Properties

Label 19.3.d.a.12.1
Level $19$
Weight $3$
Character 19.12
Analytic conductor $0.518$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [19,3,Mod(8,19)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("19.8"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(19, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 19.d (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.517712502285\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.6967728.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 8x^{4} + 5x^{3} + 50x^{2} - 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 12.1
Root \(1.56632 + 2.71294i\) of defining polynomial
Character \(\chi\) \(=\) 19.12
Dual form 19.3.d.a.8.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.90671 + 1.67819i) q^{2} +(-3.29225 + 1.90078i) q^{3} +(3.63264 - 6.29191i) q^{4} +(3.47303 + 6.01546i) q^{5} +(6.37974 - 11.0500i) q^{6} -1.22892 q^{7} +10.9595i q^{8} +(2.72593 - 4.72145i) q^{9} +(-20.1902 - 11.6568i) q^{10} -0.0363521 q^{11} +27.6194i q^{12} +(14.6268 + 8.44481i) q^{13} +(3.57212 - 2.06236i) q^{14} +(-22.8681 - 13.2029i) q^{15} +(-3.86156 - 6.68842i) q^{16} +(-4.59329 - 7.95581i) q^{17} +18.2985i q^{18} +(12.7864 - 14.0537i) q^{19} +50.4650 q^{20} +(4.04592 - 2.33591i) q^{21} +(0.105665 - 0.0610058i) q^{22} +(-4.87974 + 8.45195i) q^{23} +(-20.8316 - 36.0814i) q^{24} +(-11.6238 + 20.1331i) q^{25} -56.6879 q^{26} -13.4885i q^{27} +(-4.46423 + 7.73228i) q^{28} +(4.50339 + 2.60003i) q^{29} +88.6280 q^{30} +44.3727i q^{31} +(-15.5160 - 8.95814i) q^{32} +(0.119680 - 0.0690974i) q^{33} +(26.7027 + 15.4168i) q^{34} +(-4.26808 - 7.39254i) q^{35} +(-19.8046 - 34.3026i) q^{36} -45.5661i q^{37} +(-13.5817 + 62.3081i) q^{38} -64.2069 q^{39} +(-65.9264 + 38.0626i) q^{40} +(50.0829 - 28.9153i) q^{41} +(-7.84020 + 13.5796i) q^{42} +(15.1574 + 26.2534i) q^{43} +(-0.132054 + 0.228724i) q^{44} +37.8689 q^{45} -32.7565i q^{46} +(25.5066 - 44.1787i) q^{47} +(25.4264 + 14.6800i) q^{48} -47.4897 q^{49} -78.0280i q^{50} +(30.2445 + 17.4617i) q^{51} +(106.268 - 61.3538i) q^{52} +(10.0847 + 5.82239i) q^{53} +(22.6362 + 39.2071i) q^{54} +(-0.126252 - 0.218675i) q^{55} -13.4684i q^{56} +(-15.3831 + 70.5725i) q^{57} -17.4534 q^{58} +(-17.7409 + 10.2427i) q^{59} +(-166.143 + 95.9229i) q^{60} +(-8.23849 + 14.2695i) q^{61} +(-74.4658 - 128.978i) q^{62} +(-3.34996 + 5.80229i) q^{63} +91.0263 q^{64} +117.316i q^{65} +(-0.231917 + 0.401692i) q^{66} +(-1.83276 - 1.05814i) q^{67} -66.7430 q^{68} -37.1012i q^{69} +(24.8121 + 14.3253i) q^{70} +(-33.7958 + 19.5120i) q^{71} +(51.7447 + 29.8748i) q^{72} +(-28.1064 - 48.6818i) q^{73} +(76.4686 + 132.447i) q^{74} -88.3775i q^{75} +(-41.9762 - 131.503i) q^{76} +0.0446740 q^{77} +(186.631 - 107.751i) q^{78} +(39.8385 - 23.0008i) q^{79} +(26.8226 - 46.4581i) q^{80} +(50.1720 + 86.9004i) q^{81} +(-97.0508 + 168.097i) q^{82} +65.3332 q^{83} -33.9421i q^{84} +(31.9053 - 55.2615i) q^{85} +(-88.1162 - 50.8739i) q^{86} -19.7684 q^{87} -0.398401i q^{88} +(-134.435 - 77.6163i) q^{89} +(-110.074 + 63.5512i) q^{90} +(-17.9753 - 10.3780i) q^{91} +(35.4526 + 61.4058i) q^{92} +(-84.3427 - 146.086i) q^{93} +171.219i q^{94} +(128.947 + 28.1074i) q^{95} +68.1098 q^{96} +(-98.8107 + 57.0484i) q^{97} +(138.039 - 79.6968i) q^{98} +(-0.0990933 + 0.171635i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 9 q^{3} + 5 q^{4} - 2 q^{5} + q^{6} + 14 q^{9} - 60 q^{10} + 26 q^{11} + 30 q^{13} + 54 q^{14} - 18 q^{15} + q^{16} - 42 q^{17} + 25 q^{19} + 108 q^{20} - 102 q^{21} - 39 q^{22} + 8 q^{23}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/19\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.90671 + 1.67819i −1.45335 + 0.839095i −0.998670 0.0515581i \(-0.983581\pi\)
−0.454684 + 0.890653i \(0.650248\pi\)
\(3\) −3.29225 + 1.90078i −1.09742 + 0.633593i −0.935541 0.353218i \(-0.885087\pi\)
−0.161875 + 0.986811i \(0.551754\pi\)
\(4\) 3.63264 6.29191i 0.908159 1.57298i
\(5\) 3.47303 + 6.01546i 0.694606 + 1.20309i 0.970313 + 0.241851i \(0.0777544\pi\)
−0.275708 + 0.961241i \(0.588912\pi\)
\(6\) 6.37974 11.0500i 1.06329 1.84167i
\(7\) −1.22892 −0.175560 −0.0877802 0.996140i \(-0.527977\pi\)
−0.0877802 + 0.996140i \(0.527977\pi\)
\(8\) 10.9595i 1.36994i
\(9\) 2.72593 4.72145i 0.302881 0.524605i
\(10\) −20.1902 11.6568i −2.01902 1.16568i
\(11\) −0.0363521 −0.00330474 −0.00165237 0.999999i \(-0.500526\pi\)
−0.00165237 + 0.999999i \(0.500526\pi\)
\(12\) 27.6194i 2.30161i
\(13\) 14.6268 + 8.44481i 1.12514 + 0.649601i 0.942708 0.333618i \(-0.108269\pi\)
0.182433 + 0.983218i \(0.441603\pi\)
\(14\) 3.57212 2.06236i 0.255151 0.147312i
\(15\) −22.8681 13.2029i −1.52454 0.880195i
\(16\) −3.86156 6.68842i −0.241348 0.418026i
\(17\) −4.59329 7.95581i −0.270194 0.467989i 0.698718 0.715398i \(-0.253754\pi\)
−0.968911 + 0.247408i \(0.920421\pi\)
\(18\) 18.2985i 1.01658i
\(19\) 12.7864 14.0537i 0.672971 0.739669i
\(20\) 50.4650 2.52325
\(21\) 4.04592 2.33591i 0.192663 0.111234i
\(22\) 0.105665 0.0610058i 0.00480296 0.00277299i
\(23\) −4.87974 + 8.45195i −0.212162 + 0.367476i −0.952391 0.304879i \(-0.901384\pi\)
0.740229 + 0.672355i \(0.234717\pi\)
\(24\) −20.8316 36.0814i −0.867983 1.50339i
\(25\) −11.6238 + 20.1331i −0.464954 + 0.805323i
\(26\) −56.6879 −2.18031
\(27\) 13.4885i 0.499573i
\(28\) −4.46423 + 7.73228i −0.159437 + 0.276153i
\(29\) 4.50339 + 2.60003i 0.155289 + 0.0896564i 0.575631 0.817710i \(-0.304756\pi\)
−0.420342 + 0.907366i \(0.638090\pi\)
\(30\) 88.6280 2.95427
\(31\) 44.3727i 1.43138i 0.698420 + 0.715689i \(0.253887\pi\)
−0.698420 + 0.715689i \(0.746113\pi\)
\(32\) −15.5160 8.95814i −0.484873 0.279942i
\(33\) 0.119680 0.0690974i 0.00362667 0.00209386i
\(34\) 26.7027 + 15.4168i 0.785374 + 0.453436i
\(35\) −4.26808 7.39254i −0.121945 0.211215i
\(36\) −19.8046 34.3026i −0.550128 0.952850i
\(37\) 45.5661i 1.23152i −0.787935 0.615758i \(-0.788850\pi\)
0.787935 0.615758i \(-0.211150\pi\)
\(38\) −13.5817 + 62.3081i −0.357413 + 1.63969i
\(39\) −64.2069 −1.64633
\(40\) −65.9264 + 38.0626i −1.64816 + 0.951566i
\(41\) 50.0829 28.9153i 1.22153 0.705252i 0.256288 0.966600i \(-0.417500\pi\)
0.965245 + 0.261348i \(0.0841670\pi\)
\(42\) −7.84020 + 13.5796i −0.186672 + 0.323325i
\(43\) 15.1574 + 26.2534i 0.352497 + 0.610543i 0.986686 0.162635i \(-0.0519992\pi\)
−0.634189 + 0.773178i \(0.718666\pi\)
\(44\) −0.132054 + 0.228724i −0.00300123 + 0.00519828i
\(45\) 37.8689 0.841531
\(46\) 32.7565i 0.712097i
\(47\) 25.5066 44.1787i 0.542693 0.939972i −0.456055 0.889951i \(-0.650738\pi\)
0.998748 0.0500204i \(-0.0159286\pi\)
\(48\) 25.4264 + 14.6800i 0.529717 + 0.305832i
\(49\) −47.4897 −0.969179
\(50\) 78.0280i 1.56056i
\(51\) 30.2445 + 17.4617i 0.593029 + 0.342386i
\(52\) 106.268 61.3538i 2.04362 1.17988i
\(53\) 10.0847 + 5.82239i 0.190277 + 0.109856i 0.592112 0.805856i \(-0.298294\pi\)
−0.401835 + 0.915712i \(0.631628\pi\)
\(54\) 22.6362 + 39.2071i 0.419189 + 0.726057i
\(55\) −0.126252 0.218675i −0.00229549 0.00397591i
\(56\) 13.4684i 0.240507i
\(57\) −15.3831 + 70.5725i −0.269879 + 1.23811i
\(58\) −17.4534 −0.300921
\(59\) −17.7409 + 10.2427i −0.300694 + 0.173606i −0.642754 0.766072i \(-0.722208\pi\)
0.342061 + 0.939678i \(0.388875\pi\)
\(60\) −166.143 + 95.9229i −2.76905 + 1.59871i
\(61\) −8.23849 + 14.2695i −0.135057 + 0.233926i −0.925619 0.378456i \(-0.876455\pi\)
