Defining parameters
Level: | \( N \) | = | \( 19 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(19))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 39 | 39 | 0 |
Cusp forms | 21 | 21 | 0 |
Eisenstein series | 18 | 18 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(19))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
19.3.b | \(\chi_{19}(18, \cdot)\) | 19.3.b.a | 1 | 1 |
19.3.b.b | 2 | |||
19.3.d | \(\chi_{19}(8, \cdot)\) | 19.3.d.a | 6 | 2 |
19.3.f | \(\chi_{19}(2, \cdot)\) | 19.3.f.a | 12 | 6 |