \(0.875423\pi\)
\(998\) 568.166 1561.02i 0.569304 1.56415i
\(999\) −902.619 + 1563.38i −0.903522 + 1.56495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.3.f.e.299.2 12
19.2 odd 18 361.3.b.c.360.12 12
19.3 odd 18 361.3.d.f.69.6 12
19.4 even 9 361.3.f.c.262.1 12
19.5 even 9 361.3.d.f.293.6 12
19.6 even 9 361.3.f.g.333.2 12
19.7 even 3 19.3.f.a.2.1 12
19.8 odd 6 361.3.f.b.307.1 12
19.9 even 9 361.3.f.b.127.1 12
19.10 odd 18 361.3.f.f.127.2 12
19.11 even 3 361.3.f.f.307.2 12
19.12 odd 6 361.3.f.g.116.2 12
19.13 odd 18 19.3.f.a.10.1 yes 12
19.14 odd 18 361.3.d.d.293.1 12
19.15 odd 18 inner 361.3.f.e.262.2 12
19.16 even 9 361.3.d.d.69.1 12
19.17 even 9 361.3.b.c.360.1 12
19.18 odd 2 361.3.f.c.299.1 12
57.26 odd 6 171.3.ba.b.154.2 12
57.32 even 18 171.3.ba.b.10.2 12
76.7 odd 6 304.3.z.a.97.1 12
76.51 even 18 304.3.z.a.257.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.3.f.a.2.1 12 19.7 even 3
19.3.f.a.10.1 yes 12 19.13 odd 18
171.3.ba.b.10.2 12 57.32 even 18
171.3.ba.b.154.2 12 57.26 odd 6
304.3.z.a.97.1 12 76.7 odd 6
304.3.z.a.257.1 12 76.51 even 18
361.3.b.c.360.1 12 19.17 even 9
361.3.b.c.360.12 12 19.2 odd 18
361.3.d.d.69.1 12 19.16 even 9
361.3.d.d.293.1 12 19.14 odd 18
361.3.d.f.69.6 12 19.3 odd 18
361.3.d.f.293.6 12 19.5 even 9
361.3.f.b.127.1 12 19.9 even 9
361.3.f.b.307.1 12 19.8 odd 6
361.3.f.c.262.1 12 19.4 even 9
361.3.f.c.299.1 12 19.18 odd 2
361.3.f.e.262.2 12 19.15 odd 18 inner
361.3.f.e.299.2 12 1.1 even 1 trivial
361.3.f.f.127.2 12 19.10 odd 18
361.3.f.f.307.2 12 19.11 even 3
361.3.f.g.116.2 12 19.12 odd 6
361.3.f.g.333.2 12 19.6 even 9