0.790562 + 0.612382i \(0.209788\pi\)
\(62\) −74.4658 128.978i −1.20106 2.08030i
\(63\) −3.34996 + 5.80229i −0.0531739 + 0.0920999i
\(64\) 91.0263 1.42229
\(65\) 117.316i 1.80486i
\(66\) −0.231917 + 0.401692i −0.00351389 + 0.00608624i
\(67\) −1.83276 1.05814i −0.0273546 0.0157932i 0.486260 0.873814i \(-0.338361\pi\)
−0.513615 + 0.858021i \(0.671694\pi\)
\(68\) −66.7430 −0.981515
\(69\) 37.1012i 0.537699i
\(70\) 24.8121 + 14.3253i 0.354459 + 0.204647i
\(71\) −33.7958 + 19.5120i −0.475998 + 0.274817i −0.718747 0.695272i \(-0.755284\pi\)
0.242749 + 0.970089i \(0.421951\pi\)
\(72\) 51.7447 + 29.8748i 0.718676 + 0.414928i
\(73\) −28.1064 48.6818i −0.385020 0.666874i 0.606752 0.794891i \(-0.292472\pi\)
−0.991772 + 0.128017i \(0.959139\pi\)
\(74\) 76.4686 + 132.447i 1.03336 + 1.78983i
\(75\) 88.3775i 1.17837i
\(76\) −41.9762 131.503i −0.552319 1.73031i
\(77\) 0.0446740 0.000580181
\(78\) 186.631 107.751i 2.39270 1.38143i
\(79\) 39.8385 23.0008i 0.504285 0.291149i −0.226196 0.974082i \(-0.572629\pi\)
0.730481 + 0.682933i \(0.239296\pi\)
\(80\) 26.8226 46.4581i 0.335283 0.580727i
\(81\) 50.1720 + 86.9004i 0.619407 + 1.07284i
\(82\) −97.0508 + 168.097i −1.18355 + 2.04996i
\(83\) 65.3332 0.787146 0.393573 0.919293i \(-0.371239\pi\)
0.393573 + 0.919293i \(0.371239\pi\)
\(84\) 33.9421i 0.404072i
\(85\) 31.9053 55.2615i 0.375356 0.650136i
\(86\) −88.1162 50.8739i −1.02461 0.591557i
\(87\) −19.7684 −0.227223
\(88\) 0.398401i 0.00452729i
\(89\) −134.435 77.6163i −1.51051 0.872093i −0.999925 0.0122654i \(-0.996096\pi\)
−0.510585 0.859828i \(-0.670571\pi\)
\(90\) −110.074 + 63.5512i −1.22304 + 0.706124i
\(91\) −17.9753 10.3780i −0.197530 0.114044i
\(92\) 35.4526 + 61.4058i 0.385355 + 0.667454i
\(93\) −84.3427 146.086i −0.906911 1.57082i
\(94\) 171.219i 1.82148i
\(95\) 128.947 + 28.1074i 1.35734 + 0.295868i
\(96\) 68.1098 0.709477
\(97\) −98.8107 + 57.0484i −1.01867 + 0.588128i −0.913718 0.406350i \(-0.866801\pi\)
−0.104949 + 0.994478i \(0.533468\pi\)
\(98\) 138.039 79.6968i 1.40856 0.813232i
\(99\) −0.0990933 + 0.171635i −0.00100094 + 0.00173368i
\(100\) 84.4504 + 146.272i 0.844504 + 1.46272i
\(101\) 85.7095 148.453i 0.848609 1.46983i −0.0338413 0.999427i \(-0.510774\pi\)
0.882450 0.470406i \(-0.155893\pi\)
\(102\) −117.216 −1.14918
\(103\) 121.297i 1.17764i −0.808264 0.588820i \(-0.799593\pi\)
0.808264 0.588820i \(-0.200407\pi\)
\(104\) −92.5508 + 160.303i −0.889912 + 1.54137i
\(105\) 28.1032 + 16.2254i 0.267649 + 0.154527i
\(106\) −39.0843 −0.368720
\(107\) 56.0566i 0.523893i 0.965082 + 0.261947i \(0.0843644\pi\)
−0.965082 + 0.261947i \(0.915636\pi\)
\(108\) −84.8683 48.9987i −0.785818 0.453692i
\(109\) −46.0431 + 26.5830i −0.422414 + 0.243881i −0.696109 0.717936i \(-0.745087\pi\)
0.273696 + 0.961816i \(0.411754\pi\)
\(110\) 0.733955 + 0.423749i 0.00667232 + 0.00385227i
\(111\) 86.6112 + 150.015i 0.780281 + 1.35149i
\(112\) 4.74556 + 8.21955i 0.0423711 + 0.0733888i
\(113\) 136.946i 1.21191i 0.795497 + 0.605957i \(0.207210\pi\)
−0.795497 + 0.605957i \(0.792790\pi\)
\(114\) −73.7198 230.950i −0.646665 2.02587i
\(115\) −67.7898 −0.589477
\(116\) 32.7184 18.8900i 0.282055 0.162845i
\(117\) 79.7434 46.0399i 0.681568 0.393503i
\(118\) 34.3785 59.5453i 0.291343 0.504621i
\(119\) 5.64480 + 9.77708i 0.0474353 + 0.0821603i
\(120\) 144.697 250.623i 1.20581 2.08853i
\(121\) −120.999 −0.999989
\(122\) 55.3030i 0.453303i
\(123\) −109.923 + 190.393i −0.893686 + 1.54791i
\(124\) 279.189 + 161.190i 2.25153 + 1.29992i
\(125\) 12.1717 0.0973736
\(126\) 22.4874i 0.178472i
\(127\) 136.758 + 78.9573i 1.07684 + 0.621711i 0.930041 0.367456i \(-0.119771\pi\)
0.146794 + 0.989167i \(0.453104\pi\)
\(128\) −202.523 + 116.927i −1.58221 + 0.913490i
\(129\) −99.8037 57.6217i −0.773672 0.446680i
\(130\) −196.879 341.004i −1.51445 2.62311i
\(131\) 38.5396 + 66.7525i 0.294195 + 0.509561i 0.974797 0.223092i \(-0.0716151\pi\)
−0.680602 + 0.732653i \(0.738282\pi\)
\(132\) 1.00402i 0.00760624i
\(133\) −15.7136 + 17.2709i −0.118147 + 0.129857i
\(134\) 7.10307 0.0530080
\(135\) 81.1394 46.8459i 0.601033 0.347006i
\(136\) 87.1917 50.3402i 0.641116 0.370148i
\(137\) 45.3969 78.6298i 0.331364 0.573940i −0.651415 0.758721i \(-0.725824\pi\)
0.982780 + 0.184781i \(0.0591577\pi\)
\(138\) 62.2629 + 107.842i 0.451180 + 0.781467i
\(139\) 45.7773 79.2886i 0.329333 0.570421i −0.653047 0.757318i \(-0.726509\pi\)
0.982380 + 0.186896i \(0.0598428\pi\)
\(140\) −62.0176 −0.442983
\(141\) 193.930i 1.37539i
\(142\) 65.4897 113.432i 0.461195 0.798814i
\(143\) −0.531717 0.306987i −0.00371830 0.00214676i
\(144\) −42.1054 −0.292398
\(145\) 36.1200i 0.249103i
\(146\) 163.394 + 94.3358i 1.11914 + 0.646136i
\(147\) 156.348 90.2676i 1.06359 0.614065i
\(148\) −286.698 165.525i −1.93715 1.11841i
\(149\) −12.0587 20.8863i −0.0809308 0.140176i 0.822719 0.568448i \(-0.192456\pi\)
−0.903650 + 0.428272i \(0.859123\pi\)
\(150\) 148.314 + 256.888i 0.988761 + 1.71258i
\(151\) 251.451i 1.66524i −0.553848 0.832618i \(-0.686841\pi\)
0.553848 0.832618i \(-0.313159\pi\)
\(152\) 154.022 + 140.133i 1.01330 + 0.921928i
\(153\) −50.0839 −0.327346
\(154\) −0.129854 + 0.0749714i −0.000843209 + 0.000486827i
\(155\) −266.922 + 154.108i −1.72208 + 0.994242i
\(156\) −233.240 + 403.984i −1.49513 + 2.58964i
\(157\) 44.0172 + 76.2401i 0.280364 + 0.485605i 0.971474 0.237144i \(-0.0762113\pi\)
−0.691110 + 0.722750i \(0.742878\pi\)
\(158\) −77.1994 + 133.713i −0.488604 + 0.846286i
\(159\) −44.2684 −0.278417
\(160\) 124.447i 0.777797i
\(161\) 5.99682 10.3868i 0.0372473 0.0645143i
\(162\) −291.671 168.396i −1.80044 1.03948i
\(163\) −28.3608 −0.173992 −0.0869962 0.996209i \(-0.527727\pi\)
−0.0869962 + 0.996209i \(0.527727\pi\)
\(164\) 420.156i 2.56193i
\(165\) 0.831305 + 0.479954i 0.00503821 + 0.00290881i
\(166\) −189.904 + 109.641i −1.14400 + 0.660490i
\(167\) −52.1162 30.0893i −0.312073 0.180176i 0.335781 0.941940i \(-0.391000\pi\)
−0.647854 + 0.761765i \(0.724333\pi\)
\(168\) 25.6004 + 44.3412i 0.152383 + 0.263936i
\(169\) 58.1295 + 100.683i 0.343962 + 0.595759i
\(170\) 214.172i 1.25984i
\(171\) −31.4989 98.6799i −0.184204 0.577076i
\(172\) 220.245 1.28050
\(173\) 152.888 88.2699i 0.883745 0.510230i 0.0118536 0.999930i \(-0.496227\pi\)
0.871891 + 0.489699i \(0.162893\pi\)
\(174\) 57.4609 33.1751i 0.330235 0.190661i
\(175\) 14.2848 24.7420i 0.0816275 0.141383i
\(176\) 0.140376 + 0.243138i 0.000797591 + 0.00138147i
\(177\) 38.9383 67.4432i 0.219991 0.381035i
\(178\) 521.019 2.92707
\(179\) 0.226943i 0.00126784i 1.00000 0.000633920i \(0.000201783\pi\)
−1.00000 0.000633920i \(0.999798\pi\)
\(180\) 137.564 238.268i 0.764244 1.32371i
\(181\) 129.410 + 74.7148i 0.714971 + 0.412789i 0.812899 0.582405i \(-0.197888\pi\)
−0.0979279 + 0.995194i \(0.531221\pi\)
\(182\) 69.6651 0.382775
\(183\) 62.6382i 0.342285i
\(184\) −92.6291 53.4795i −0.503419 0.290649i
\(185\) 274.101 158.252i 1.48163 0.855418i
\(186\) 490.319 + 283.086i 2.63613 + 1.52197i
\(187\) 0.166976 + 0.289211i 0.000892919 + 0.00154658i
\(188\) −185.312 320.970i −0.985703 1.70729i
\(189\) 16.5763i 0.0877053i
\(190\) −421.982 + 134.698i −2.22096 + 0.708935i
\(191\) −251.306 −1.31574 −0.657870 0.753132i \(-0.728542\pi\)
−0.657870 + 0.753132i \(0.728542\pi\)
\(192\) −299.681 + 173.021i −1.56084 + 0.901151i
\(193\) −109.795 + 63.3899i −0.568884 + 0.328445i −0.756703 0.653758i \(-0.773191\pi\)
0.187820 + 0.982204i \(0.439858\pi\)
\(194\) 191.476 331.646i 0.986989 1.70952i
\(195\) −222.992 386.234i −1.14355 1.98069i
\(196\) −172.513 + 298.801i −0.880169 + 1.52450i
\(197\) −285.803 −1.45077 −0.725387 0.688341i \(-0.758339\pi\)
−0.725387 + 0.688341i \(0.758339\pi\)
\(198\) 0.665189i 0.00335954i
\(199\) −77.0371 + 133.432i −0.387121 + 0.670514i −0.992061 0.125757i \(-0.959864\pi\)
0.604940 + 0.796271i \(0.293197\pi\)
\(200\) −220.648 127.391i −1.10324 0.636957i
\(201\) 8.04520 0.0400259
\(202\) 575.347i 2.84825i
\(203\) −5.53432 3.19524i −0.0272627 0.0157401i
\(204\) 219.735 126.864i 1.07713 0.621882i
\(205\) 347.878 + 200.848i 1.69697 + 0.979744i
\(206\) 203.559 + 352.575i 0.988151 + 1.71153i
\(207\) 26.6036 + 46.0788i 0.128520 + 0.222603i
\(208\) 130.441i 0.627118i
\(209\) −0.464815 + 0.510882i −0.00222399 + 0.00244441i
\(210\) −108.917 −0.518652
\(211\) −138.091 + 79.7266i −0.654458 + 0.377851i −0.790162 0.612898i \(-0.790004\pi\)
0.135704 + 0.990749i \(0.456670\pi\)
\(212\) 73.2680 42.3013i 0.345604 0.199534i
\(213\) 74.1761 128.477i 0.348245 0.603178i
\(214\) −94.0735 162.940i −0.439596 0.761402i
\(215\) −105.284 + 182.357i −0.489693 + 0.848173i
\(216\) 147.827 0.684384
\(217\) 54.5306i 0.251293i
\(218\) 89.2226 154.538i 0.409278 0.708890i
\(219\) 185.067 + 106.848i 0.845053 + 0.487892i
\(220\) −1.83451 −0.00833868
\(221\) 155.158i 0.702072i
\(222\) −503.507 290.700i −2.26805 1.30946i
\(223\) −161.907 + 93.4771i −0.726041 + 0.419180i −0.816972 0.576677i \(-0.804349\pi\)
0.0909314 + 0.995857i \(0.471016\pi\)
\(224\) 19.0679 + 11.0089i 0.0851246 + 0.0491467i
\(225\) 63.3715 + 109.763i 0.281651 + 0.487834i
\(226\) −229.822 398.063i −1.01691 1.76134i
\(227\) 8.87518i 0.0390977i −0.999809 0.0195489i \(-0.993777\pi\)
0.999809 0.0195489i \(-0.00622299\pi\)
\(228\) 388.155 + 353.154i 1.70243 + 1.54892i
\(229\) 265.920 1.16122 0.580611 0.814181i \(-0.302814\pi\)
0.580611 + 0.814181i \(0.302814\pi\)
\(230\) 197.045 113.764i 0.856719 0.494627i
\(231\) −0.147078 + 0.0849154i −0.000636700 + 0.000367599i
\(232\) −28.4951 + 49.3549i −0.122824 + 0.212737i
\(233\) 4.52199 + 7.83232i 0.0194077 + 0.0336151i 0.875566 0.483098i \(-0.160489\pi\)
−0.856158 + 0.516713i \(0.827155\pi\)
\(234\) −154.527 + 267.649i −0.660373 + 1.14380i
\(235\) 354.340 1.50783
\(236\) 148.832i 0.630646i
\(237\) −87.4389 + 151.449i −0.368940 + 0.639024i
\(238\) −32.8156 18.9461i −0.137881 0.0796054i
\(239\) −48.3793 −0.202424 −0.101212 0.994865i \(-0.532272\pi\)
−0.101212 + 0.994865i \(0.532272\pi\)
\(240\) 203.936i 0.849731i
\(241\) −120.431 69.5306i −0.499712 0.288509i 0.228883 0.973454i \(-0.426493\pi\)
−0.728594 + 0.684945i \(0.759826\pi\)
\(242\) 351.708 203.059i 1.45334 0.839085i
\(243\) −225.225 130.034i −0.926851 0.535118i
\(244\) 59.8549 + 103.672i 0.245307 + 0.424884i
\(245\) −164.933 285.673i −0.673197 1.16601i
\(246\) 737.889i 2.99955i
\(247\) 305.706 97.5823i 1.23768 0.395070i
\(248\) −486.302 −1.96090
\(249\) −215.093 + 124.184i −0.863827 + 0.498731i
\(250\) −35.3796 + 20.4264i −0.141518 + 0.0817056i
\(251\) −109.025 + 188.837i −0.434363 + 0.752340i −0.997243 0.0741991i \(-0.976360\pi\)
0.562880 + 0.826539i \(0.309693\pi\)
\(252\) 24.3384 + 42.1553i 0.0965808 + 0.167283i
\(253\) 0.177389 0.307246i 0.000701142 0.00121441i
\(254\) −530.021 −2.08670
\(255\) 242.579i 0.951292i
\(256\) 210.398 364.420i 0.821867 1.42352i
\(257\) 192.080 + 110.898i 0.747394 + 0.431508i 0.824751 0.565495i \(-0.191315\pi\)
−0.0773578 + 0.997003i \(0.524648\pi\)
\(258\) 386.800 1.49923
\(259\) 55.9973i 0.216206i
\(260\) 738.143 + 426.167i 2.83901 + 1.63910i
\(261\) 24.5518 14.1750i 0.0940684 0.0543104i
\(262\) −224.047 129.353i −0.855139 0.493715i
\(263\) −160.691 278.326i −0.610994 1.05827i −0.991073 0.133319i \(-0.957437\pi\)
0.380079 0.924954i \(-0.375897\pi\)
\(264\) 0.757273 + 1.31164i 0.00286846 + 0.00496832i
\(265\) 80.8853i 0.305228i
\(266\) 16.6908 76.5719i 0.0627475 0.287864i
\(267\) 590.126 2.21021
\(268\) −13.3155 + 7.68771i −0.0496847 + 0.0286855i
\(269\) −137.447 + 79.3552i −0.510956 + 0.295001i −0.733227 0.679984i \(-0.761987\pi\)
0.222270 + 0.974985i \(0.428653\pi\)
\(270\) −157.232 + 272.335i −0.582342 + 1.00865i
\(271\) −244.649 423.745i −0.902765 1.56364i −0.823889 0.566751i \(-0.808200\pi\)
−0.0788765 0.996884i \(-0.525133\pi\)
\(272\) −35.4745 + 61.4437i −0.130421 + 0.225896i
\(273\) 78.9053 0.289030
\(274\) 304.739i 1.11218i
\(275\) 0.422551 0.731881i 0.00153655 0.00266138i
\(276\) −233.438 134.775i −0.845789 0.488316i
\(277\) −183.051 −0.660835 −0.330417 0.943835i \(-0.607189\pi\)
−0.330417 + 0.943835i \(0.607189\pi\)
\(278\) 307.292i 1.10537i
\(279\) 209.503 + 120.957i 0.750908 + 0.433537i
\(280\) 81.0185 46.7760i 0.289352 0.167057i
\(281\) 230.908 + 133.315i 0.821736 + 0.474430i 0.851015 0.525142i \(-0.175988\pi\)
−0.0292787 + 0.999571i \(0.509321\pi\)
\(282\) −325.450 563.697i −1.15408 1.99892i
\(283\) 178.014 + 308.329i 0.629025 + 1.08950i 0.987748 + 0.156059i \(0.0498789\pi\)
−0.358723 + 0.933444i \(0.616788\pi\)
\(284\) 283.521i 0.998312i
\(285\) −477.952 + 152.564i −1.67703 + 0.535311i
\(286\) 2.06073 0.00720534
\(287\) −61.5480 + 35.5347i −0.214453 + 0.123814i
\(288\) −84.5908 + 48.8385i −0.293718 + 0.169578i
\(289\) 102.303 177.195i 0.353991 0.613130i
\(290\) −60.6161 104.990i −0.209021 0.362035i
\(291\) 216.873 375.635i 0.745267 1.29084i
\(292\) −408.402 −1.39864
\(293\) 357.755i 1.22101i −0.792014 0.610503i \(-0.790967\pi\)
0.792014 0.610503i \(-0.209033\pi\)
\(294\) −302.972 + 524.763i −1.03052 + 1.78491i
\(295\) −123.229 71.1465i −0.417727 0.241175i
\(296\) 499.382 1.68710
\(297\) 0.490335i 0.00165096i
\(298\) 70.1022 + 40.4735i 0.235242 + 0.135817i
\(299\) −142.750 + 82.4169i −0.477425 + 0.275642i
\(300\) −556.063 321.043i −1.85354 1.07014i
\(301\) −18.6273 32.2634i −0.0618846 0.107187i
\(302\) 421.982 + 730.894i 1.39729 + 2.42018i
\(303\) 651.659i 2.15069i
\(304\) −143.373 31.2518i −0.471621 0.102802i
\(305\) −114.450 −0.375246
\(306\) 145.579 84.0503i 0.475750 0.274674i
\(307\) 125.866 72.6688i 0.409987 0.236706i −0.280797 0.959767i \(-0.590599\pi\)
0.690784 + 0.723061i \(0.257265\pi\)
\(308\) 0.162284 0.281085i 0.000526897 0.000912613i
\(309\) 230.559 + 399.339i 0.746145 + 1.29236i
\(310\) 517.243 895.892i 1.66853 2.88997i
\(311\) −191.291 −0.615084 −0.307542 0.951534i \(-0.599506\pi\)
−0.307542 + 0.951534i \(0.599506\pi\)
\(312\) 703.675i 2.25537i
\(313\) 156.376 270.851i 0.499603 0.865337i −0.500397 0.865796i \(-0.666813\pi\)
1.00000 0.000458751i \(0.000146025\pi\)
\(314\) −255.890 147.738i −0.814938 0.470505i
\(315\) −46.5380 −0.147740
\(316\) 334.214i 1.05764i
\(317\) 78.3676 + 45.2456i 0.247217 + 0.142731i 0.618489 0.785793i \(-0.287745\pi\)
−0.371273 + 0.928524i \(0.621078\pi\)
\(318\) 128.675 74.2907i 0.404639 0.233618i
\(319\) −0.163708 0.0945168i −0.000513191 0.000296291i
\(320\) 316.137 + 547.565i 0.987928 + 1.71114i
\(321\) −106.551 184.552i −0.331935 0.574928i
\(322\) 40.2552i 0.125016i
\(323\) −170.541 37.1738i −0.527989 0.115089i
\(324\) 729.027 2.25008
\(325\) −340.040 + 196.322i −1.04628 + 0.604068i
\(326\) 82.4365 47.5947i 0.252873 0.145996i
\(327\) 101.057 175.036i 0.309042 0.535277i
\(328\) 316.898 + 548.883i 0.966152 + 1.67342i
\(329\) −31.3456 + 54.2922i −0.0952754 + 0.165022i
\(330\) −3.22182 −0.00976308
\(331\) 251.295i 0.759199i 0.925151 + 0.379599i \(0.123938\pi\)
−0.925151 + 0.379599i \(0.876062\pi\)
\(332\) 237.332 411.071i 0.714854 1.23816i
\(333\) −215.138 124.210i −0.646060 0.373003i
\(334\) 201.982 0.604737
\(335\) 14.6999i 0.0438802i
\(336\) −31.2471 18.0405i −0.0929974 0.0536921i
\(337\) −225.749 + 130.336i −0.669879 + 0.386755i −0.796031 0.605256i \(-0.793071\pi\)
0.126152 + 0.992011i \(0.459737\pi\)
\(338\) −337.931 195.105i −0.999797 0.577233i
\(339\) −260.305 450.861i −0.767861 1.32997i
\(340\) −231.800 401.490i −0.681766 1.18085i
\(341\) 1.61304i 0.00473033i
\(342\) 257.162 + 233.973i 0.751935 + 0.684131i
\(343\) 118.578 0.345710
\(344\) −287.724 + 166.117i −0.836406 + 0.482899i
\(345\) 223.181 128.854i 0.646901 0.373489i
\(346\) −296.267 + 513.150i −0.856263 + 1.48309i
\(347\) 169.713 + 293.952i 0.489088 + 0.847125i 0.999921 0.0125549i \(-0.00399646\pi\)
−0.510833 + 0.859680i \(0.670663\pi\)
\(348\) −71.8113 + 124.381i −0.206354 + 0.357416i
\(349\) −76.4095 −0.218938 −0.109469 0.993990i \(-0.534915\pi\)
−0.109469 + 0.993990i \(0.534915\pi\)
\(350\) 95.8904i 0.273973i
\(351\) 113.908 197.294i 0.324523 0.562090i
\(352\) 0.564038 + 0.325647i 0.00160238 + 0.000925135i
\(353\) 635.437 1.80010 0.900052 0.435783i \(-0.143528\pi\)
0.900052 + 0.435783i \(0.143528\pi\)
\(354\) 261.384i 0.738372i
\(355\) −234.748 135.532i −0.661261 0.381779i
\(356\) −976.710 + 563.904i −2.74357 + 1.58400i
\(357\) −37.1682 21.4590i −0.104112 0.0601094i
\(358\) −0.380854 0.659658i −0.00106384 0.00184262i
\(359\) −2.43138 4.21127i −0.00677264 0.0117306i 0.862619 0.505854i \(-0.168822\pi\)
−0.869392 + 0.494123i \(0.835489\pi\)
\(360\) 415.024i 1.15284i
\(361\) −34.0136 359.394i −0.0942206 0.995551i
\(362\) −501.542 −1.38548
\(363\) 398.358 229.992i 1.09740 0.633586i
\(364\) −130.595 + 75.3991i −0.358778 + 0.207141i
\(365\) 195.229 338.146i 0.534874 0.926428i
\(366\) 105.119 + 182.071i 0.287210 + 0.497462i
\(367\) −149.568 + 259.060i −0.407542 + 0.705884i −0.994614 0.103651i \(-0.966948\pi\)
0.587071 + 0.809535i \(0.300281\pi\)
\(368\) 75.3736 0.204820
\(369\) 315.285i 0.854430i
\(370\) −531.155 + 919.987i −1.43555 + 2.48645i
\(371\) −12.3933 7.15527i −0.0334051 0.0192864i
\(372\) −1225.55 −3.29448
\(373\) 286.394i 0.767813i 0.923372 + 0.383907i \(0.125422\pi\)
−0.923372 + 0.383907i \(0.874578\pi\)
\(374\) −0.970701 0.560434i −0.00259546 0.00149849i
\(375\) −40.0722 + 23.1357i −0.106859 + 0.0616952i
\(376\) 484.176 + 279.539i 1.28770 + 0.743455i
\(377\) 43.9136 + 76.0605i 0.116482 + 0.201752i
\(378\) −27.8182 48.1825i −0.0735930 0.127467i
\(379\) 638.486i 1.68466i −0.538962 0.842330i \(-0.681183\pi\)
0.538962 0.842330i \(-0.318817\pi\)
\(380\) 645.268 709.221i 1.69807 1.86637i
\(381\) −600.322 −1.57565
\(382\) 730.474 421.739i 1.91224 1.10403i
\(383\) 297.246 171.615i 0.776100 0.448082i −0.0589464 0.998261i \(-0.518774\pi\)
0.835046 + 0.550180i \(0.185441\pi\)
\(384\) 444.504 769.904i 1.15756 2.00496i
\(385\) 0.155154 + 0.268734i 0.000402997 + 0.000698012i
\(386\) 212.761 368.512i 0.551193 0.954694i
\(387\) 165.272 0.427059
\(388\) 828.944i 2.13645i
\(389\) −176.043 + 304.915i −0.452552 + 0.783843i −0.998544 0.0539474i \(-0.982820\pi\)
0.545992 + 0.837791i \(0.316153\pi\)
\(390\) 1296.35 + 748.446i 3.32397 + 1.91909i
\(391\) 89.6562 0.229300
\(392\) 520.464i 1.32771i
\(393\) −253.764 146.510i −0.645709 0.372800i
\(394\) 830.745 479.631i 2.10849 1.21734i
\(395\) 276.721 + 159.765i 0.700559 + 0.404468i
\(396\) 0.719940 + 1.24697i 0.00181803 + 0.00314892i
\(397\) 205.686 + 356.259i 0.518101 + 0.897378i 0.999779 + 0.0210293i \(0.00669432\pi\)
−0.481678 + 0.876349i \(0.659972\pi\)
\(398\) 517.132i 1.29933i
\(399\) 18.9047 86.7282i 0.0473801 0.217364i
\(400\) 179.545 0.448862
\(401\) −26.8409 + 15.4966i −0.0669349 + 0.0386449i −0.533094 0.846056i \(-0.678971\pi\)
0.466159 + 0.884701i \(0.345637\pi\)
\(402\) −23.3851 + 13.5014i −0.0581718 + 0.0335855i
\(403\) −374.719 + 649.032i −0.929823 + 1.61050i
\(404\) −622.703 1078.55i −1.54134 2.66969i
\(405\) −348.497 + 603.615i −0.860487 + 1.49041i
\(406\) 21.4489 0.0528297
\(407\) 1.65643i 0.00406984i
\(408\) −191.371 + 331.465i −0.469047 + 0.812413i
\(409\) −336.926 194.525i −0.823781 0.475610i 0.0279377 0.999610i \(-0.491106\pi\)
−0.851719 + 0.524000i \(0.824439\pi\)
\(410\) −1348.24 −3.28839
\(411\) 345.158i 0.839801i
\(412\) −763.190 440.628i −1.85240 1.06948i
\(413\) 21.8022 12.5875i 0.0527899 0.0304783i
\(414\) −154.658 89.2918i −0.373570 0.215681i
\(415\) 226.904 + 393.009i 0.546756 + 0.947010i
\(416\) −151.300 262.058i −0.363701 0.629948i
\(417\) 348.050i 0.834653i
\(418\) 0.493723 2.26503i 0.00118116 0.00541874i
\(419\) 455.941 1.08817 0.544083 0.839032i \(-0.316878\pi\)
0.544083 + 0.839032i \(0.316878\pi\)
\(420\) 204.177 117.882i 0.486136 0.280671i
\(421\) −176.502 + 101.903i −0.419244 + 0.242051i −0.694754 0.719248i \(-0.744487\pi\)
0.275510 + 0.961298i \(0.411153\pi\)
\(422\) 267.593 463.484i 0.634106 1.09830i
\(423\) −139.058 240.856i −0.328743 0.569399i
\(424\) −63.8105 + 110.523i −0.150496 + 0.260668i
\(425\) 213.567 0.502510
\(426\) 497.926i 1.16884i
\(427\) 10.1245 17.5361i 0.0237107 0.0410681i
\(428\) 352.703 + 203.633i 0.824072 + 0.475778i
\(429\) 2.33406 0.00544069
\(430\) 706.746i 1.64360i
\(431\) 609.299 + 351.779i 1.41369 + 0.816193i 0.995734 0.0922756i \(-0.0294141\pi\)
0.417954 + 0.908468i \(0.362747\pi\)
\(432\) −90.2166 + 52.0866i −0.208835 + 0.120571i
\(433\) −164.941 95.2288i −0.380927 0.219928i 0.297295 0.954786i \(-0.403916\pi\)
−0.678221 + 0.734858i \(0.737249\pi\)
\(434\) 91.5127 + 158.505i 0.210859 + 0.365218i
\(435\) −68.6561 118.916i −0.157830 0.273370i
\(436\) 386.265i 0.885930i
\(437\) 56.3868 + 176.649i 0.129032 + 0.404231i
\(438\) −717.247 −1.63755
\(439\) 415.097 239.656i 0.945551 0.545914i 0.0538552 0.998549i \(-0.482849\pi\)
0.891696 + 0.452634i \(0.149516\pi\)
\(440\) 2.39657 1.38366i 0.00544674 0.00314468i
\(441\) −129.454 + 224.220i −0.293546 + 0.508436i
\(442\) 260.384 + 450.999i 0.589105 + 1.02036i
\(443\) −383.888 + 664.914i −0.866565 + 1.50094i −0.00108097 + 0.999999i \(0.500344\pi\)
−0.865484 + 0.500936i \(0.832989\pi\)
\(444\) 1258.51 2.83448
\(445\) 1078.25i 2.42304i
\(446\) 313.744 543.421i 0.703463 1.21843i
\(447\) 79.4004 + 45.8418i 0.177629 + 0.102554i
\(448\) −111.864 −0.249697
\(449\) 392.421i 0.873988i −0.899464 0.436994i \(-0.856043\pi\)
0.899464 0.436994i \(-0.143957\pi\)
\(450\) −368.405 212.699i −0.818678 0.472664i
\(451\) −1.82062 + 1.05113i −0.00403685 + 0.00233068i
\(452\) 861.654 + 497.476i 1.90631 + 1.10061i
\(453\) 477.952 + 827.837i 1.05508 + 1.82746i
\(454\) 14.8942 + 25.7976i 0.0328067 + 0.0568228i
\(455\) 144.173i 0.316863i
\(456\) −773.439 168.591i −1.69614 0.369718i
\(457\) −695.090 −1.52099 −0.760493 0.649347i \(-0.775042\pi\)
−0.760493 + 0.649347i \(0.775042\pi\)
\(458\) −772.952 + 446.264i −1.68767 + 0.974376i
\(459\) −107.312 + 61.9565i −0.233795 + 0.134981i
\(460\) −246.256 + 426.528i −0.535339 + 0.927234i
\(461\) 351.150 + 608.210i 0.761714 + 1.31933i 0.941967 + 0.335707i \(0.108975\pi\)
−0.180253 + 0.983620i \(0.557692\pi\)
\(462\) 0.285008 0.493649i 0.000616901 0.00106850i
\(463\) −14.4955 −0.0313077 −0.0156538 0.999877i \(-0.504983\pi\)
−0.0156538 + 0.999877i \(0.504983\pi\)
\(464\) 40.1608i 0.0865534i
\(465\) 585.849 1014.72i 1.25989 2.18219i
\(466\) −26.2882 15.1775i −0.0564125 0.0325698i
\(467\) −863.890 −1.84987 −0.924935 0.380124i \(-0.875881\pi\)
−0.924935 + 0.380124i \(0.875881\pi\)
\(468\) 668.985i 1.42945i
\(469\) 2.25232 + 1.30038i 0.00480239 + 0.00277266i
\(470\) −1029.96 + 594.650i −2.19141 + 1.26521i
\(471\) −289.831 167.334i −0.615353 0.355274i
\(472\) −112.255 194.432i −0.237829 0.411931i
\(473\) −0.551003 0.954366i −0.00116491 0.00201769i
\(474\) 586.956i 1.23830i
\(475\) 134.317 + 420.789i 0.282773 + 0.885871i
\(476\) 82.0221 0.172315
\(477\) 54.9802 31.7429i 0.115263 0.0665469i
\(478\) 140.625 81.1897i 0.294194 0.169853i
\(479\) −198.015 + 342.972i −0.413393 + 0.716017i −0.995258 0.0972678i \(-0.968990\pi\)
0.581866 + 0.813285i \(0.302323\pi\)
\(480\) 236.547 + 409.712i 0.492807 + 0.853566i
\(481\) 384.797 666.488i 0.799994 1.38563i
\(482\) 466.742 0.968344
\(483\) 45.5945i 0.0943986i
\(484\) −439.544 + 761.313i −0.908149 + 1.57296i
\(485\) −686.345 396.261i −1.41514 0.817033i
\(486\) 872.884 1.79606
\(487\) 872.905i 1.79241i −0.443636 0.896207i \(-0.646312\pi\)
0.443636 0.896207i \(-0.353688\pi\)
\(488\) −156.386 90.2897i −0.320464 0.185020i
\(489\) 93.3707 53.9076i 0.190942 0.110240i
\(490\) 958.826 + 553.578i 1.95679 + 1.12975i
\(491\) −350.193 606.552i −0.713224 1.23534i −0.963641 0.267201i \(-0.913901\pi\)
0.250417 0.968138i \(-0.419432\pi\)
\(492\) 798.624 + 1383.26i 1.62322 + 2.81150i
\(493\) 47.7709i 0.0968983i
\(494\) −724.837 + 796.676i −1.46728 + 1.61270i
\(495\) −1.37662 −0.00278104
\(496\) 296.783 171.348i 0.598353 0.345459i
\(497\) 41.5325 23.9788i 0.0835663 0.0482470i
\(498\) 416.808 721.933i 0.836965 1.44967i
\(499\) −76.5488 132.586i −0.153404 0.265704i 0.779073 0.626934i \(-0.215690\pi\)
−0.932477 + 0.361230i \(0.882357\pi\)
\(500\) 44.2154 76.5832i 0.0884307 0.153166i
\(501\) 228.773 0.456632
\(502\) 731.860i 1.45789i
\(503\) 203.824 353.033i 0.405216 0.701855i −0.589130 0.808038i \(-0.700530\pi\)
0.994347 + 0.106183i \(0.0338628\pi\)
\(504\) −63.5902 36.7138i −0.126171 0.0728449i
\(505\) 1190.69 2.35779
\(506\) 1.19077i 0.00235330i
\(507\) −382.754 220.983i −0.754938 0.435864i
\(508\) 993.585 573.647i 1.95588 1.12923i
\(509\) −171.070 98.7673i −0.336090 0.194042i 0.322452 0.946586i \(-0.395493\pi\)
−0.658542 + 0.752544i \(0.728826\pi\)
\(510\) −407.094 705.108i −0.798224 1.38256i
\(511\) 34.5406 + 59.8261i 0.0675942 + 0.117077i
\(512\) 476.936i 0.931515i
\(513\) −189.563 172.470i −0.369519 0.336198i
\(514\) −744.428 −1.44830
\(515\) 729.657 421.268i 1.41681 0.817995i
\(516\) −725.102 + 418.638i −1.40524 + 0.811313i
\(517\) −0.927218 + 1.60599i −0.00179346 + 0.00310636i
\(518\) −93.9740 162.768i −0.181417 0.314223i
\(519\) −335.563 + 581.212i −0.646557 + 1.11987i
\(520\) −1285.73 −2.47255
\(521\) 698.844i 1.34135i 0.741751 + 0.670676i \(0.233996\pi\)
−0.741751 + 0.670676i \(0.766004\pi\)
\(522\) −47.5767 + 82.4053i −0.0911431 + 0.157865i
\(523\) −381.571 220.300i −0.729582 0.421224i 0.0886874 0.996060i \(-0.471733\pi\)
−0.818269 + 0.574835i \(0.805066\pi\)
\(524\) 560.001 1.06870
\(525\) 108.609i 0.206874i
\(526\) 934.166 + 539.341i 1.77598 + 1.02536i
\(527\) 353.021 203.817i 0.669869 0.386749i
\(528\) −0.924305 0.533648i −0.00175058 0.00101070i
\(529\) 216.876 + 375.641i 0.409974 + 0.710096i
\(530\) −135.741 235.110i −0.256115 0.443604i
\(531\) 111.684i 0.210327i
\(532\) 51.5855 + 161.607i 0.0969653 + 0.303773i
\(533\) 976.738 1.83253
\(534\) −1715.32 + 990.343i −3.21222 + 1.85457i
\(535\) −337.206 + 194.686i −0.630292 + 0.363899i
\(536\) 11.5967 20.0861i 0.0216357 0.0374741i
\(537\) −0.431369 0.747153i −0.000803295 0.00139135i
\(538\) 266.346 461.325i 0.495067 0.857481i
\(539\) 1.72635 0.00320288
\(540\) 680.696i 1.26055i
\(541\) −442.696 + 766.772i −0.818292 + 1.41732i 0.0886479 + 0.996063i \(0.471745\pi\)
−0.906940 + 0.421260i \(0.861588\pi\)
\(542\) 1422.25 + 821.136i 2.62408 + 1.51501i
\(543\) −568.065 −1.04616
\(544\) 164.589i 0.302554i
\(545\) −319.818 184.647i −0.586822 0.338802i
\(546\) −229.355 + 132.418i −0.420064 + 0.242524i
\(547\) −801.617 462.814i −1.46548 0.846095i −0.466223 0.884667i \(-0.654386\pi\)
−0.999256 + 0.0385725i \(0.987719\pi\)
\(548\) −329.821 571.267i −0.601863 1.04246i
\(549\) 44.9151 + 77.7952i 0.0818125 + 0.141703i
\(550\) 2.83648i 0.00515725i
\(551\) 94.1225 30.0442i 0.170821 0.0545266i
\(552\) 406.611 0.736614
\(553\) −48.9585 + 28.2662i −0.0885325 + 0.0511143i
\(554\) 532.077 307.195i 0.960427 0.554503i
\(555\) −601.606 + 1042.01i −1.08397 + 1.87750i
\(556\) −332.585 576.053i −0.598174 1.03607i
\(557\) 176.665 305.992i 0.317172 0.549358i −0.662725 0.748863i \(-0.730600\pi\)
0.979897 + 0.199505i \(0.0639335\pi\)
\(558\) −811.954 −1.45511
\(559\) 512.005i 0.915930i
\(560\) −32.9629 + 57.0935i −0.0588624 + 0.101953i
\(561\) −1.09945 0.634769i −0.00195981 0.00113150i
\(562\) −894.909 −1.59236
\(563\) 21.4065i 0.0380221i −0.999819 0.0190111i \(-0.993948\pi\)
0.999819 0.0190111i \(-0.00605177\pi\)
\(564\) 1220.19 + 704.476i 2.16345 + 1.24907i
\(565\) −823.795 + 475.618i −1.45804 + 0.841802i
\(566\) −1034.87 597.482i −1.82839 1.05562i
\(567\) −61.6575 106.794i −0.108743 0.188349i
\(568\) −213.842 370.385i −0.376482 0.652087i
\(569\) 378.852i 0.665821i 0.942958 + 0.332911i \(0.108031\pi\)
−0.942958 + 0.332911i \(0.891969\pi\)
\(570\) 1133.24 1245.55i 1.98814 2.18518i
\(571\) −38.5842 −0.0675730 −0.0337865 0.999429i \(-0.510757\pi\)
−0.0337865 + 0.999429i \(0.510757\pi\)
\(572\) −3.86307 + 2.23034i −0.00675362 + 0.00389920i
\(573\) 827.362 477.678i 1.44391 0.833644i
\(574\) 119.268 206.578i 0.207784 0.359892i
\(575\) −113.443 196.488i −0.197291 0.341719i
\(576\) 248.131 429.776i 0.430783 0.746139i
\(577\) 399.348 0.692112 0.346056 0.938214i \(-0.387521\pi\)
0.346056 + 0.938214i \(0.387521\pi\)
\(578\) 686.737i 1.18813i
\(579\) 240.981 417.391i 0.416201 0.720882i
\(580\) 227.264 + 131.211i 0.391834 + 0.226225i
\(581\) −80.2894 −0.138192
\(582\) 1455.81i 2.50140i
\(583\) −0.366600 0.211656i −0.000628816 0.000363047i
\(584\) 533.528 308.032i 0.913575 0.527453i
\(585\) 553.902 + 319.796i 0.946841 + 0.546659i
\(586\) 600.380 + 1039.89i 1.02454 + 1.77455i
\(587\) −247.769 429.148i −0.422093 0.731087i 0.574051 0.818820i \(-0.305371\pi\)
−0.996144 + 0.0877330i \(0.972038\pi\)
\(588\) 1311.64i 2.23068i
\(589\) 623.601 + 567.369i 1.05875 + 0.963275i
\(590\) 477.589 0.809474
\(591\) 940.933 543.248i 1.59210 0.919201i
\(592\) −304.765 + 175.956i −0.514806 + 0.297224i
\(593\) −114.717 + 198.696i −0.193452 + 0.335069i −0.946392 0.323020i \(-0.895302\pi\)
0.752940 + 0.658089i \(0.228635\pi\)
\(594\) −0.822875 1.42526i −0.00138531 0.00239943i
\(595\) −39.2091 + 67.9121i −0.0658976 + 0.114138i
\(596\) −175.219 −0.293992
\(597\) 585.723i 0.981110i
\(598\) 276.622 479.124i 0.462579 0.801210i
\(599\) −26.4546 15.2736i −0.0441646 0.0254984i 0.477755 0.878493i \(-0.341451\pi\)
−0.521920 + 0.852995i \(0.674784\pi\)
\(600\) 968.573 1.61429
\(601\) 962.490i 1.60148i 0.599012 + 0.800740i \(0.295560\pi\)
−0.599012 + 0.800740i \(0.704440\pi\)
\(602\) 108.288 + 62.5201i 0.179880 + 0.103854i
\(603\) −9.99195 + 5.76885i −0.0165704 + 0.00956692i
\(604\) −1582.10 913.429i −2.61938 1.51230i
\(605\) −420.232 727.863i −0.694598 1.20308i
\(606\) −1093.61 1894.18i −1.80463 3.12572i
\(607\) 249.770i 0.411483i 0.978606 + 0.205741i \(0.0659606\pi\)
−0.978606 + 0.205741i \(0.934039\pi\)
\(608\) −324.289 + 103.514i −0.533370 + 0.170253i
\(609\) 24.2938 0.0398913
\(610\) 332.673 192.069i 0.545365 0.314867i
\(611\) 746.161 430.796i 1.22121 0.705067i
\(612\) −181.937 + 315.124i −0.297282 + 0.514908i
\(613\) −189.015 327.384i −0.308345 0.534069i 0.669655 0.742672i \(-0.266442\pi\)
−0.978000 + 0.208603i \(0.933108\pi\)
\(614\) −243.904 + 422.454i −0.397238 + 0.688036i
\(615\) −1527.07 −2.48304
\(616\) 0.489604i 0.000794812i
\(617\) −259.371 + 449.243i −0.420374 + 0.728109i −0.995976 0.0896208i \(-0.971434\pi\)
0.575602 + 0.817730i \(0.304768\pi\)
\(618\) −1340.33 773.842i −2.16883 1.25217i
\(619\) 1035.34 1.67261 0.836303 0.548267i \(-0.184712\pi\)
0.836303 + 0.548267i \(0.184712\pi\)
\(620\) 2239.27i 3.61172i
\(621\) 114.004 + 65.8202i 0.183581 + 0.105991i
\(622\) 556.028 321.023i 0.893935 0.516114i
\(623\) 165.211 + 95.3844i 0.265186 + 0.153105i
\(624\) 247.939 + 429.443i 0.397338 + 0.688209i
\(625\) 332.869 + 576.545i 0.532590 + 0.922473i
\(626\) 1049.71i 1.67686i
\(627\) 0.559210 2.56546i 0.000891881 0.00409165i
\(628\) 639.594 1.01846
\(629\) −362.516 + 209.298i −0.576336 + 0.332748i
\(630\) 135.272 78.0995i 0.214718 0.123967i
\(631\) 528.945 916.160i 0.838265 1.45192i −0.0530794 0.998590i \(-0.516904\pi\)
0.891344 0.453327i \(-0.149763\pi\)
\(632\) 252.077 + 436.610i 0.398856 + 0.690839i
\(633\) 303.086 524.960i 0.478808 0.829320i
\(634\) −303.723 −0.479058
\(635\) 1096.88i 1.72738i
\(636\) −160.811 + 278.533i −0.252847 + 0.437944i
\(637\) −694.625 401.042i −1.09046 0.629579i
\(638\) 0.634468 0.000994464
\(639\) 212.754i 0.332948i
\(640\) −1406.74 812.180i −2.19803 1.26903i
\(641\) −560.504 + 323.607i −0.874421 + 0.504847i −0.868815 0.495137i \(-0.835118\pi\)
−0.00560636 + 0.999984i \(0.501785\pi\)
\(642\) 619.426 + 357.626i 0.964839 + 0.557050i
\(643\) 157.333 + 272.508i 0.244685 + 0.423807i 0.962043 0.272898i \(-0.0879820\pi\)
−0.717358 + 0.696705i \(0.754649\pi\)
\(644\) −43.5685 75.4629i −0.0676530 0.117178i
\(645\) 800.487i 1.24107i
\(646\) 558.096 178.146i 0.863926 0.275768i
\(647\) −320.116 −0.494769 −0.247384 0.968917i \(-0.579571\pi\)
−0.247384 + 0.968917i \(0.579571\pi\)
\(648\) −952.385 + 549.860i −1.46973 + 0.848549i
\(649\) 0.644920 0.372345i 0.000993714 0.000573721i
\(650\) 658.932 1141.30i 1.01374 1.75585i
\(651\) 103.651 + 179.528i 0.159218 + 0.275773i
\(652\) −103.024 + 178.443i −0.158013 + 0.273686i
\(653\) 131.969 0.202097 0.101049 0.994881i \(-0.467780\pi\)
0.101049 + 0.994881i \(0.467780\pi\)
\(654\) 678.370i 1.03726i
\(655\) −267.698 + 463.666i −0.408699 + 0.707888i
\(656\) −386.796 223.317i −0.589628 0.340422i
\(657\) −306.465 −0.466460
\(658\) 210.415i 0.319780i
\(659\) −635.205 366.736i −0.963892 0.556503i −0.0665235 0.997785i \(-0.521191\pi\)
−0.897369 + 0.441281i \(0.854524\pi\)
\(660\) 6.03966 3.48700i 0.00915100 0.00528333i
\(661\) 590.038 + 340.659i 0.892644 + 0.515368i 0.874807 0.484472i \(-0.160988\pi\)
0.0178378 + 0.999841i \(0.494322\pi\)
\(662\) −421.720 730.441i −0.637040 1.10338i
\(663\) 294.921 + 510.818i 0.444828 + 0.770465i
\(664\) 716.019i 1.07834i
\(665\) −158.466 34.5419i −0.238295 0.0519426i
\(666\) 833.792 1.25194
\(667\) −43.9507 + 25.3750i −0.0658931 + 0.0380434i
\(668\) −378.639 + 218.607i −0.566824 + 0.327256i
\(669\) 355.359 615.499i 0.531179 0.920029i
\(670\) 24.6692 + 42.7282i 0.0368196 + 0.0637735i
\(671\) 0.299487 0.518726i 0.000446329 0.000773064i
\(672\) −83.7017 −0.124556
\(673\) 710.831i 1.05621i −0.849178 0.528107i \(-0.822902\pi\)
0.849178 0.528107i \(-0.177098\pi\)
\(674\) 437.458 757.700i 0.649048 1.12418i
\(675\) 271.565 + 156.788i 0.402318 + 0.232278i
\(676\) 844.654 1.24949
\(677\) 493.970i 0.729645i −0.931077 0.364823i \(-0.881130\pi\)
0.931077 0.364823i \(-0.118870\pi\)
\(678\) 1513.26 + 873.681i 2.23195 + 1.28862i
\(679\) 121.431 70.1081i 0.178838 0.103252i
\(680\) 605.639 + 349.666i 0.890645 + 0.514214i
\(681\) 16.8698 + 29.2193i 0.0247721 + 0.0429065i
\(682\) 2.70699 + 4.68864i 0.00396919 + 0.00687484i
\(683\) 442.962i 0.648553i 0.945962 + 0.324276i \(0.105121\pi\)
−0.945962 + 0.324276i \(0.894879\pi\)
\(684\) −735.310 160.280i −1.07501 0.234327i
\(685\) 630.659 0.920670
\(686\) −344.673 + 198.997i −0.502439 + 0.290083i
\(687\) −875.474 + 505.455i −1.27434 + 0.735743i
\(688\) 117.062 202.758i 0.170149 0.294706i
\(689\) 98.3380 + 170.326i 0.142726 + 0.247208i
\(690\) −432.481 + 749.080i −0.626784 + 1.08562i
\(691\) 924.711 1.33822 0.669110 0.743163i \(-0.266675\pi\)
0.669110 + 0.743163i \(0.266675\pi\)
\(692\) 1282.61i 1.85348i
\(693\) 0.121778 0.210926i 0.000175726 0.000304366i
\(694\) −986.615 569.622i −1.42164 0.820782i
\(695\) 635.943 0.915026
\(696\) 216.651i 0.311281i
\(697\) −460.090 265.633i −0.660101 0.381109i
\(698\) 222.100 128.230i 0.318195 0.183710i
\(699\) −29.7750 17.1906i −0.0425966 0.0245932i
\(700\) −103.783 179.757i −0.148261 0.256796i
\(701\) −277.112 479.973i −0.395310 0.684697i 0.597831 0.801622i \(-0.296030\pi\)
−0.993141 + 0.116925i \(0.962696\pi\)
\(702\) 764.634i 1.08922i
\(703\) −640.373 582.629i −0.910915 0.828775i
\(704\) −3.30900 −0.00470028
\(705\) −1166.58 + 673.523i −1.65472 + 0.955351i
\(706\) −1847.03 + 1066.38i −2.61619 + 1.51046i
\(707\) −105.330 + 182.437i −0.148982 + 0.258045i
\(708\) −282.898 489.993i −0.399573 0.692081i
\(709\) 249.802 432.670i 0.352331 0.610254i −0.634327 0.773065i \(-0.718723\pi\)
0.986657 + 0.162811i \(0.0520560\pi\)
\(710\) 909.791 1.28140
\(711\) 250.794i 0.352734i
\(712\) 850.635 1473.34i 1.19471 2.06930i
\(713\) −375.036 216.527i −0.525997 0.303684i
\(714\) 144.049 0.201750
\(715\) 4.26469i 0.00596461i
\(716\) 1.42791 + 0.824403i 0.00199428 + 0.00115140i
\(717\) 159.277 91.9584i 0.222143 0.128254i
\(718\) 14.1346 + 8.16063i 0.0196861 + 0.0113658i
\(719\) 174.396 + 302.062i 0.242553 + 0.420114i 0.961441 0.275012i \(-0.0886818\pi\)
−0.718888 + 0.695126i \(0.755348\pi\)
\(720\) −146.233 253.283i −0.203101 0.351782i
\(721\) 149.065i 0.206747i
\(722\) 701.999 + 987.573i 0.972298 + 1.36783i
\(723\) 528.649 0.731189
\(724\) 940.198 542.823i 1.29862 0.749756i
\(725\) −104.693 + 60.4448i −0.144405 + 0.0833721i
\(726\) −771.940 + 1337.04i −1.06328 + 1.84165i
\(727\) 41.3116 + 71.5538i 0.0568247 + 0.0984233i 0.893038 0.449980i \(-0.148569\pi\)
−0.836214 + 0.548404i \(0.815236\pi\)
\(728\) 113.738 197.000i 0.156233 0.270604i
\(729\) 85.5657 0.117374
\(730\) 1310.52i 1.79524i
\(731\) 139.245 241.179i 0.190485 0.329930i
\(732\) −394.114 227.542i −0.538407 0.310850i
\(733\) −981.828 −1.33947 −0.669733 0.742602i \(-0.733591\pi\)
−0.669733 + 0.742602i \(0.733591\pi\)
\(734\) 1004.01i 1.36787i
\(735\) 1086.00 + 627.003i 1.47755 + 0.853066i
\(736\) 151.428 87.4267i 0.205744 0.118786i
\(737\) 0.0666248 + 0.0384658i 9.03999e−5 + 5.21924e-5i
\(738\) 529.107 + 916.441i 0.716948 + 1.24179i
\(739\) −64.8765 112.369i −0.0877895 0.152056i 0.818787 0.574097i \(-0.194647\pi\)
−0.906576 + 0.422042i \(0.861314\pi\)
\(740\) 2299.49i 3.10743i
\(741\) −820.978 + 902.345i −1.10793 + 1.21774i
\(742\) 48.0316 0.0647326
\(743\) −450.862 + 260.306i −0.606814 + 0.350344i −0.771717 0.635966i \(-0.780602\pi\)
0.164904 + 0.986310i \(0.447269\pi\)
\(744\) 1601.03 924.354i 2.15192 1.24241i
\(745\) 83.7603 145.077i 0.112430 0.194734i
\(746\) −480.624 832.465i −0.644268 1.11590i
\(747\) 178.094 308.467i 0.238412 0.412941i
\(748\) 2.42625 0.00324365
\(749\) 68.8892i 0.0919749i
\(750\) 77.6522 134.498i 0.103536 0.179330i
\(751\) 880.913 + 508.595i 1.17299 + 0.677224i 0.954382 0.298590i \(-0.0965161\pi\)
0.218605 + 0.975813i \(0.429849\pi\)
\(752\) −393.981 −0.523910
\(753\) 828.932i 1.10084i
\(754\) −255.288 147.391i −0.338578 0.195478i
\(755\) 1512.59 873.295i 2.00343 1.15668i
\(756\) 104.297 + 60.2157i 0.137958 + 0.0796504i
\(757\) 155.490 + 269.317i 0.205403 + 0.355768i 0.950261 0.311455i \(-0.100816\pi\)
−0.744858 + 0.667223i \(0.767483\pi\)
\(758\) 1071.50 + 1855.89i 1.41359 + 2.44841i
\(759\) 1.34871i 0.00177695i
\(760\) −308.043 + 1413.20i −0.405320 + 1.85947i
\(761\) −1402.51 −1.84298 −0.921489 0.388404i \(-0.873027\pi\)
−0.921489 + 0.388404i \(0.873027\pi\)
\(762\) 1744.96 1007.45i 2.28998 1.32212i
\(763\) 56.5834 32.6684i 0.0741591 0.0428158i
\(764\) −912.904 + 1581.20i −1.19490 + 2.06963i
\(765\) −173.943 301.278i −0.227376 0.393827i
\(766\) −576.006 + 997.671i −0.751966 + 1.30244i
\(767\) −345.991 −0.451097
\(768\) 1599.68i 2.08292i
\(769\) 196.711 340.714i 0.255802 0.443061i −0.709311 0.704895i \(-0.750994\pi\)
0.965113 + 0.261834i \(0.0843273\pi\)
\(770\) −0.901975 0.520755i −0.00117140 0.000676306i
\(771\) −843.167 −1.09360
\(772\) 921.090i 1.19312i
\(773\) 201.825 + 116.524i 0.261093 + 0.150742i 0.624833 0.780758i \(-0.285167\pi\)
−0.363740 + 0.931501i \(0.618500\pi\)
\(774\) −480.397 + 277.357i −0.620668 + 0.358343i
\(775\) −893.359 515.781i −1.15272 0.665524i
\(776\) −625.222 1082.92i −0.805698 1.39551i
\(777\) −106.438 184.357i −0.136986 0.237267i
\(778\) 1181.73i 1.51894i
\(779\) 234.014 1073.57i 0.300403 1.37814i
\(780\) −3240.20 −4.15410
\(781\) 1.22855 0.709304i 0.00157305 0.000908200i
\(782\) −260.604 + 150.460i −0.333254 + 0.192404i
\(783\) 35.0705 60.7439i 0.0447899 0.0775784i
\(784\) 183.385 + 317.631i 0.233909 + 0.405142i
\(785\) −305.746 + 529.568i −0.389485 + 0.674609i
\(786\) 983.489 1.25126
\(787\) 193.205i 0.245495i −0.992438 0.122748i \(-0.960829\pi\)
0.992438 0.122748i \(-0.0391706\pi\)
\(788\) −1038.22 + 1798.25i −1.31753 + 2.28204i
\(789\) 1058.07 + 610.878i 1.34103 + 0.774243i
\(790\) −1072.46 −1.35755
\(791\) 168.296i 0.212764i
\(792\) −1.88103 1.08601i −0.00237504 0.00137123i
\(793\) −241.006 + 139.145i −0.303917 + 0.175466i
\(794\) −1195.74 690.361i −1.50597 0.869472i
\(795\) −153.745 266.295i −0.193390 0.334962i
\(796\) 559.696 + 969.422i 0.703136 + 1.21787i
\(797\) 255.622i 0.320730i 0.987058 + 0.160365i \(0.0512672\pi\)
−0.987058 + 0.160365i \(0.948733\pi\)
\(798\) 90.5959 + 283.819i 0.113529 + 0.355663i
\(799\) −468.636 −0.586529
\(800\) 360.710 208.256i 0.450887 0.260320i
\(801\) −732.922 + 423.153i −0.915009 + 0.528281i
\(802\) 52.0124 90.0882i 0.0648534 0.112329i
\(803\) 1.02173 + 1.76969i 0.00127239 + 0.00220384i
\(804\) 29.2253 50.6197i 0.0363499 0.0629598i
\(805\) 83.3085 0.103489
\(806\) 2515.40i 3.12084i
\(807\) 301.674 522.514i 0.373821 0.647477i
\(808\) 1626.97 + 939.333i 2.01358 + 1.16254i
\(809\) 478.346 0.591281 0.295641 0.955299i \(-0.404467\pi\)
0.295641 + 0.955299i \(0.404467\pi\)
\(810\) 2339.38i 2.88812i
\(811\) 810.296 + 467.825i 0.999132 + 0.576849i 0.907991 0.418989i \(-0.137615\pi\)
0.0911409 + 0.995838i \(0.470949\pi\)
\(812\) −40.2084 + 23.2143i −0.0495177 + 0.0285890i
\(813\) 1610.89 + 930.049i 1.98142 + 1.14397i
\(814\) −2.77980 4.81475i −0.00341498 0.00591492i
\(815\) −98.4977 170.603i −0.120856 0.209329i
\(816\) 269.717i 0.330536i
\(817\) 562.766 + 122.670i 0.688820 + 0.150146i
\(818\) 1305.80 1.59633
\(819\) −97.9985 + 56.5795i −0.119656 + 0.0690836i
\(820\) 2527.43 1459.21i 3.08223 1.77953i
\(821\) 207.851 360.008i 0.253168 0.438500i −0.711228 0.702961i \(-0.751861\pi\)
0.964396 + 0.264461i \(0.0851941\pi\)
\(822\) −579.241 1003.27i −0.704673 1.22053i
\(823\) −571.455 + 989.790i −0.694356 + 1.20266i 0.276041 + 0.961146i \(0.410978\pi\)
−0.970397 + 0.241515i \(0.922356\pi\)
\(824\) 1329.35 1.61329
\(825\) 3.21271i 0.00389419i
\(826\) −42.2485 + 73.1765i −0.0511483 + 0.0885914i
\(827\) 943.619 + 544.799i 1.14101 + 0.658765i 0.946682 0.322170i \(-0.104412\pi\)
0.194333 + 0.980936i \(0.437746\pi\)
\(828\) 386.565 0.466866
\(829\) 242.265i 0.292237i −0.989267 0.146119i \(-0.953322\pi\)
0.989267 0.146119i \(-0.0466781\pi\)
\(830\) −1319.09 761.575i −1.58926 0.917560i
\(831\) 602.650 347.940i 0.725210 0.418700i
\(832\) 1331.43 + 768.699i 1.60027 + 0.923918i
\(833\) 218.134 + 377.820i 0.261866 + 0.453565i
\(834\) −584.094 1011.68i −0.700352 1.21305i
\(835\) 418.004i 0.500604i
\(836\) 1.52592 + 4.78042i 0.00182527 + 0.00571821i
\(837\) 598.520 0.715078
\(838\) −1325.29 + 765.156i −1.58149 + 0.913074i
\(839\) −1272.95 + 734.939i −1.51723 + 0.875971i −0.517431 + 0.855725i \(0.673112\pi\)
−0.999795 + 0.0202457i \(0.993555\pi\)
\(840\) −177.822 + 307.997i −0.211693 + 0.366663i
\(841\) −406.980 704.909i −0.483923 0.838180i
\(842\) 342.026 592.407i 0.406207 0.703571i
\(843\) −1013.61 −1.20238
\(844\) 1158.47i 1.37260i
\(845\) −403.771 + 699.352i −0.477836 + 0.827635i
\(846\) 808.403 + 466.732i 0.955560 + 0.551693i
\(847\) 148.698 0.175558
\(848\) 89.9341i 0.106054i
\(849\) −1172.13 676.731i −1.38060 0.797092i
\(850\) −620.776 + 358.405i −0.730325 + 0.421653i
\(851\) 385.123 + 222.351i 0.452553 + 0.261282i
\(852\) −538.910 933.420i −0.632524 1.09556i
\(853\) −493.706 855.124i −0.578788 1.00249i −0.995619 0.0935062i \(-0.970192\pi\)
0.416831 0.908984i \(-0.363141\pi\)
\(854\) 67.9631i 0.0795821i
\(855\) 484.209 532.199i 0.566326 0.622455i
\(856\) −614.352 −0.717701
\(857\) −1279.05 + 738.461i −1.49248 + 0.861681i −0.999963 0.00862354i \(-0.997255\pi\)
−0.492513 + 0.870305i \(0.663922\pi\)
\(858\) −6.78442 + 3.91699i −0.00790726 + 0.00456526i
\(859\) 466.025 807.179i 0.542520 0.939673i −0.456238 0.889858i \(-0.650803\pi\)
0.998758 0.0498150i \(-0.0158632\pi\)
\(860\) 764.917 + 1324.88i 0.889439 + 1.54055i
\(861\) 135.087 233.978i 0.156896 0.271752i
\(862\) −2361.41 −2.73945
\(863\) 1088.87i 1.26172i −0.775896 0.630861i \(-0.782702\pi\)
0.775896 0.630861i \(-0.217298\pi\)
\(864\) −120.832 + 209.287i −0.139851 + 0.242230i
\(865\) 1061.97 + 613.127i 1.22771 + 0.708818i
\(866\) 639.248 0.738162
\(867\) 777.825i 0.897145i
\(868\) −343.102 198.090i −0.395279 0.228214i
\(869\) −1.44822 + 0.836128i −0.00166653 + 0.000962172i
\(870\) 399.127 + 230.436i 0.458766 + 0.264869i
\(871\) −17.8717 30.9546i −0.0205185 0.0355392i
\(872\) −291.336 504.609i −0.334101 0.578680i
\(873\) 622.039i 0.712531i
\(874\) −460.350 418.839i −0.526716 0.479221i
\(875\) −14.9581 −0.0170949
\(876\) 1344.56 776.282i 1.53489 0.886167i
\(877\) −202.296 + 116.796i −0.230669 + 0.133177i −0.610881 0.791723i \(-0.709184\pi\)
0.380212 + 0.924899i \(0.375851\pi\)
\(878\) −804.378 + 1393.22i −0.916148 + 1.58681i
\(879\) 680.013 + 1177.82i 0.773621 + 1.33995i
\(880\) −0.975059 + 1.68885i −0.00110802 + 0.00191915i
\(881\) 488.267 0.554220 0.277110 0.960838i \(-0.410623\pi\)
0.277110 + 0.960838i \(0.410623\pi\)
\(882\) 868.991i 0.985251i
\(883\) −833.774 + 1444.14i −0.944252 + 1.63549i −0.187009 + 0.982358i \(0.559879\pi\)
−0.757243 + 0.653134i \(0.773454\pi\)
\(884\) −976.240 563.632i −1.10434 0.637593i
\(885\) 540.936 0.611227
\(886\) 2576.95i 2.90852i
\(887\) 544.718 + 314.493i 0.614113 + 0.354558i 0.774573 0.632484i \(-0.217965\pi\)
−0.160460 + 0.987042i \(0.551298\pi\)
\(888\) −1644.09 + 949.215i −1.85145 + 1.06894i
\(889\) −168.065 97.0325i −0.189050 0.109148i
\(890\) 1809.51 + 3134.17i 2.03316 + 3.52154i
\(891\) −1.82386 3.15902i −0.00204698 0.00354547i
\(892\) 1358.27i 1.52273i
\(893\) −294.736 923.350i −0.330052 1.03399i
\(894\) −307.725 −0.344211
\(895\) −1.36517 + 0.788180i −0.00152533 + 0.000880648i
\(896\) 248.885 143.694i 0.277774 0.160373i
\(897\) 313.313 542.673i 0.349289 0.604987i
\(898\) 658.556 + 1140.65i 0.733359 + 1.27021i
\(899\) −115.371 + 199.828i −0.128332 + 0.222278i
\(900\) 920.823 1.02314
\(901\) 106.976i 0.118730i
\(902\) 3.52801 6.11068i 0.00391131 0.00677460i
\(903\) 122.651 + 70.8126i 0.135826 + 0.0784193i
\(904\) −1500.86 −1.66025
\(905\) 1037.95i 1.14690i
\(906\) −2778.54 1604.19i −3.06682 1.77063i
\(907\) −1402.39 + 809.670i −1.54619 + 0.892690i −0.547757 + 0.836637i \(0.684518\pi\)
−0.998428 + 0.0560533i \(0.982148\pi\)
\(908\) −55.8419 32.2403i −0.0614999 0.0355070i
\(909\) −467.276 809.346i −0.514055 0.890369i
\(910\) 241.949 + 419.068i 0.265878 + 0.460514i
\(911\) 895.922i 0.983449i −0.870751 0.491725i \(-0.836367\pi\)
0.870751 0.491725i \(-0.163633\pi\)
\(912\) 531.421 169.631i 0.582699 0.185999i
\(913\) −2.37500 −0.00260131
\(914\) 2020.42 1166.49i 2.21053 1.27625i
\(915\) 376.798 217.544i 0.411801 0.237753i
\(916\) 965.991 1673.15i 1.05458 1.82658i
\(917\) −47.3621 82.0336i −0.0516490 0.0894587i
\(918\) 207.949 360.179i 0.226524 0.392352i
\(919\) 741.588 0.806951 0.403476 0.914990i \(-0.367802\pi\)
0.403476 + 0.914990i \(0.367802\pi\)
\(920\) 742.943i 0.807546i
\(921\) −276.255 + 478.487i −0.299951 + 0.519530i
\(922\) −2041.38 1178.59i −2.21408 1.27830i
\(923\) −659.101 −0.714086
\(924\) 1.23387i 0.00133535i
\(925\) 917.387 + 529.653i 0.991769 + 0.572598i
\(926\) 42.1341 24.3261i 0.0455012 0.0262701i
\(927\) −572.697 330.647i −0.617796 0.356685i
\(928\) −46.5829 80.6840i −0.0501971 0.0869440i
\(929\) 657.059 + 1138.06i 0.707275 + 1.22504i 0.965864 + 0.259049i \(0.0834093\pi\)
−0.258589 + 0.965988i \(0.583257\pi\)
\(930\) 3932.66i 4.22867i
\(931\) −607.225 + 667.407i −0.652229 + 0.716871i
\(932\) 65.7070 0.0705011
\(933\) 629.778 363.602i 0.675003 0.389713i
\(934\) 2511.08 1449.77i 2.68852 1.55222i
\(935\) −1.15982 + 2.00887i −0.00124045 + 0.00214853i
\(936\) 504.574 + 873.948i 0.539075 + 0.933705i
\(937\) 392.873 680.475i 0.419288 0.726228i −0.576580 0.817041i \(-0.695613\pi\)
0.995868 + 0.0908128i \(0.0289465\pi\)
\(938\) −8.72912 −0.00930610
\(939\) 1188.94i 1.26618i
\(940\) 1287.19 2229.48i 1.36935 2.37178i
\(941\) −224.279 129.487i −0.238341 0.137606i 0.376073 0.926590i \(-0.377274\pi\)
−0.614414 + 0.788984i \(0.710608\pi\)
\(942\) 1123.27 1.19243
\(943\) 564.397i 0.598512i
\(944\) 137.015 + 79.1058i 0.145143 + 0.0837985i
\(945\) −99.7141 + 57.5699i −0.105518 + 0.0609206i
\(946\) 3.20321 + 1.84938i 0.00338606 + 0.00195494i
\(947\) −211.830 366.901i −0.223686 0.387435i 0.732239 0.681048i \(-0.238476\pi\)
−0.955924 + 0.293613i \(0.905142\pi\)
\(948\) 635.268 + 1100.32i 0.670113 + 1.16067i
\(949\) 949.414i 1.00044i
\(950\) −1096.58 997.701i −1.15430 1.05021i
\(951\) −344.008 −0.361732
\(952\) −107.152 + 61.8642i −0.112555 + 0.0649834i
\(953\) 1077.21 621.927i 1.13034 0.652599i 0.186316 0.982490i \(-0.440345\pi\)
0.944019 + 0.329891i \(0.107012\pi\)
\(954\) −106.541 + 184.534i −0.111678 + 0.193432i
\(955\) −872.794 1511.72i −0.913920 1.58296i
\(956\) −175.745 + 304.398i −0.183833 + 0.318408i
\(957\) 0.718623 0.000750912
\(958\) 1329.23i 1.38750i
\(959\) −55.7893 + 96.6299i −0.0581745 + 0.100761i
\(960\) −2081.60 1201.81i −2.16833 1.25189i
\(961\) −1007.94 −1.04884
\(962\) 2583.05i 2.68508i
\(963\) 264.668 + 152.806i 0.274837 + 0.158677i
\(964\) −874.961 + 505.159i −0.907636 + 0.524024i
\(965\) −762.639 440.310i −0.790300 0.456280i
\(966\) −76.5163 132.530i −0.0792094 0.137195i
\(967\) 120.498 + 208.709i 0.124610 + 0.215832i 0.921581 0.388187i \(-0.126899\pi\)
−0.796970 + 0.604019i \(0.793565\pi\)
\(968\) 1326.08i 1.36992i
\(969\) 632.121 201.775i 0.652344 0.208230i
\(970\) 2660.00 2.74227
\(971\) 94.1758 54.3724i 0.0969885 0.0559963i −0.450721 0.892665i \(-0.648833\pi\)
0.547710 + 0.836668i \(0.315500\pi\)
\(972\) −1636.32 + 944.730i −1.68346 + 0.971945i
\(973\) −56.2567 + 97.4395i −0.0578178 + 0.100143i
\(974\) 1464.90 + 2537.28i 1.50400 + 2.60501i
\(975\) 746.331 1292.68i 0.765467 1.32583i
\(976\) 127.254 0.130383
\(977\) 1730.59i 1.77133i 0.464323 + 0.885666i \(0.346298\pi\)
−0.464323 + 0.885666i \(0.653702\pi\)
\(978\) −180.934 + 313.387i −0.185004 + 0.320437i
\(979\) 4.88701 + 2.82152i 0.00499184 + 0.00288204i
\(980\) −2396.57 −2.44548
\(981\) 289.853i 0.295467i
\(982\) 2035.82 + 1175.38i 2.07313 + 1.19692i
\(983\) 1505.59 869.256i 1.53163 0.884288i 0.532346 0.846527i \(-0.321311\pi\)
0.999287 0.0377615i \(-0.0120227\pi\)
\(984\) −2086.61 1204.71i −2.12054 1.22429i
\(985\) −992.600 1719.23i −1.00772 1.74542i
\(986\) 80.1685 + 138.856i 0.0813068 + 0.140828i
\(987\) 238.324i 0.241463i
\(988\) 496.540 2277.96i 0.502571 2.30562i
\(989\) −295.856 −0.299147
\(990\) 4.00142 2.31022i 0.00404184 0.00233356i
\(991\) −273.421 + 157.860i −0.275904 + 0.159293i −0.631568 0.775321i \(-0.717588\pi\)
0.355663 + 0.934614i \(0.384255\pi\)
\(992\) 397.497 688.485i 0.400702 0.694037i
\(993\) −477.656 827.325i −0.481023 0.833157i
\(994\) −80.4818 + 139.399i −0.0809677 + 0.140240i
\(995\) −1070.21 −1.07559
\(996\) 1804.46i 1.81171i
\(997\) 637.836 1104.76i 0.639755 1.10809i −0.345731 0.938334i \(-0.612369\pi\)
0.985486 0.169755i \(-0.0542976\pi\)
\(998\) 445.010 + 256.927i 0.445902 + 0.257442i
\(999\) −614.618 −0.615233
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 19.3.d.a.12.1 yes 6
3.2 odd 2 171.3.p.d.145.3 6
4.3 odd 2 304.3.r.b.145.2 6
19.2 odd 18 361.3.f.h.333.1 18
19.3 odd 18 361.3.f.h.127.3 18
19.4 even 9 361.3.f.h.116.1 18
19.5 even 9 361.3.f.i.262.1 18
19.6 even 9 361.3.f.h.299.3 18
19.7 even 3 361.3.b.b.360.1 6
19.8 odd 6 inner 19.3.d.a.8.1 6
19.9 even 9 361.3.f.h.307.3 18
19.10 odd 18 361.3.f.i.307.1 18
19.11 even 3 361.3.d.c.293.3 6
19.12 odd 6 361.3.b.b.360.6 6
19.13 odd 18 361.3.f.i.299.1 18
19.14 odd 18 361.3.f.h.262.3 18
19.15 odd 18 361.3.f.i.116.3 18
19.16 even 9 361.3.f.i.127.1 18
19.17 even 9 361.3.f.i.333.3 18
19.18 odd 2 361.3.d.c.69.3 6
57.8 even 6 171.3.p.d.46.3 6
76.27 even 6 304.3.r.b.65.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.3.d.a.8.1 6 19.8 odd 6 inner
19.3.d.a.12.1 yes 6 1.1 even 1 trivial
171.3.p.d.46.3 6 57.8 even 6
171.3.p.d.145.3 6 3.2 odd 2
304.3.r.b.65.2 6 76.27 even 6
304.3.r.b.145.2 6 4.3 odd 2
361.3.b.b.360.1 6 19.7 even 3
361.3.b.b.360.6 6 19.12 odd 6
361.3.d.c.69.3 6 19.18 odd 2
361.3.d.c.293.3 6 19.11 even 3
361.3.f.h.116.1 18 19.4 even 9
361.3.f.h.127.3 18 19.3 odd 18
361.3.f.h.262.3 18 19.14 odd 18
361.3.f.h.299.3 18 19.6 even 9
361.3.f.h.307.3 18 19.9 even 9
361.3.f.h.333.1 18 19.2 odd 18
361.3.f.i.116.3 18 19.15 odd 18
361.3.f.i.127.1 18 19.16 even 9
361.3.f.i.262.1 18 19.5 even 9
361.3.f.i.299.1 18 19.13 odd 18
361.3.f.i.307.1 18 19.10 odd 18
361.3.f.i.333.3 18 19.17 even 9